Xu Hướng 9/2023 # Bài Tập Xác Suất Thống Kê Bài Tập Xác Suất Thống Kê Có Đáp Án # Top 13 Xem Nhiều | Ictu-hanoi.edu.vn

Xu Hướng 9/2023 # Bài Tập Xác Suất Thống Kê Bài Tập Xác Suất Thống Kê Có Đáp Án # Top 13 Xem Nhiều

Bạn đang xem bài viết Bài Tập Xác Suất Thống Kê Bài Tập Xác Suất Thống Kê Có Đáp Án được cập nhật mới nhất tháng 9 năm 2023 trên website Ictu-hanoi.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất.

Bài tập xác suất thống kê Bài tập xác suất thống kê có đáp án

Bài tập xác suất thống kê có đáp án kèm theo

Bài tập xác suất thống kê gồm bài tập về xác suất thống kê có lời giải, giúp các bạn sinh viên củng cố các kiến thức được học của môn Xác suất thống kê. Từ đó, giúp các bạn có kế hoạch học tập và ôn thi hiệu quả. Mời các bạn cùng tham khảo.

Bài 1: Có 30 đề thi trong đó có 10 đề khó, 20 đề trung bình. Tìm xác suất để:

a. Một học sinh bắt một đề gặp được đề trung bình.

b. Một học sinh bắt hai đề, được ít nhất một đề trung bình.

Giải

a. Gọi A là biến cố học sinh bắt được đề trung bình:

b. Gọi B là biến cố học sinh bắt được 1 đề trung bình và một đề khó

Gọi C là biến cố học sinh bắt được 2 đề trung bình.

Gọi D là biến cố học sinh bắt hai đề, được ít nhất một đề trung bình.

Khi đó:

Bài 2: Có hai lớp 10A và 10 B mỗi lớp có 45 học sinh, số học sinh giỏi văn và số học sinh giỏi toán được cho trong bảng sau. Có một đoàn thanh tra. Hiệu trưởng nên mời vào lớp nào để khả năng gặp được một em giỏi ít nhất một môn là cao nhất?

Giải

Gọi V là biến cố học sinh giỏi Văn, T là biến cố học sinh giỏi Toán.

Ta có: Lớp 10A

P(V + T) = P(V) + P(T) – P(VT) = 25/45 + 30/45 – 20/45 = 7/9

Lớp 10B:

P(V + T) = P(V) + P(T) – P(VT) = 25/45 + 30/45 – 10/45 = 1

Vậy nên chọn lớp 10B.

Bài 3: Lớp có 100 sinh viên, trong đó có 50 SV giỏi Anh Văn, 45 SV giỏi Pháp Văn, 10 SV giỏi cả hai ngoại ngữ. Chọn ngẫu nhiên một sinh viên trong lớp. Tính xác suất:

a. Sinh viên này giỏi ít nhất một ngoại ngữ.

b. Sinh viên này không giỏi ngoại ngữ nào hết.

c. Sinh viên này chỉ giỏi đúng một ngoại ngữ.

d. Sinh viên này chỉ giỏi duy nhất môn Anh Văn.

Giải

a) Gọi A là biến cố Sinh viên giỏi Anh Văn.

Gọi B là biến cố Sinh viên giỏi Pháp Văn.

Gọi C là biến cố Sinh viên giỏi ít nhất một ngoại ngữ.

P(C) = P(A + B) = P(A) + P(B) – P(AB) = 50/100 + 45/100 – 10/100 = 0,85

b) Gọi D là biến cố Sinh viên này không giỏi ngoại ngữ nào hết.

P(D) = 1 – P(C) = 1 – 0,85 = 0,15

Bài Tập Xác Suất Thống Kê Có Đáp Án

Bài tập xác suất thống kê có đáp án – Bài tập xác suất thống kê gồm bài tập về xác suất thống kê có lời giải, giúp các bạn sinh viên củng cố các kiến thức được học của môn Xác suất thống kê. Từ đó, giúp các bạn có kế hoạch học tập và ôn thi hiệu quả. Mời các bạn cùng tham khảo.

Bài tập xác suất thống kê có đáp án

Bài 1: Có 30 đề thi trong đó có 10 đề khó, 20 đề trung bình. Tìm xác suất để:

a. Một học sinh bắt một đề gặp được đề trung bình.

b. Một học sinh bắt hai đề, được ít nhất một đề trung bình.

Bài 2: Có hai lớp 10A và 10 B mỗi lớp có 45 học sinh, số học sinh giỏi văn và số học sinh giỏi toán được cho trong bảng sau. Có một đoàn thanh tra. Hiệu trưởng nên mời vào lớp nào để khả năng gặp được một em giỏi ít nhất một môn là cao nhất?

Bài 3: Lớp có 100 sinh viên, trong đó có 50 SV giỏi Anh Văn, 45 SV giỏi Pháp Văn, 10 SV giỏi cả hai ngoại ngữ. Chọn ngẫu nhiên một sinh viên trong lớp. Tính xác suất:

a. Sinh viên này giỏi ít nhất một ngoại ngữ.

b. Sinh viên này không giỏi ngoại ngữ nào hết.

c. Sinh viên này chỉ giỏi đúng một ngoại ngữ.

d. Sinh viên này chỉ giỏi duy nhất môn Anh Văn.

Giải

a) Gọi A là biến cố Sinh viên giỏi Anh Văn.

Gọi B là biến cố Sinh viên giỏi Pháp Văn.

Gọi C là biến cố Sinh viên giỏi ít nhất một ngoại ngữ.

P(C) = P(A + B) = P(A) + P(B) – P(AB) = 50/100 + 45/100 – 10/100 = 0,85

b) Gọi D là biến cố Sinh viên này không giỏi ngoại ngữ nào hết.

P(D) = 1 – P(C) = 1 – 0,85 = 0,15

Bài tập xác suất thống kê có đáp án Tìm kiếm Google:

bài tập xác suất thống kê có lời giải

Lớp có 100 sinh viên trong đó có 50 SV giỏi Anh Văn 45 SV giỏi Pháp Văn 10 SV giỏi cả hai ngoại ngữ Chọn ngẫu nhiên một sinh viên trong lớp Tính xác suất:

Để có đầy đủ, chi tiết và đúng định dạng, bạn vui lòng tải về để xem. Đừng quên theo dõi Đề Thi Thử Việt Nam trên Facebook để nhanh chóng nhận được thông tin mới nhất hàng ngày.

Bài Tập Xác Suất Thống Kê

Bài tập xác suất thống kê có đáp án

Bài tập xác suất thống kê có đáp án kèm theo

Xác suất thống kê Bộ đề thi và lời giải xác suất thống kê

Bài Tập Xác Suất Thống Kê

Bài 1: Có 30 đề thi trong đó có 10 đề khó, 20 đề trung bình. Tìm xác suất để:

a. Một học sinh bắt một đề gặp được đề trung bình.

b. Một học sinh bắt hai đề, được ít nhất một đề trung bình.

Giải

a. Gọi A là biến cố học sinh bắt được đề trung bình:

b. Gọi B là biến cố học sinh bắt được 1 đề trung bình và một đề khó

Gọi C là biến cố học sinh bắt được 2 đề trung bình.

Gọi D là biến cố học sinh bắt hai đề, được ít nhất một đề trung bình.

Khi đó:

Bài 2: Có hai lớp 10A và 10 B mỗi lớp có 45 học sinh, số học sinh giỏi văn và số học sinh giỏi toán được cho trong bảng sau. Có một đoàn thanh tra. Hiệu trưởng nên mời vào lớp nào để khả năng gặp được một em giỏi ít nhất một môn là cao nhất?

Giải

Gọi V là biến cố học sinh giỏi Văn, T là biến cố học sinh giỏi Toán.

Ta có: Lớp 10A

P(V + T) = P(V) + P(T) – P(VT) = 25/45 + 30/45 – 20/45 = 7/9

Lớp 10B:

P(V + T) = P(V) + P(T) – P(VT) = 25/45 + 30/45 – 10/45 = 1

Vậy nên chọn lớp 10B.

Bài 3: Lớp có 100 sinh viên, trong đó có 50 SV giỏi Anh Văn, 45 SV giỏi Pháp Văn, 10 SV giỏi cả hai ngoại ngữ. Chọn ngẫu nhiên một sinh viên trong lớp. Tính xác suất:

a. Sinh viên này giỏi ít nhất một ngoại ngữ.

b. Sinh viên này không giỏi ngoại ngữ nào hết.

c. Sinh viên này chỉ giỏi đúng một ngoại ngữ.

d. Sinh viên này chỉ giỏi duy nhất môn Anh Văn.

Giải

a) Gọi A là biến cố Sinh viên giỏi Anh Văn.

Gọi B là biến cố Sinh viên giỏi Pháp Văn.

Gọi C là biến cố Sinh viên giỏi ít nhất một ngoại ngữ.

P(C) = P(A + B) = P(A) + P(B) – P(AB) = 50/100 + 45/100 – 10/100 = 0,85

b) Gọi D là biến cố Sinh viên này không giỏi ngoại ngữ nào hết.

P(D) = 1 – P(C) = 1 – 0,85 = 0,15

Bài Giải Xác Suất Thống Kê

Bài Giải Xác Suất Thống Kê, Bộ Đề Thi Và Lời Giải Xác Suất Thống Kê, Giải Bài Tập Xác Suất Thống Kê, Bộ Đề Thi Xác Suất Thống Kê Có Lời Giải, Bài Giải Bài Tập Xác Suất Thống Kê, Giải Bài Tập Xác Suất Thống Kê Đại Học, Bài Giải Xác Suất Thống Kê Chương 4, Bài Giải Xác Suất Thống Kê Chương 5, Giải Bài Tập Xác Suất Thống Kê Chương 5, Bài Giải Xác Suất Thống Kê Chương 3, Bài Giải Lý Thuyết Xác Suất Thống Kê, Bài Giải Xác Suất Thống Kê Chương 2, Giải Bài Tập Xác Suất Thống Kê Của Nguyễn Cao Văn, Bài Giải Xác Suất Thống Kê Chương 1, Giải Bài Tập Xác Suất Thống Kê Chương 1, Ly Thuyet Xac Suat Thong Ke Co Loi Giai, Giải Bài Tập Xác Suất Thống Kê Đại Học Chương 1, Giải Bài Tập Xác Suất Và Thống Kê Toán, Giải Bài Tập Xác Suất Thống Kê Chương 2, Giải Bài Tập Xác Suất Thống Kê Đại Học Bách Khoa Hà Nội, Bài Giải Xác Suất Thống Kê Trần Ngọc Hội, Giải Bài Tập Xác Suất Thống Kê Đại Học Bách Khoa, Giải Bài Tập Xác Suất Thống Kê Bách Khoa, Giải Bài Tập Lý Thuyết Xác Suất Thống Kê Toán, Giải Bài Tập Xác Suất Thống Kê Chương 6 Kinh Tế Quốc Dân, Giải Bài Tập Xác Suất Thống Kê Chương 3 Kinh Tế Quốc Dân, Giải Xác Suất Thống Kê Chương 6 Mẫu Ngẫu Nhiên, Giải Bài Tập Xác Suất Thống Kê Chương 2 Kinh Tế Quốc Dân, Bài Giải Xác Suất Thống Kê Trần Ngọc Hội 2009, Bài Giải Xác Suất, Giải Bài Tập Xác Suất, Giải Bài Tập Xác Suất Của Biến Cố, Hướng Dẫn Giải Bài Toán Xác Suất, Giải Bài Tập Xác Suất Có Điều Kiện, 7 Công Thức Giải Nhanh Lãi Suất, Đề Thi Xác Suất Thống Kê, Đề Thi Xác Suất Thống Kê Có Đáp án, Xác Suất Thống Kê Y Học Huế, Tóm Tắt Xác Suất Thống Kê, Đề Thi Môn Xác Suất Thống Kê, ôn Tập Xác Suất Thống Kê, ôn Thi Xác Suất Thống Kê, Bài Tập ôn Tập Xác Suất Thống Kê, Bộ Đề Thi Xác Suất Thống Kê, Bài Tập ôn Thi Môn Xác Suất Thống Kê, Bài Tập Môn Xác Suất Thống Kê, Xác Suất Thống Kê, Xác Suất Thống Kê Y Học, Bài Tập ôn Thi Xác Suất Thống Kê, Đáp án Xác Suất Thống Kê Neu, Đáp án Xác Suất Thống Kê, Đề Thi Xác Suất Thống Kê Neu, Bài Tập Xác Suất Thống Kê, Xác Suất Thống Kê Ftu, Đề Thi Xác Suất Thống Kê Đại Học Y Dược, Sách Xác Suất Thống Kê, Bài Giảng Xác Suất Thống Kê, Sách Học Xác Suất Thống Kê, Đáp án Xác Suất Thống Kê Hvnh, Đề Cương ôn Tập Môn Xác Suất Thống Kê, Đề Cương Xác Suất Thống Kê, Đề Cương ôn Tập Xác Suất Thống Kê Đại Học, Đề Thi Xác Suất Thống Kê Đại Học Nông Lâm, Đề Cương ôn Tập Xác Suất Thống Kê, Đáp án Đề Thi Xác Suất Thống Kê Hvnh, Bài Kiểm Tra Xác Suất Thống Kê, Đề Cương Xác Suất Thống Kê Y Học, Xác Suất Thống Kê Đại Học Nông Lâm, Tài Liệu Xác Suất Thống Kê, Tài Liệu ôn Tập Xác Suất Thống Kê, Tài Liệu ôn Thi Xác Suất Thống Kê, Đề Kiểm Tra Xác Suất Thống Kê, Đề Kiểm Tra Môn Xác Suất Thống Kê, Nếu Lãi Suất Danh Nghĩa Nhỏ Hơn Tỷ Lệ Lạm Phát, Thì Lãi Suất Thực Tế Sẽ, Đề Thi Trắc Nghiệm Xác Suất Thống Kê, Giáo Trình Xác Suất Thống Kê, Đề Thi Trắc Nghiệm Xác Suất Thống Kê Đại Học, Đề Cương ôn Tập Toán Xác Suất Thống Kê, Xac Suat Thong Ke Dieu Duong, Đề Thi Xác Suất Thống Kê Đại Học Bách Khoa, Câu Hỏi Trắc Nghiệm Xác Suất Thống Kê, Câu Hỏi Trắc Nghiệm Xác Suất Thống Kê Y Học, Bài Giảng Xác Suất Thống Kê Hust, Bài Giảng Xác Suất Thống Kê Lê Xuân Lý, Trắc Nghiệm Xác Suất Thống Kê, Bài Tiểu Luận Xác Suất Thống Kê, Công Thức Xác Suất Thống Kê, Bài Tập Thảo Luận Xác Suất Thống Kê, Đề Thi Trắc Nghiệm Xác Suất Thống Kê Ftu, On Xac Suat Thong Ke Dieu Duong, Bài Giảng Xác Suất Thống Kê Chương 1, Đề Kiểm Tra Toán Xác Suất Thống Kê, Xác Suất Thống Kê Nguyễn Đình Huy, Lý Thuyết Xác Suất Thống Kê Chương 3, Thuế Suất 5 ở Thông Tư 32/2007/tt-btc, Bài Giảng Xác Suất Thống Kê Chương 2, Bài Thảo Luận Xác Suất Thống Kê, Trắc Nghiệm Xác Suất Thống Kê Y Học, Bài Thảo Luận Lý Thuyết Xác Suất Thống Kê, Trắc Nghiệm Xác Suất Thống Kê Y Dược,

Bài Giải Xác Suất Thống Kê, Bộ Đề Thi Và Lời Giải Xác Suất Thống Kê, Giải Bài Tập Xác Suất Thống Kê, Bộ Đề Thi Xác Suất Thống Kê Có Lời Giải, Bài Giải Bài Tập Xác Suất Thống Kê, Giải Bài Tập Xác Suất Thống Kê Đại Học, Bài Giải Xác Suất Thống Kê Chương 4, Bài Giải Xác Suất Thống Kê Chương 5, Giải Bài Tập Xác Suất Thống Kê Chương 5, Bài Giải Xác Suất Thống Kê Chương 3, Bài Giải Lý Thuyết Xác Suất Thống Kê, Bài Giải Xác Suất Thống Kê Chương 2, Giải Bài Tập Xác Suất Thống Kê Của Nguyễn Cao Văn, Bài Giải Xác Suất Thống Kê Chương 1, Giải Bài Tập Xác Suất Thống Kê Chương 1, Ly Thuyet Xac Suat Thong Ke Co Loi Giai, Giải Bài Tập Xác Suất Thống Kê Đại Học Chương 1, Giải Bài Tập Xác Suất Và Thống Kê Toán, Giải Bài Tập Xác Suất Thống Kê Chương 2, Giải Bài Tập Xác Suất Thống Kê Đại Học Bách Khoa Hà Nội, Bài Giải Xác Suất Thống Kê Trần Ngọc Hội, Giải Bài Tập Xác Suất Thống Kê Đại Học Bách Khoa, Giải Bài Tập Xác Suất Thống Kê Bách Khoa, Giải Bài Tập Lý Thuyết Xác Suất Thống Kê Toán, Giải Bài Tập Xác Suất Thống Kê Chương 6 Kinh Tế Quốc Dân, Giải Bài Tập Xác Suất Thống Kê Chương 3 Kinh Tế Quốc Dân, Giải Xác Suất Thống Kê Chương 6 Mẫu Ngẫu Nhiên, Giải Bài Tập Xác Suất Thống Kê Chương 2 Kinh Tế Quốc Dân, Bài Giải Xác Suất Thống Kê Trần Ngọc Hội 2009, Bài Giải Xác Suất, Giải Bài Tập Xác Suất, Giải Bài Tập Xác Suất Của Biến Cố, Hướng Dẫn Giải Bài Toán Xác Suất, Giải Bài Tập Xác Suất Có Điều Kiện, 7 Công Thức Giải Nhanh Lãi Suất, Đề Thi Xác Suất Thống Kê, Đề Thi Xác Suất Thống Kê Có Đáp án, Xác Suất Thống Kê Y Học Huế, Tóm Tắt Xác Suất Thống Kê, Đề Thi Môn Xác Suất Thống Kê, ôn Tập Xác Suất Thống Kê, ôn Thi Xác Suất Thống Kê, Bài Tập ôn Tập Xác Suất Thống Kê, Bộ Đề Thi Xác Suất Thống Kê, Bài Tập ôn Thi Môn Xác Suất Thống Kê, Bài Tập Môn Xác Suất Thống Kê, Xác Suất Thống Kê, Xác Suất Thống Kê Y Học, Bài Tập ôn Thi Xác Suất Thống Kê, Đáp án Xác Suất Thống Kê Neu,

Đáp Án Đề Thi Xác Suất Thống Kê Hvnh

Đáp án Xác Suất Thống Kê Hvnh, Đáp án Đề Thi Xác Suất Thống Kê Hvnh, Đề Thi Xác Suất Thống Kê Neu, Bộ Đề Thi Xác Suất Thống Kê, Đề Thi Môn Xác Suất Thống Kê, Tóm Tắt Xác Suất Thống Kê, Đề Thi Xác Suất Thống Kê, Bài Tập Môn Xác Suất Thống Kê, Đáp án Xác Suất Thống Kê, Bài Tập Xác Suất Thống Kê, Đề Thi Xác Suất Thống Kê Có Đáp án, Bài Tập ôn Thi Xác Suất Thống Kê, Đáp án Xác Suất Thống Kê Neu, Bài Tập ôn Thi Môn Xác Suất Thống Kê, Xác Suất Thống Kê Ftu, Bài Tập ôn Tập Xác Suất Thống Kê, Xác Suất Thống Kê, ôn Thi Xác Suất Thống Kê, Xác Suất Thống Kê Y Học, Xác Suất Thống Kê Y Học Huế, ôn Tập Xác Suất Thống Kê, Tài Liệu ôn Tập Xác Suất Thống Kê, Đề Cương Xác Suất Thống Kê Y Học, Đề Cương ôn Tập Xác Suất Thống Kê Đại Học, Đề Cương ôn Tập Xác Suất Thống Kê, Đề Kiểm Tra Môn Xác Suất Thống Kê, Đề Kiểm Tra Xác Suất Thống Kê, Bài Kiểm Tra Xác Suất Thống Kê, Bài Giải Bài Tập Xác Suất Thống Kê, Đề Cương ôn Tập Môn Xác Suất Thống Kê, Bài Giảng Xác Suất Thống Kê, Bài Giải Xác Suất Thống Kê, Đề Cương Xác Suất Thống Kê, Tài Liệu ôn Thi Xác Suất Thống Kê, Đề Thi Xác Suất Thống Kê Đại Học Nông Lâm, Giải Bài Tập Xác Suất Thống Kê Đại Học, Bộ Đề Thi Và Lời Giải Xác Suất Thống Kê, Tài Liệu Xác Suất Thống Kê, Sách Xác Suất Thống Kê, Bộ Đề Thi Xác Suất Thống Kê Có Lời Giải, Xác Suất Thống Kê Đại Học Nông Lâm, Sách Học Xác Suất Thống Kê, Đề Thi Xác Suất Thống Kê Đại Học Y Dược, Giải Bài Tập Xác Suất Thống Kê, Nếu Lãi Suất Danh Nghĩa Nhỏ Hơn Tỷ Lệ Lạm Phát, Thì Lãi Suất Thực Tế Sẽ, Bài Giải Lý Thuyết Xác Suất Thống Kê, Bài Tiểu Luận Xác Suất Thống Kê, Giáo Trình Xác Suất Thống Kê, Xác Suất Thống Kê Nguyễn Đình Huy, Trắc Nghiệm Xác Suất Thống Kê, Đề Kiểm Tra Toán Xác Suất Thống Kê, Ly Thuyet Xac Suat Thong Ke Co Loi Giai, Bài Giải Xác Suất Thống Kê Chương 1, Bài Giải Xác Suất Thống Kê Chương 2, Bài Tập Thảo Luận Xác Suất Thống Kê, Công Thức Xác Suất Thống Kê, Bài Giảng Xác Suất Thống Kê Lê Xuân Lý, Bài Giảng Xác Suất Thống Kê Hust, Bài Giảng Xác Suất Thống Kê Chương 2, Bài Giảng Xác Suất Thống Kê Chương 1, Bài Thảo Luận Xác Suất Thống Kê, Đề Thi Xác Suất Thống Kê Đại Học Bách Khoa, Thuế Suất 5 ở Thông Tư 32/2007/tt-btc, Bài Giải Xác Suất Thống Kê Chương 5, Bài Giải Xác Suất Thống Kê Chương 4, Trắc Nghiệm Xác Suất Thống Kê Y Học, Bài Giải Xác Suất Thống Kê Chương 3, On Xac Suat Thong Ke Dieu Duong, Xac Suat Thong Ke Dieu Duong, Giải Bài Tập Xác Suất Thống Kê Chương 2, Giải Bài Tập Xác Suất Thống Kê Chương 5, Câu Hỏi Trắc Nghiệm Xác Suất Thống Kê Y Học, Đề Thi Trắc Nghiệm Xác Suất Thống Kê Ftu, Đề Thi Trắc Nghiệm Xác Suất Thống Kê Đại Học, Đề Thi Trắc Nghiệm Xác Suất Thống Kê, Giải Bài Tập Xác Suất Thống Kê Của Nguyễn Cao Văn, Giải Bài Tập Xác Suất Và Thống Kê Toán, Giải Bài Tập Xác Suất Thống Kê Đại Học Chương 1, Giải Bài Tập Xác Suất Thống Kê Chương 1, Lý Thuyết Xác Suất Thống Kê Chương 3, Câu Hỏi Trắc Nghiệm Xác Suất Thống Kê, Đề Cương ôn Tập Toán Xác Suất Thống Kê, Hvnh, Mẫu Bìa Hvnh, Đáp án Hvnh, Bài Thảo Luận Xác Suất Thống Kê Toán, Giải Bài Tập Lý Thuyết Xác Suất Thống Kê Toán, Bài Giảng Xác Suất Thống Kê Bách Khoa Hà Nội, Giải Bài Tập Xác Suất Thống Kê Đại Học Bách Khoa Hà Nội, Bài Giải Xác Suất Thống Kê Trần Ngọc Hội, Đề Thi Xác Suất Thống Kê Học Viện Ngân Hàng, Bài Thảo Luận Lý Thuyết Xác Suất Thống Kê, Bài Giảng Xác Suất Thống Kê Đại Học Bách Khoa Hà Nội, Giải Bài Tập Xác Suất Thống Kê Bách Khoa, Bài Thảo Luận Xác Suất Và Thống Kê Toán, Trắc Nghiệm Xác Suất Thống Kê Y Dược, Giải Bài Tập Xác Suất Thống Kê Đại Học Bách Khoa, Sách Tham Khảo Xác Suất Thống Kê, Đáp án Kinh Tế Vi Mô Hvnh, Điểm Thi B1 Hvnh,

Đáp án Xác Suất Thống Kê Hvnh, Đáp án Đề Thi Xác Suất Thống Kê Hvnh, Đề Thi Xác Suất Thống Kê Neu, Bộ Đề Thi Xác Suất Thống Kê, Đề Thi Môn Xác Suất Thống Kê, Tóm Tắt Xác Suất Thống Kê, Đề Thi Xác Suất Thống Kê, Bài Tập Môn Xác Suất Thống Kê, Đáp án Xác Suất Thống Kê, Bài Tập Xác Suất Thống Kê, Đề Thi Xác Suất Thống Kê Có Đáp án, Bài Tập ôn Thi Xác Suất Thống Kê, Đáp án Xác Suất Thống Kê Neu, Bài Tập ôn Thi Môn Xác Suất Thống Kê, Xác Suất Thống Kê Ftu, Bài Tập ôn Tập Xác Suất Thống Kê, Xác Suất Thống Kê, ôn Thi Xác Suất Thống Kê, Xác Suất Thống Kê Y Học, Xác Suất Thống Kê Y Học Huế, ôn Tập Xác Suất Thống Kê, Tài Liệu ôn Tập Xác Suất Thống Kê, Đề Cương Xác Suất Thống Kê Y Học, Đề Cương ôn Tập Xác Suất Thống Kê Đại Học, Đề Cương ôn Tập Xác Suất Thống Kê, Đề Kiểm Tra Môn Xác Suất Thống Kê, Đề Kiểm Tra Xác Suất Thống Kê, Bài Kiểm Tra Xác Suất Thống Kê, Bài Giải Bài Tập Xác Suất Thống Kê, Đề Cương ôn Tập Môn Xác Suất Thống Kê, Bài Giảng Xác Suất Thống Kê, Bài Giải Xác Suất Thống Kê, Đề Cương Xác Suất Thống Kê, Tài Liệu ôn Thi Xác Suất Thống Kê, Đề Thi Xác Suất Thống Kê Đại Học Nông Lâm, Giải Bài Tập Xác Suất Thống Kê Đại Học, Bộ Đề Thi Và Lời Giải Xác Suất Thống Kê, Tài Liệu Xác Suất Thống Kê, Sách Xác Suất Thống Kê, Bộ Đề Thi Xác Suất Thống Kê Có Lời Giải, Xác Suất Thống Kê Đại Học Nông Lâm, Sách Học Xác Suất Thống Kê, Đề Thi Xác Suất Thống Kê Đại Học Y Dược, Giải Bài Tập Xác Suất Thống Kê, Nếu Lãi Suất Danh Nghĩa Nhỏ Hơn Tỷ Lệ Lạm Phát, Thì Lãi Suất Thực Tế Sẽ, Bài Giải Lý Thuyết Xác Suất Thống Kê, Bài Tiểu Luận Xác Suất Thống Kê, Giáo Trình Xác Suất Thống Kê, Xác Suất Thống Kê Nguyễn Đình Huy, Trắc Nghiệm Xác Suất Thống Kê,

Đề Thi Xác Suất Thống Kê Và Đáp Án

, Student at Nha trang culture art and tourism college

Published on

1. Page 1 BỘ ĐỀ THI VÀ LỜI GIẢI XÁC SUẤT THỐNG KÊ1 1. Đường kính của một loại trục máy là một đại lượng ngẫu nhiên có phân phối chuẩn ĐỀ SỐ 1 2 2 ( 250 ; 25 )N mm mmµ σ= = . Trục máy được gọi là hợp quy cách nếu đường kính từ 245mm đến 255mm. Cho máy sản xuất 100 trục. Tính xác suất để: a. Có 50 trục hợp quy cách. b. Có không quá 80 trục hợp quy cách. 2. Quan sát một mẫu (người) , ta có bảng thống kê chiều cao X(cm), trọng lượng Y(kg): X Y 150-155 155-160 160-165 165-170 170-175 50 5 55 2 11 60 3 15 4 65 8 17 70 10 6 7 75 12 a. Ước lượng chiều cao trung bình với độ tin cậy 95%γ = . b. Những người cao từ 170cm trở lên gọi là quá cao. Ước lượng trọng lượng trung bình những người quá cao với độ tin cậy 99%. c. Một tài liệu thống kê cũ cho biết tỷ lệ những người quá nặng ( 70kg≥ ) là 30%. Cho kết luận về tài liệu đó, với mức ý nghĩa 10%α = . d. Lập phương trình tương quan tuyến tính của Y theo X. BÀI GIẢI 1. Gọi D là đường kính trục máy thì 2 2 ( 250 ; 25 )D N mm mmµ σ∈= = . Xác suất trục hợp quy cách là: 1 Đề thi:GS Đặng Hấn. Lời giải:Th.S Lê Lễ. Tài liệu dùng cho sinh viên đại học, học viên thi Th.s, NCS.

6. Page 6 1H : đường kính cây không có phân phối chuẩn X 20-22 22-24 24-26 26-28 28-30 in 7 14 33 27 19 25,74x = , 2,30xs = ,N=100. Nếu X tuân thep phân phối chuẩn thì 1 22 25,74 20 25, 2,30 2,30 74 ( ) ( ) ( 1,63) ( 2,50)p − − = Φ − Φ = Φ − − Φ − (2,50) (1,63) 1 0,9484 0,0516= Φ − Φ = − = 2 24 25,74 22 25, 2,30 2,30 74 ( ) ( ) ( 0,76) ( 1,63)p − − = Φ − Φ = Φ − − Φ − (1,63) (0,76) 0,9484 0,7764 0,172= Φ − Φ = − = 3 26 25,74 24 25 2,30 2,3 ,74 ( ) ( ) (0,11) ( 0,76 0 )p − − = Φ − Φ = Φ − Φ − (0,11) (0,76) 1 0,5438 0,7764 1 0,3203=Φ + Φ − = + − = 4 28 25,74 26 25 2,30 2,30 ,74 ( ) ( ) (0,98) (0,11)p − − = Φ − Φ = Φ − Φ 0,8365 0,5438 0,2927= − = 5 30 25,74 28 25,74 ( ) ( ) (1,85) (0,98) 0, 2,30 2, 1 4 30 63p − − = Φ − Φ = Φ − Φ = Lớp 20-22 22-24 24-26 26-28 28-30 in 7 14 33 27 19 ip 0,0516 0,1720 0,3203 0,2927 0,1634 , .i in N p= 5,16 17,20 32,03 29,27 16,34 , 2 2 2 2 ( ) (7 5,16) (19 16,34) 1,8899 5,16 16,34 i i i n n n − − − Χ = Σ = +…+ =

7. Page 7 2 2 (0,05;5 2 1) (0,05;2) 5,991− −Χ =Χ = 6 2 2 (0,05;2)Χ < Χ nên chấp nhận 0H :đường kính của cây là đại lượng ngẫu nhiên thuộc phân phối chuẩn với 2 25,74, 5,29µ σ= = c. xts n ≤  ⇒ 2 ( )xts n ≥  (0,05) 1,96, 2,30, 5 0,5xt s mm cm= = = = 21,96.2,30 ( ) 81,3 0,5 n ≥ =. 82n⇒ ≥ Đã điều tra 100 cây , vậy không cần điều tra thêm nữa. d. (1 ) (1 )a a a a a a f f f f f t p f t n n − − − ≤ ≤ + 35 0,35 100 af= = 1 1 0,99 0,01α γ= − = − = (0,01) 2,58t = 0,35.0,65 0,35.0,65 100 0,35 2,58 0,35 2, 8 0 5 10 p− ≤ ≤ + 0,227 0,473p≤ ≤ Tỷ lệ cây loại A trong khoảng từ 22,7% đến 47,3%. 6 Số lớp là 5, phân phối chuẩn 2 ( ; )N µ σ có 2 tham số nên: tra bảng chi bình phương 2 Χ với bậc tự do bằng: số lớp-số tham số-1=5-2-1=2.

8. Page 8 ĐỀ SỐ 3 1. Một xí nghiệp có 2 máy. Trong ngày hội thi, mỗi công nhân sẽ chọn ngẫu nhiên một máy và sản xuất 100 sản phẩm. Nếu số sản phẩm loại I không ít hơn 70 thì được thưởng. Giả sử công nhân A xác suất sản xuất sản phẩm loại I với 2 máy lần lượt là 0,6 và 0,7. a. Tính xác suất để A được thưởng. b. Giả sử A dự thi 200 lần, số lần A được thưởng tin chắc nhất là bao nhiêu? c. A phải dự thi ít nhất bao nhiêu lần để xác suất có ít nhất một lần được thưởng không dưới 90%? 2. Theo dõi số kẹo X (kg) bán trong 1 tuần, ta có: ix 0-50 50-100 100-150 150-200 200-250 250-300 300-350 in 9 23 27 30 25 20 5 a. Để ước lượng số kẹo trung bình bán được trong 1 tuần với độ chính xác 10kg và độ tin cậy 99% thì cần điều tra thêm bao nhiêu tuần nữa? b. Bằng cách thay đổi mẫu mã, người ta thầy số kẹo trung bình bán được trong 1 tuần là 200kg. Việc thay đổi này có hiệu quả gì vể bản chất không? (mức ý nghĩa 5%) c. Những tuần bán từ 250kg trở lên là những tuần hiệu quả. Ước lượng tỷ lệ những tuần hiệu quả với độ tin cậy 90%. d. Ước lượng số kẹo trung bình bán được trong những tuần có hiệu quả với độ tin cậy 98%. BÀI GIẢI 1. a. Gọi T là biến cố công nhân A được thưởng . I: Biến cố công nhân A chọn máy I. II: Biến cố công nhân A chọn máy II. ( ) ( ) 0,5P I P II= = ( ) ( ). ( / ) ( ). ( / ) ( ). [70 100] ( ). [70 100]P T P I P T I P II P T II P I P X P II P Y= + = ≤ ≤ + ≤ ≤ trong đó (100;0,6) (60;24), (100;0,7) (70;21)X B N Y B N∈ ≈ ∈ ≈

9. Page 9 100 60 70 60 [70 100] ( ) ( ) (8,16) (2,04) 1 0,9793 0,0 24 24 207p X − − ≤ ≤ = Φ − Φ = Φ − Φ = − = 21 100 70 70 70 [70 100] ( ) 21 ( ) (6,55) (0) 1 0,5 0,5p Y − − ≤ ≤ = Φ − Φ = Φ − Φ = − = Vậy 1 ( ) (0,0207 0,5) 0,26 2 P T= + = b. Gọi Z là số lần được thưởng trong 200 lần A tham gia thi , (200;0,26)Z B∈ ( ) 1 200.0,26 0,74 ( ) 200.0,26 0,74 1np q Mod Z np q Mod Z− ≤ ≤ − + ⇒ − ≤ ≤ − + 51,26 ( ) 52,56Mod Z≤ ≤ . Mod(Z)=52. Số lần A được thưởng tin chắc nhất là 52. c. Gọi n là số lần dự thi. M: Biến cố ít nhất một lần A được thưởng 1 ( ) 1 ( ) 1 0,7 4 n n i P M P T = = − Π = − . 0,741 0,74 0,9 0,74 0,1 log 0,1 7,6n n n− ≥ ⇒ ≤ ⇒ ≥ = 8n→ ≥ . Vậy A phải dự thi ít nhất 8 lần. 2. a. n=139 , 79,3xs = , (0,01) 2,58t = , 10= xts n ≤  → 2 ( )xts n ≥  2 ( ) 2,58.79,3 10 418,6 419n n≥ = → ≥ . Vậy điều tra ít nhất 419-139=280 tuần nữa. b. 0 : 200H µ = 1 : 200H µ ≠ 139, 167,8, 79,3xn x s= = =

11. Page 11 ĐỀ SỐ 4 1. Có 3 giống lúa, sản lượng của chúng (đơn vị tấn/ha) là 3 đại lượng ngẫu nhiên 1 2 3(8;0,8), (10;0,6), (10;0,5)X N X N X N∈ ∈ ∈ . Cần chọn một trong 3 giống để trồng, theo bạn cần chọn giống nào?Tại sao? 2. Số kw giờ điện sử dụng trong 1 tháng của hộ loại A là (90;100)X N∈ . Một tổ dân phố gồm 50 hộ loại A. Giá điện là 2000 đ/kw giờ, tiền phí dịch vụ là 10 000 đ một tháng. Dự đoán số tiền điện phải trả trong 1 tháng của tổ với độ tin cậy 95%. 3. X( %) và Y(cm) là 2 chỉ tiêu của một sản phẩm. Kiểm tra một số sản phẩm ta có: X Y 0-2 2-4 4-8 8-10 10-12 100-105 5 105-110 7 10 110-115 3 9 16 9 115-120 8 25 8 120-125 15 13 17 8 125-130 15 11 9 130-135 14 6 135-140 5 a. Để ước lượng trung bình X với độ chính xác 0,2% thì đảm bảo độ tin cậy bao nhiêu? b. Những sản phẩm có X dưới 2% là loại II. Ước lượng trung bình Y của sản phẩm loại II với độ tin cậy 95%. c. Các sản phẩm có Y ≥ 125cm là loại I. Để ước lượng trung bình X các sản phẩm loại I cần điều tra thêm bao nhiêu sản phẩm nữa , nếu muốn độ chính xác là 0,3% và độ tin cậy 95%? d. Giả sử Y của sản phẩm loại II có phân phối chuẩn, ước lượng phương sai của Y những sản phẩm loại II với độ tin cậy 90%. BÀI GIẢI 1. Chọn giống 3X vì năng suất trung bình cao nhất (kỳ vọng lớn nhất) và độ ổn định năng suất cao nhất (phương sai bé nhất ) . 2. Trước hết ước lượng khoảng số kw giờ điện 1 hộ loại A phải dùng trong 1 tháng. Dùng quy tắc 2σ , ta có: a u a uσ µ σ− ≤ ≤ + 90, 10a σ= =

12. Page 12 1 1 0,95 0,05α γ= − = − = ( ) 1 0,974 1,96 2 u u α Φ = − = ⇒ = → 90 1,96.10 90 1,96.10µ− ≤ ≤ + 70,4 109,6µ→ ≤ ≤ Vậy hộ loại A dùng từ 70,4 kw giờ đến 109,6 kg giờ điện trong 1 tháng Trong 1 tháng cả tổ phải trả số tiền từ 50(70,4.2000 10000)+ đồng đến 50(109,6.2000 10000)+ đồng , tức là khoảng từ 7 540 000 đ đến 11 460 000 đồng . 3. a. n=213, 6,545x = , 3,01xs = . 0,2= xts n = → . x t s n =  0,2. 213 0,97 3,01 = = 1 (0,97) 0,8340 2 α − =Φ = (1 0,8340)2 0,332α→ = − = Độ tin cậy 1 0,668 66,8%γ α= − = = . b. 2 2 2106,8315, 3, 2, 7n y s= == , 1 1 0,95 0,05α γ= − = − = (0,05;14) 2,145t = 2 2 2 2 2 2 106,83 2,145. 106,83 2,145. 15 3,72 3, 2 5 7 1 y t y t n n s s µ µ− ≤ ≤ + ⇒ − ≤ ≤ + Vậy 104,77 108,89cm cmµ≤ ≤ , trung bình chỉ tiêu Y của sản phẩm loại II từ 104,77 cm đến 108,89 cm. c. 1 1,91s = , (0,05) 1,96t = , 0,3= . xts n ≤  → 2 ( )xts n ≥ 

13. Page 13 21,96.1,91 0,3 ( ) 155,7 156n n≥ = → ≥ . Mà 1 60n = , nên điều tra thêm ít nhất 156-60=96 sản phẩm loại I nữa. d. Khoảng ước lượng phương sai 2 2 2 2 2 ( ; 1) (1 ; 1) 2 2 ( 1) ( 1) ] y y n n n s n s α α σ − − − − − ≤ ≤ Χ Χ n=15, 2 13,81ys = , 2 (0,025;14) 6,4Χ =, 2 (0,95;14) 6,571Χ = Khoảng ước lượng phương sai của Y (các sản phẩm loại II) là 14.13,81 14.13,81 [ ; ] 6,4 6,571 , tức là từ 7,32 2 cm đến 29,42 2 cm .

14. Page 14 ĐỀ SỐ 5 1. Có 3 lô sản phẩm, mỗi lô có 10 sản phẩm. Lô thứ i có i phế phẩm. Lấy ngẫu nhiên ở mỗi lô 1 sản phẩm. Tính xác suất: a. Cả 3 đều tốt. b. Có đúng 2 tốt. c. Số sản phẩm tốt đúng bằng số đồng xu sấp khi tung 2 đồng xu. 2. Theo dõi sự phát triển chiều cao của cây bạch đàn trồng trên đất phèn sau một năm, ta có: ix (cm) 250-300 300-350 350-400 400-450 450-500 500-550 550-600 in 5 20 25 30 30 23 14 a. Biết chiều cao trung bình của bạch đàn sau một năm trồng trên đất không phèn là 4,5m. Với mức ý nghĩa 0,05 có cần tiến hành biện pháp kháng phèn cho bạch đàn không? b. Để ước lượng chiều cao trung bình bạch đàn một năm tuổi với độ chính xác 0,2m thì đảm bảo độ tin cậy là bao nhiêu? c. Những cây cao không quá 3,5m là chậm lớn. Ước lượng chiều cao trung bình các cây chậm lớn với độ tin cậy 98%. d. Có tài liệu cho biết phương sai chiều cao bạch đàn chậm lớn là 400. Với mức ý nghĩa 5%, có chấp nhận điều này không? BÀI GIẢI 1. a. 0,9.0,8.0,7 0,504p= = b. 0,9.0,8.0,3 0,9.0,2.0,7 0,1.0,8.0,7 0,398p = + + = c. X: số đồng xu sấp khi tung 2 đồng xu. X=0,1,2. Y: số sản phẩm tốt trong 3 sản phẩm p=p[Y=0]+p[Y=1]+p[Y=2]→ 0,1.0,2.0,3 0,9.0,2.0,3 0,1.0,8.0,3 0,1.0,2.0,7 0,398 0,496p= + + + + = 2. a. 0H : 450µ =

16. Page 16 2 2 2 0 ( 1) cl n s σ − Χ = → 2 2 (25 1)20,4 400 1 24,994 − Χ= = 2 2 (0,975;24) (1 ; 1) 2 12,4 n α − − Χ =Χ = 2 2 (0,025;24) ( ; 1) 2 39,4 n α − Χ =Χ = 2 2 2 (0,975;24) (0,025;24)Χ < Χ < Χ : Chấp nhận 0H .

17. Page 17 ĐỀ SỐ 6 1. Một máy sản xuất với tỷ lệ phế phẩm 5%. Một lô sản phẩm gồm 10 sản phẩm với tỷ lệ phế phẩm 30%. Cho máy sản xuất 3 sản phẩm và từ lô lấy thêm 3 sản phẩm. X là số sản phẩm tốt trong 6 sản phẩm này. a. Lập bảng phân phối của X. b. Không dùng bảng phân phối của X, tính M(X) và D(X). 2. Tiến hành quan sát độ bền 2 ( / )X kg mm của một loại thép, ta có: ix (cm) 95-115 115-135 135-155 155-175 175-195 195-215 215-235 in 15 19 23 31 29 21 6 a. Sẽ đạt độ tin cậy bao nhiêu khi ước lượng độ bền trung bình X với độ chính xác 2 3 /kg mm ? b. Bằng cách thay đổi thành phần nguyên liệu khi luyện thép , người ta làm cho độ bền trung bình của thép là 2 170 /kg mm . Cho kết luận về cải tiến này với mức ý nghĩa 1%. c. Thép có độ bền từ 2 195 /kg mm trở lên gọi là thép bền. Ước lượng độ bền trung bình của thép bền với độ tin cậy 98%. d. Có tài liệu cho biết tỷ lệ thép bền là 40%. Cho nhận xét về tài liệu này với mức ý nghĩa 1%. BÀI GIẢI 1. a. 1X : số sản phẩm tốt trong 3 sản phẩm máy sản xuất ra. 1 (3;0,95)X B∈ 3 1 3[ ] 0,95 0,05k k k p X k C − = = 1X 0 1 2 3 ip 0,000125 0,007125 0,135375 0,857375 2X : số sản phẩm tốt trong 3 sản phẩm lấy ra từ lô 10 sản phẩm.

18. Page 18 2X thuộc phân phối siêu bội 3 7 3 2 3 10 . [ ] k k C C p X k C − = = . 2X 0 1 2 3 ip 1 120 21 120 63 120 25 120 1 2X X X= + : số sản phẩm tốt trong 6 sản phẩm 1 2 1 [ 0] [ 0]. [ 0] 0,000125. 0,000001 120 p X p X p X= = = = = = 1 2 1 2 21 1 [ 1] [ 0, 1] [ 1, 0] 0,000125. 0,007125. 0,000081 120 120 p X p X X p X X== = =+ = == + = Tương tự , ta có : [ 2] 0,002441p X= = . 1 2 1 2 1 2[ 3] [ 0, 3] [ 1, 2] [ 2, 1]p X p X X p X X p X X== = =+ = =+ = = 1 2[ 3, 0]p X X+ = = . 1 2 1 2 1 2[ 4] [ 0, 4] [ 1, 3] [ 2, 2]p X p X X p X X p X X== = =+ = =+ = = + 1 2 1 2[ 3, 1] [ 4, 0]p X X p X X= =+ = =. 1 2 1 2 1 2[ 5] [ 0, 5] [ 1, 4] [ 2, 3]p X p X X p X X p X X== = =+ = =+ = = + 1 2 1 2 1 2[ 3, 2] [ 4, 1] [ 5, 0]p X X p X X p X X= =+ = =+ = =. 1 2 1 2 1 2[ 6] [ 0, 6] [ 1, 5] [ 2, 4]p X p X X p X X p X X== = =+ = =+ = = + 1 2 1 2 1 2 1 2[ 3, 3] [ 4, 2 ][ 5, 1] [ 6, 0 ]p X X p X X p X X p X X= =+ = =+ = =+ = =. b. 1 2( ) ( ) ( )M X M X M X= +

21. Page 21 ĐỀ SỐ 7 1. Ở một xí nghiệp may mặc, sau khi may quần áo, người ta đóng thành từng kiện , mỗi kiện 3 bộ (3 quần, 3 áo). Khi đóng kiện thường có hiện tượng xếp nhầm số. Xác suất xếp quần đúng số là 0,8. Xác suất xếp áo đúng số là 0,7. Mỗi kiện gọi là được chấp nhận nếu số quần xếp đúng số và số áo xếp đúng số là bằng nhau. a. Kiểm tra 100 kiện. Tìm xác suất có 40 kiện được chấp nhận. b. Phải kiểm tra ít nhất bao nhiêu kiện để xác suất có ít nhất một kiện được chấp nhận không dưới 90%? 2. X( %) và Y( 2 /kg mm ) là 2 chỉ tiêu của một sản phẩm. Kiểm tra một số sản phẩm ta có: X Y 0-5 5-10 10-15 15-20 20-25 115-125 7 125-135 12 8 10 135-145 20 15 2 145-155 19 16 9 5 155-165 8 3 a. Giả sử trung bình tiêu chuẩn của Y là 2 120 /kg mm . Cho nhận xét về tình hình sản xuất với mức ý nghĩa 1%. b. Sản phẩm có chỉ tiêu 15%X ≥ là sản phẩm loại A. Ước lượng trung bình chỉ tiêu X của sản phẩm loại A với độ tin cậy 99% . Ước lượng điểm tỷ lệ sản phẩm loại A . c. Để ước lượng trung bình chỉ tiêu Y với độ chính xác 2 0,6 /kg mm thì đảm bảo độ tin cậy là bao nhiêu? d. Lập phương trình tương quan tuyến tính của X theo Y. Biết 2 145 /Y kg mm= dự đoán X. BÀI GIẢI 1. a. p(A): xác suất một kiện được chấp nhận 1X :số quần xếp đúng số trên 3 quần, 1 (3;0,8)X B∈ 2X :số áo xếp đúng số trên 3 áo, 2 (3;0,7)X B∈

22. Page 22 1 2 1 2 1 2 1 2( ) [ 0, 0 ][ 1, 1] [ 2, 2 ][ 3, 3]p A p X X p X X p X X p X X= = =+ = =+ = =+ = = 0 0 3 0 0 3 3 30,8 .0,2 . 0,7 .0,3C C= 1 1 2 1 1 2 3 30,8 .0,2 . 0,7 .0,3C C+ 2 2 1 2 2 1 3 30,8 .0,2 . 0,7 .0,3C C+ 3 3 0 3 3 0 3 30,8 .0,2 . 0,7 .0,3C C+ =0,36332 X: số kiện được chấp nhận trong 100 kiện, (100;0,36332) (36,332;23,132)X B N∈ ≈ 1 [ 40] ( ) k np p X npq npq ϕ − = = 1 40 36,332 1 0,2898 ( ) (0,76) 0,062 4,81 4,4,81 4, 181 8 ϕ ϕ − = = = = b. Gọi n là số kiện phải kiểm tra. M: ít nhất một kiện được chấp nhận. 1 ( ) 1 ( ) 1 0,63668 0,9 n n i P M P A = = − Π = − ≥ . 0,636680,63668 0,1 log 0,1 5,1n n≤ ⇒ ≥ = 6n→ ≥ Vậy phải kiểm tra ít nhất 6 kiện. 2. a. 0H : 120µ = 1 : 120H µ ≠ 134, 142,01, 10,46yn y s= = = 0( ) tn y y n T s µ− =

24. Page 24 ĐỀ SỐ 8 1. Sản phẩm được đóng thành hộp. Mỗi hộp có 10 sản phẩm trong đó có 7 sản phẩm loại A. Người mua hàng quy định cách kiểm tra như sau: Từ hộp lấy ngẫu nhiên 3 sản phẩm, nếu cả 3 sản phẩm loại A thì nhận hộp đó, ngược lại thì loại. Giả sử kiểm tra 100 hộp. a. Tính xác suất có 25 hộp được nhận. b. Tính xác suất không quá 30 hộp được nhận. c. Phải kiểm tra ít nhất bao nhiêu hộp để xác suất có ít nhất 1 hộp được nhận 95%≥ ? 2. Tiến hành khảo sát số gạo bán hàng ngày tại một cửa hàng, ta có ix (kg) 110-125 125-140 140-155 155-170 170-185 185-200 200-215 215-230 in 2 9 12 25 30 20 13 4 a. Giả sử chủ cửa hàng cho rằng trung bình mỗi ngày bán không quá 140kg thì tốt hơn là nghỉ bán. Từ số liệu điều tra, cửa hàng quyết định thế nào với mức ý nghĩa 0,01? b. Những ngày bán ≥ 200kg là những ngày cao điểm. Ước lượng số tiền bán được trung bình trong ngày với độ tin cậy 99%, biết giá gạo là 5000/kg. c. Ước lượng tỷ lệ ngày cao điểm . d. Để ước lượng tỷ lệ ngày cao điểm với độ chính xác 5% thì đảm bảo độ tin cậy bao nhiêu? BÀI GIẢI 1. a. A: biến cố 1 hộp được nhận. 3 7 3 10 ( ) 0,29 C p A C = = X: số hộp được nhận trong 100 hộp. (100;0,29) (29;20,59)X B N∈ ≈ 1 [ 25] ( ) k np p X npq npq ϕ − = = 1 25 29 1 0,2709 ( ) ( 0,88) 0,0597 20,59 20,59 20,59 20,59 ϕ ϕ − = = − = =

26. Page 26 211,03 2,9 6,5 21. 586 6,5586 17 17 211,03 2,921.cd cd cd cd cd cd s x t x s t n n µ µ− ≤ ⇒ − ≤ ≤ ++≤ Vậy 206,38 215,68kg kgµ≤ ≤ . Số tiền thu được trong ngày cao điểm từ 515 950 đ đến 539 200 đ. c. 17 0,1478 115 cdf= = . 14,78%cdp ≈ d. 0,1478, 115, 0,05cdf n= = = (1 )cd cdf f u n − =  115 0,05 1,51 0,1478.0,8522 u⇒= = . 1 ( ) (1,51) 0,9345 2 u α − =Φ =Φ = 2(1 0,9345) 0,13α⇒ = − = Độ tin cậy: 1 0,87 87%γ α= − = = .

30. Page 30 ĐỀ SỐ 10 1. Hàng sản xuất xong được đóng kiện, mỗi kiện 10 sản phẩm. Kiện loại I có 5 sản phẩm loại A. Kiện loại II có 3 sản phẩm loại A. Để xem một kiện là loại I hay loại II, người ta quy định cách kiểm tra: lấy ngẫu nhiên từ kiện ra 3 sản phẩm và nếu có quá 1 sản phẩm loại A thì xem đó là kiện loại I, ngược lại thì xem đó là kiện loại II. a. Giả sử kiểm tra 100 kiện loại I. Tính xác suất phạm sai lầm 48 lần. b. Giả sử trong kho chứa 2 3 số kiện loại I, 1 3 số kiện loại II. Tính xác suất phạm sai lầm khi kiểm tra . 2. Tiến hành quan sát về độ chảy 2 ( / )X kg mm và độ bề 2 ( / )Y kg mm của một loại thép ta có: X Y 35-45 45-55 55-65 65-75 75-85 75-95 7 4 95-115 6 13 20 115-135 12 15 10 135-155 8 8 5 3 155-175 1 2 2 a. Lập phương trình tương quan tuyến tính của độ bền theo độ chảy. b. Thép có độ bền từ 2 135 /kg mm trở lên gọi là thép bền. Hãy ước lượng độ chảy trung bình của thép bền với độ tin cậy 99%. c. Giả sử độ chảy trung bình tiêu chuẩn là 2 50 /kg mm . Cho nhận xét về tình hình sản xuất với mức ý nghĩa 5%. d. Để ước lượng tỷ lệ thép bền với độ tin cậy 80% ,độ chính xác 4% và ước lượng độ chảy trung bình với độ tin cậy 90%, độ chính xác 2 0,8 /kg mm thì cần điều tra thêm bao nhiêu trường hợp nữa? BÀI GIẢI 1.

31. Page 31 a. 1( )p S : xác suất phạm sai lầm khi kiểm tra kiện loại I (kiện loại I mà cho là kiện loại II) 0 1 2 5 5 5 5 1 3 3 0 0 3 1 1 . . ( ) 0,5 C C C C p S C C = + = X:số kiện phạm sai lầm khi kiểm tra 100 kiện loại I. (100;0,5) (50;25)X B N∈ ≈ 1 [ 48] ( ) k np p X npq npq ϕ − = = 1 48 50 1 0,3683 ( ) ( 0,4) 0,07366 25 525 5 ϕ ϕ − = = − = = b. 2( )p S : xác suất phạm sai lầm khi kiểm tra kiện loại II (kiện loại II mà cho là kiện loại I) 3 2 1 3 0 3 7 3 10 0 3 7 1 2 . . ( ) 0,18 C C C C p S C C = + = p(I): xác suất chọn kiện loại I. p(II): xác suất chọn kiện loại II. p(S): xác suất phạm sai lầm. 1 2 2 1 ( ) ( ) ( ) ( ) ( ) .0,5 .0,18 0,39 3 3 p S p I p S p II p S= + = + = 2. a. xy y x y y x x r s s − − = → 53,33 1,18y x= + b. 63,10,29 10,725, tb tt bbn x s == = 1 1 0,99 0,01α γ= − = − = (0,01;28) 2,763t = 63,10 2,7 10 63. 63,10 2,7 ,725 10,7 6 2 9 2 . 2 3 5 9 tb tb tb tb tb tb x t x t n n s s µ µ− ≤ ≤ ⇒+ − ≤ ≤ + Vậy 2 2 57,60 / 68,6 /kg mm kg mmµ≤ ≤ .

Cập nhật thông tin chi tiết về Bài Tập Xác Suất Thống Kê Bài Tập Xác Suất Thống Kê Có Đáp Án trên website Ictu-hanoi.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!