Xu Hướng 5/2023 # Các Dạng Toán Và Phương Pháp Giải Toán Lớp 6 # Top 13 View | Ictu-hanoi.edu.vn

Xu Hướng 5/2023 # Các Dạng Toán Và Phương Pháp Giải Toán Lớp 6 # Top 13 View

Bạn đang xem bài viết Các Dạng Toán Và Phương Pháp Giải Toán Lớp 6 được cập nhật mới nhất trên website Ictu-hanoi.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất.

CÁC DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI TOÁN LỚP 6 TẬP HỢP, PHẦN TỬ CỦA TẬP HỢP I. LÍ THUYẾT 1. Tập hợp. Phần tử của tập hợp: - Tập hợp là một khái niệm cơ bản. Ta hiểu tập hợp thông qua các ví dụ. - Tên tập hợp được đặt bằng chữ cái in hoa. - Các phần tử của một tập hợp được viết trong hai dấu ngoặc nhọn { }, cách nhau bởi dấu ";" (nếu có phần tử là số) hoặc dấu ",". Mỗi phần tử được liệt kê một lần, thứ tự liệt kê tùy ý. - Kí hiệu: 1 Î A đọc là 1 thuộc A hoặc 1 là phần tử của A; 5 Ï A đọc là 5 không thuộc A hoặc 5 không là phần tử của A; - Để viết một tập hợp, thường có hai cách: + Liệt kê các phần tử của tập hợp. + Chỉ ra tính chất đặc trưng cho các phần tử của tập hợp đó. - Một tập hợp có thể có một phần tử, có nhiều phần tử, có vô số phần tử, cũng có thể không có phần tử nào (tức tập hợp rỗng, kí hiệu . - Nếu mọi phần tử của tập hợp A đều thuộc tập hợp B thì tập hợp A gọi là tập hợp con của tập hợp B. Kí hiệu: A Ì B đọc là: A là tập hợp con của tập hợp B hoặc A được chứa trong B hoặc B chứa A. - Mỗi tập hợp đều là tập hợp con của chính nó. Quy ước: tập hợp rỗng là tập hợp con của mọi tập hợp. - Giao của hai tập hợp (kí hiệu: Ç) là một tập hợp gồm các phần tử chung của hai tập hợp đó. 2. Tập hợp các số tự nhiên: Kí hiệu N - Mỗi số tự nhiên được biểu diễn bởi một điểm trên tia số. Điểm biểu diễn số tự nhiên a trên tia số gọi là điểm a. - Tập hợp các số tự nhiên khác 0 được kí hiệu là N*. - Thứ tự trong tập hợp số tự nhiên: + Trong hai số tự nhiên khác nhau, có một số nhỏ hơn số kia. Trên hai điểm trên tia số, điểm ở bên trái biểu diễn số nhỏ hơn. + Nếu a < b và b < c thì a < c. + Mỗi số tự nhiên có một số liền sau duy nhất, chẳng hạn số tự nhiên liền sau số 2 là số 3; số liền trước số 3 là số 2; số 2 và số 3 là hai số tự nhiên liên tiếp. Hai số tự nhiên liên tiếp thì hơn kém nhau một đơn vị. + Số 0 là số tự nhiên nhỏ nhất. Không có số tự nhiên lớn nhất. + Tập hợp các số tự nhiên có vô số phần tử. 3. Ghi số tự nhiên: Có nhiều cách ghi số khác nhau: - Cách ghi số trong hệ thập phân: Để ghi các số tự nhiên ta dùng 10 chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Cứ 10 đơn vị ở một hàng thì làm thành một đơn vị ở hàng liền trước nó. + Kí hiệu: chỉ số tự nhiên có hai chữ số, chữ số hàng chục là a, chữ số hàng đơn vị là b. Viết được chỉ số tự nhiên có ba chữ số, chữ số hàng trăm là a, chữ số hàng chục là b, chữ số hàng đơn vị là c. Viết được - Cách ghi số La Mã: có 7 chữ số Kí hiệu I V X L C D M Giá trị tương ứng trong hệ thập phân 1 5 10 50 100 500 1000 + Mỗi chữ số La Mã không viết liền nhau quá ba lần. + Chữ số có giá trị nhỏ đứng trước chữ số có giá trị lớn làm giảm giá trị của chữ số có giá trị lớn. - Cách ghi số trong hệ nhị phân: để ghi các số tự nhiên ta dùng 2 chữ số là : 0 và 1. - Các ví dụ tách một số thành một tổng: Trong hệ thập phân: 6478 = 6. 103 + 4. 102 + 7. 101 + 8. 100 Trong hệ nhị phân: 1101 = 1. 23 + 1. 22 + 0. 21 + 1. 20 II. CÁC DẠNG TOÁN Dạng 1: Viết một tập hợp cho trước Phương pháp giải Dùng một chữ cái in hoa (A,B..) và dấu ngoặc nhọn { }, ta có thể viết một tập hợp theo hai cách: -Liệt kê các phần tử của nó. -Chỉ ra tính chất đặc trưng cho các phần tử của nó. Ví dụ: Viết tập M gồm các số tự nhiên có 1 chữ số. Cách 1: M={ 0;1;2;3;4;5;6;7;8;9 }. Dạng 2: Sử dụng các kí hiệu và Phương pháp giải Nắm vững ý nghĩa các kí hiệu và Kí hiệu đọc là “phần tử của” hoặc “thuộc”. Kí hiệu đọc là “không phải là phần tử của” hoặc ‘không thuộc”. Kí hiệu diễn tả quan hệ giữa một phần tử với một tập hợp; kí hiệu diễn tả một quan hệ giữa hai tập hợp. A M : A là phần tử của M; A M : A là tập hợp con của M Ví dụ: Cho A = {1; 3; a; b} ; B = {3; b} Điền các kí hiệu thích hợp vào dấu (.) 1 ......A ; 3 ... A ; 3....... B ; B ...... A. Giải: 1 A ; 3 A ; 3 B ; B A. Dạng 3: Minh họa một tập hợp cho trước bằng hình vẽ Phương pháp giải Sử dụng biểu đồ ven. Đó là một đường cong khép kín, không tự cắt, mỗi phần tử của tập hợp được biểu diễn bởi một điểm ở bên trong đường cong đó. Giải: 5 6 8 7 A Dạng 4: Tìm số liền sau, số liền trước của một số tự nhiên cho trước Phương pháp giải -Để tìm số liền sau của số tự nhiên a, ta tính a+1 -Để tìm số liền trước của số tự nhiên a khác 0, ta tính a-1 Chú ý: -Số 0 không có số liền trước. -Hai số tự nhiên liên tiếp thì hơn kém nhau 1 đơn vị. Ví dụ: Tìm số liền sau và liền trước của các số sau: 1009; 2n; 3n+4; 2n-2. Giải: Số Số liền trước Số liền sau 1009 1008 1010 2n 2n-1 2n+1 3n+4 3n+3 3n+5 2n-2 2n-3 2n-1 Dạng 5: Tìm các số tự nhiên thỏa mãn điều kiện cho trước Phương pháp giải Liệt kê tất cả các số tự nhiên thỏa mãn đồng thời các điều kiện đã cho. Ví dụ: Tìm x N : sao cho x là số chẵn và 12<x<20. Giải: Gọi tập hợp các số cần tìm là A: A=={14;16;18 } Dạng 6: Biểu diễn trên tia số các số tự nhiên thỏa mãn điều kiện cho trước Phương pháp giải -Liệt kê các số tự nhiên thỏa mãn đồng thời các điều kiện đã cho -Biểu diễn các số vừa liệt kê trên tia số Ví dụ: Viết tập hợp A các số tự nhiên không vượt quá 6 bằng 2 cách, biểu diễn trên tia số các phần tử của tập hợp A. Giải: Cách 2: A=={0;1;2;3;4;5;6 } Biểu diễn trên tia số: Tập hợp A : Dạng 7: Ghi các số tự nhiên Phương pháp giải -Sử dụng cách tách số tự nhiên thành từng lớp để ghi. -Chú ý phân biệt: Số với chữ số, số chục với chữ số hàng chục, số trăm với chữ số hàng trăm Ví dụ: Số đã cho Số trăm Chữ số hàng trăm Số trục Chữ số hàng trục 1235 12 2 123 3 2356 23 3 235 5 Dạng 8: Viết tất cả các số có n chữ số từ n chữ số cho trước Phương pháp giải Giả sử từ ba chữ số a, b, c khác 0, ta viết các số có ba chữ số như sau: Chọn a là chữ số hàng trăm ta có: , ; Chọn b là chữ số hàng trăm ta có: , ; Chọn c là chữ số hàng trăm ta có: , . Vậy tất cả có 6 số có ba chữ số lập được từ ba chữ số khác 0: a, b và c. *Chú ý: Chữ số 0 không thể đứng ở hàng cao nhất của số có n chữ số phải viết. Ví dụ: Dùng các số 1,2,3,4,5 viết được bao nhiêu số tự nhiên khác nhau có 3 chữ số. Giải: Gọi số cần tìm là abc a có 5 cách chọn. b có 4 cách chọn (Vì các chữ số khác nhau). c có 3 cách chọn. Vậy ta được 3.4.5=60 số có 3 chữ số khác nhau từ các số trên. Ví dụ: Dùng các số 1,2,3,4,5 viết được bao nhiêu số tự nhiên có 3 chữ số. Giải: Gọi số cần tìm là abc a có 5 cách chọn. b có 5 cách chọn (Vì các chữ số có thể giống nhau). c có 5 cách chọn. Vậy ta được 5.5.5=125 số có 3 chữ số từ các số trên. Dạng 9: Tính số các số có n chữ số cho trước Phương pháp giải Để tính số các chữ số có n chữ số ta lấy số lớn nhất có n chữ số trừ đi số nhỏ nhất có n chữ số rồi cộng với 1. Với các số cách nhau một khoảng không đổi, ta dùng công thức sau: Số các chữ số = Số cuối-Số đầuKhoảng cách+1 Ví dụ: Có bao nhiêu số có 5 chữ số: Giải: Số lớn nhất có 5 chữ số là : 99999 Số nhỏ nhất có 5 chữ số là: 10000 Số các số có 5 chữ số là : (99999-10000)+1=90000 Ví dụ: Có bao nhiêu số chẵn có 3 chữ số: Giải: Số chẵn lớn nhất có 3 chữ số là 998. Số chẵn nhỏ nhất có 3 chữ số là 100. Hai số chẵn cách nhau 2 đơn vị nên số các số chẵn có 3 chữ số là: 998-1002+1=450 số Dạng 10: Sử dụng công thức đếm số các số tự nhiên Phương pháp giải Để đếm các số tự nhiên từ a đến b, hai số liên tiếp cách nhau d đơn vị. ta dùng công thức sau: +1 nghĩa là Số cuối-Số đầuKhoảng cách+1 Ví dụ: Muốn viết các số từ 100 đến 999 dùng bao nhiêu chữ số 9: Các số chứa các chữ số 9 ở hàng đơn vị là: 109, 119, 999 có.. các số cách nhau 10 đơn vị nên có 999-10910+1=90 chữ số 9. Các số chứa số 9 ở hàng trăm là :190, 191199; 290, 291.299; ..990, 991999 có: 10.9=90 chữ số 9. Các số chứa chữ số 9 ở hàng trăm: 900, 901.999 có: .. 999-9001+1=100 chữ số 9. Vậy có tất cả 90+90+100=280 chữ số 9 Dạng 11: Đọc và viết các số bằng chữ số la mã Phương pháp giải Cách viết: Sử dụng quy ước ghi số La Mã. I: 1 V: 5 X: 10 L: 50 C: 100 D:500 M:1000 * Thông thường người ta quy định các chữ số I, X, C, M, không được lặp lại quá ba lần ; các chữ số V, L, D không được lặp lại quá một lần (nghĩa là không lặp lại) * Chữ số cơ bản được lặp lại 2 hoặc 3 lần biểu thị giá trị gấp 2 hoặc gấp 3. Ví dụ: +      I = 1   ;   II = 2   ;  III = 3 +     X = 10 ; XX = 20  ;  XXX = 30 +     C = 100   ;   CC = 200   ;  CCC = 300 +     M = 1000  ; MM =2000   : MMM = 3000 * Phải cộng, trái trừ:     Chữ số thêm vào bên phải là cộng thêm (nhỏ hơn chữ số gốc) và cũng không được thêm quá 3 lần:  Ví dụ: + V = 5 ; VI = 6 ; VII = 7 ; VIII = 8 +Nếu viết: VIIII = 9 (không đúng) + L = 50 ; LX = 60 ; LXX = 70 ; LXXX = 80 + C = 100 ; CI = 101  : CL =150 + 3833 gồm : 3000 + 800 + 30 + 3 nên được viết:  MMMDCCCXXXIII +2787 gồm: 2000 + 700 + 80 + 7 nên được viết: MMDCCLXXXVII Chữ số viết bên trái là bớt đi (nghĩa là lấy số gốc trừ đi số viết bên trái thành giá trị của số được hình thành - và dĩ nhiên số mới nhỏ hơn số gốc. Chỉ được viết một lần) Ví dụ: + số 4 (4= 5-1) viết là     IV + số 9 (9=10-1)  Viết là     IX + số 40 = XL      ;  + số 90  = XC + số 400 = CD    ; + số 900 = CM + MCMLXXXIV = 1984 +MMXIV = 2014 Nói cách khác: Người ta dùng các chữ số I, V, X, L, C, D, M, và các nhóm chữ số IV, IX, XL, XC, CD, CM để viết số La Mã. Tính từ trái sang phải giá trị của các chữ số và nhóm chữ số giảm dần. Một vài ví dụ: Ví dụ: * MMMDCCCLXXXVIII = ba nghìn tám trăm tám mươi tám * MMMCMXCIX = ba nghìn chín trăm chín mươi chín Cách đọc:             Đọc số nhỏ thì dễ nhưng đọc các số lớn cũng khó lắm đấy. Như trên đã nói: Tính từ trái sang phải giá trị của các chữ số và nhóm chữ số giảm dần nên ta chú ý đến chữ số và nhóm chữ số hàng ngàn trước đến hàng trăm, hàng chục và hàng đơn vị (như đọc số tự nhiên) Ví dụ: -Số: MMCMXCIX  ta chú ý: hàng ngàn: MM = hai ngàn ; hàng trăm: CM = chín trăm ; hàng chục: XC = Chín mươi ; hàng đơn vị: IX = chín. Đọc là: Hai ngàn chín trăm chín mươi chín. -Số: MMMDXLIV ta chú ý: MMM = ba ngàn ; D = năm trăm; XL = bốn mươi ; IV = bốn. Đọc là: ba nghìn năm trăm bốn mươi bốn. Chú ý: - I chỉ có thể đứng trước V hoặc X, - X chỉ có thể đứng trước L hoặc C, - C chỉ có thể đứng trước D hoặc M. Đối với những số lớn hơn (4000 trở lên), một dấu gạch ngang được đặt trên đầu số gốc để chỉ phép nhân cho 1000: M : Đọc là một triệu IV: Bố nghìn Đối với những số rất lớn thường không có dạng thống nhất, mặc dù đôi khi hai gạch trên hay một gạch dưới được sử dụng để chỉ phép nhân cho 1.000.000. Điều này có nghĩa là X gạch dưới (X) là mười triệu. Số La Mã không có số 0 VD: đọc các số La Mã sau: XIV; XXVI. Viết các số La Mã: 17; 25 SỐ PHẦN TỬ CỦA TẬP HỢP, TẬP CON Dạng 1: Tìm số phần tử của một tập hợp cho trước Phương pháp giải -Căn cứ vào các phần tử đã được liệt kê hoặc căn cứ vào tính chất đặc trưng cho các phần tử của tập hợp cho trước, ta có thể tìm được số phần tử của tập hợp đó. - Sử dụng các công thức sau: Tập hợp các số tự nhiên từ a đến b có: b – a + 1 phần tử (1) Tập hợp các số chẵn từ số chẵn a đến số chẵn b có: (b – a) : 2 + 1 phần tử ( 2) Tập hợp các số lẻ từ số lẻ m đến số lẻ n có: (n-m): 2 + 1 phần tử ( 3) Tập hợp các số tự nhiên từ a đến b, hai số kế tiếp cách nhau d đơn vị, có: (b-a): d +1 phần tử ( Các công thức (1), (2), (3) là các trường hợp riêng của công thức (4) ) . Chú ý: ự khác nhau giữa các tập sau: , {0}, {} Ví dụ: Tìm số phần tử các tập hợp sau: x+1=3; A={1, 3, 5, 99} x.0=0; B={1, 4, 7, 301} Giải: x.0=0 với mọi giá trị x nên tập hợp có vô số phần tử. A={1, 3, 5, 99} có số phần tử là: 99-12+1=50 phần tử. B={1, 4, 7, 301} có số phần tử là: 301-13+1=101 phần tử. Dạng 2: Viết tất cả các tập hợp con của tập cho trước Phương pháp giải Giả sử tập hợp A có n phần tử. Ta viết lần lượt các tập hợp con: Không có phần tử nào (); Có 1 phần tử; Có 2 phần tử; . . . Có n phần tử. Chú ý: Tập hợp rỗng là tập hợp của mọi tập hợp: E. Người ta chứng minh được rằng nếu một hợp có n phần tử thì số tập hợp con của nó bằng 2n. Ví dụ: cho A={1, 3, 5, 9} Viết tất cả các tập con của A. Giải: Tập con không có phần tử nào là: Tập con có một phần tử là: {1}, {3}, {5}, {9}. Tập con có 2 phần tử là: {1;3}; {1;5}; {1;9}; {3;5}; {3;9}; {5;9}. Tập con có 3 phần tử là: {1;3;5}; {1;3;9}; {1;5;9}; {3;5;9} Tập con có 4 phần tử là: {1;3;5;9} III. BÀI TẬP Bài 1: Cho tập hợp A là các chữ cái trong cụm từ “Thành phố Hồ Chí Minh” Hãy liệt kê các phần tử của tập hợp A. Điền kí hiệu thích hợp vào ô vuông a) b A ; b) c A ;. c) h A Lưu ý HS: Bài trên không phân biệt chữ in hoa và chữ in thường trong cụm từ đã cho. Bài 2: Cho tập hợp các chữ cái X = {A, C, O} a/ Tìm cụm chữ tạo thành từ các chữ của tập hợp X. b/ Viết tập hợp X bằng cách chỉ ra các tính chất đặc trưng cho các phần tử của X. Bài 3: Cho các tập hợp A = {1; 2; 3; 4; 5; 6;8;10} ; B = {1; 3; 5; 7; 9;11} a/ Viết tập hợp C các phần tử thuộc A và không thuộc B. b/ Viết tập hợp D các phần tử thuộc B và không thuộc A. c/ Viết tập hợp E các phần tử vừa thuộc A vừa thuộc B. d/ Viết tập hợp F các phần tử hoặc thuộc A hoặc thuộc B. Bài 4: Cho tập hợp A = {1; 2;3;x; a; b} a/ Hãy chỉ rõ các tập hợp con của A có 1 phần tử. b/ Hãy chỉ rõ các tập hợp con của A có 2 phần tử. c/ Tập hợp B = {a, b, c} có phải là tập hợp con của A không? Bài 5: Cho tập hợp B = {a, b, c}. Hỏi tập hợp B có tất cả bao nhiêu tập hợp con? Hướng dẫn - Tập hợp con của B không có phần từ nào là tập.. - Các tập hợp con của B có một phần tử là . - Các tập hợp con của B có hai phần tử là . - Tập hợp con của B có 3 phần tử chính là Vậy tập hợp A có tất cả . tập hợp con. Ghi chú. Một tập hợp A bất kỳ luôn có hai tập hợp con đặc biệt. Đó là tập hợp rỗng và chính tập hợp A. Ta quy ước là tập hợp con của mỗi tập hợp. Bài 6: Cho A = {1; 3; a; b} ; B = {3; b} Điền các kí hiệu thích hợp vào dấu (.) 1 ......A ; 3 ... A ; 3....... B ; B ...... A Bài 7: Cho các tập hợp ; N .... N* ; A ......... B Bài 8: Gọi A là tập hợp các số tự nhiên có 3 chữ số. Hỏi tập hợp A có bao nhiêu phần tử? Bài 9: Hãy tính số phần tử của các tập hợp sau: a/ Tập hợp A các số tự nhiên lẻ có 3 chữ số. b/ Tập hợp B các số 2, 5, 8, 11, , 296, 299, 302 c/ Tập hợp C các số 7, 11, 15, 19, , 275 , 279 Bài 10: Cha mua cho em một quyển số tay dày 145 trang. Để tiện theo dõi em đánh số trang từ 1 đến 256. Hỏi em đã phải viết bao nhiêu chữ số để đánh hết cuốn sổ tay? Bài 11:Cho hai tập hợp M = {0,2,4,..,96,98,100;102;104;106}; a) Mỗi tập hợp có bao nhiêu phần tử? b)Dùng kí hiệu để thực hiên mối quan hệ giữa M và Q. Viết các tập hợp trên; Mỗi tập hợp có bao nhiêu phần tử; Dùng kí hiệu để thực hiên mối quan hệ giữa hai tập hợp đó. Bài 13: Hãy tính số phần tử của các tập hợp sau: a/ Tập hợp A các số tự nhiên lẻ có 3 chữ số. b/ Tập hợp B các số 2, 5, 8, 11, , 296, 299, 302 c/ Tập hợp C các số 7, 11, 15, 19, , 275 , 279 Hướng dẫn a/ Tập hợp A có (999 – 101):2 +1 = 450 phần tử. b/ Tập hợp B có (302 – 2 ): 3 + 1 = 101 phần tử. c/ Tập hợp C có (279 – 7 ):4 + 1 = 69 phần tử. Cho HS phát biểu tổng quát: Tập hợp các số chẵn từ số chẵn a đến số chẵn b có (b – a) : 2 + 1 phần tử. Tập hợp các số lẻ từ số lẻ m đến số lẻ n có (n – m) : 2 + 1 phần tử. Tập hợp các số từ số c đến số d là dãy số các đều, khoảng cách giữa hai số liên tiếp của dãy là 3 có (d – c ): 3 + 1 phần tử. Bài 14: Cha mua cho em một quyển số tay dày 145 trang. Để tiện theo dõi em đánh số trang từ 1 đến 256. Hỏi em đã phải viết bao nhiêu chữ số để đánh hết cuốn sổ tay? Hướng dẫn: - Từ trang 1 đến trang 9, viết 9 chữsố. - Từ trang 10 đến trang 99 có 90 trang, viết 90 . 2 = 180 chữ số. - Từ trang 100 đến trang 145 có (145 – 100) + 1 = 46 trang, cần viết 46 . 3 = 138 chữ số. Vậy em cần viết 9 + 180 + 138 = 327số. Bài 15: Các số tự nhiên từ 1000 đến 10000 có bao nhiêu số có đúng 3 chữ số giống nhau. Hướng dẫn:- Số 10000 là số duy nhất có 5 chữ số, số này có hơn 3 chữ số giống nhau nên không thoả mãn yêu cầu của Bài. Vậy số cần tìm chỉ có thể có dạng: , , , với a b là các chữ số. - Xét số dạng , chữ số a có 9 cách chọn ( a 0) có 9 cách chọn để b khác a. Vậy có 9 . 8 = 71 số có dạng . Lập luận tương tự ta thấy các dạng còn lại đều có 81 số. Suy ta tất cả các số từ 1000 đến 10000 có đúng 3 chữ số giống nhau gồm 81.4 = 324 số. Bài 16: Có bao nhi êu số có 4 chữ số mà tổng các chữ số bằng 3? HD Giải 3 = 0 + 0 + 3 = 0 + 1 + 1 + 1 = 1 + 2 + 0 + 0 3000 1011 2001 1002 1110 2100 1200 1101 2010 1020 1 + 3 + 6 = 10 số Bài 17: Tính nhanh các tổng sau a, 29 + 132 + 237 + 868 + 763 b, 652 + 327 + 148 + 15 + 73 HD: a, 29 + 132 + 237 + 868 + 763 = 29 + (132 + 868) + (237 + 763) = 29 + 1000 + 1000 = 2029 b, 652 + 327 + 148 + 15 + 73 = (652 + 148) + (327 + 73) + 15 = 700 + 400 + 15 = 1115 Bài 18: Cho hai tập hợp M = {0,2,4,..,96,98,100;102;104;106}; a) Mỗi tập hợp có bao nhiêu phần tử? b)Dùng kí hiệu để thực hiên mối quan hệ giữa M và Q. Viết các tập hợp trên; Mỗi tập hợp có bao nhiêu phần tử; Dùng kí hiệu để thực hiên mối quan hệ giữa hai tập hợp đó. Bài 20: Viết các tập hợp sau và cho biết mỗi tập hợp có bao nhiêu phần tử: a) Tập hợp A các số tự nhiên x mà 17 – x = 5 ; b) Tập hợp B các số tự nhiên y mà 15 – y = 18; c) Tập hợp C các số tự nhiên z mà 13 : z = 1; d) Tập hợp D các số tự nhiên x , x N* mà 0:x = 0; Bài 21: Tính số điểm về môn toán trong học kì I . lớp 6A có 40 học sinh đạt ít nhất một điểm 10 ; có 27 học sinh đạt ít nhất hai điểm 10 ; có 29 học sinh đạt ít nhất ba điểm 10 ; có 14 học sinh đạt ít nhất bốn điểm 10 và không có học sinh nào đạt được năm điểm 10. dung kí hiệu để thực hiên mối quan hệ giữa các tập hợp học sinh đạt số các điểm 10 của lớp 6A , rồi tính tổng số điểm 10 của lớp đó. Bài 22:Bạn Thanh đánh số trang của một cuốn sách bằng các số tự nhiên từ 1 đến359 .hỏi bạn nam phải viết tất cả bao nhiêu chữ số? Bài 23: Để đánh số trang một quyển sách từ trang 1 đến trang cuối người ta đã dùng hết tất cả 834 chữ số. Hỏi a. Quyển sách có tất cả bao nhiêu trang? b. Chữ số thứ 756 là chữ số mấy? Bài 24. Viết các tập hợp sau rồi tìm số phần tử của tập hợp đó. a) Tập hợp A các số tự nhiên x mà 8:x =2. b) Tập hợp B các số tự nhiên x mà x+3<5. c) Tập hợp C các số tự nhiên x mà x-2=x+2. d)Tập hợp D các số tự nhiên mà x+0=x Bài 25. Cho tập hợp A = { a,b,c,d} a) Viết các tập hợp con của A có một phần tử. b) Viết các tập hợp con của A có hai phần tử. c) Có bao nhiêu tập hợp con của A có ba phần tử? có bốn phần tử? d) Tập hợp A có bao nhiêu tập hợp con? Bài 26. Xét xem tập hợp A có là tập hợp con của tập hợp B không trong các trờng hợp sau. a, A={1;3;5}, B = { 1;3;7} b, A= {x,y}, B = {x,y,z} c, A là tập hợp các số tự nhiên có tận cùng bằng 0, B là tập hợp các số tự nhiên chẵn. Bài 27. Ta gọi A là tập con thực sự của B nếu ;. Hãy viết các tập con thực sự của tập hợp B = {1;2;3}. Bài 28. Cho tập hợp A = {1;2;3;4} và B = {3;4;5}. Hãy viết các tập hợp vừa là tập con của A, vừa là tập con của B. Bài 29. Chứng minh rằng nếu thì Bài 30. Có kết luận gì về hai tập hợp A,B nếu biết. a, thì b, thì , thì . Bài 31. Cho H là tập hợp ba số lẽ đàu tiên, K là tập hợp 6 số tự nhiên đầu tiên. a, Viết các phần tử thuộc K mà không thuộc H. b,CMR c, Tập hợp M với . - Hỏi M có ít nhất bao nhiêu phần tử? nhiều nhất bao nhiêu phần tử? - Có bao nhiêu tập hợp M có 4 phần tử thỏa mãn điều kiện trên? Bài 32. Cho . Hãy xác định tập hợp M = {a-b}. Bài 33. Cho tập hợp A = {14;30}. Điền các ký hiệu vào ô trống. a, 14 A ; b, {14} A; c, {14;30} A. Bài 34: Có bao nhiêu số tự nhiên không vượt quá n ( n thuộc N) Bài 35: Cho A={x thuộc N: x chia hết 2,3 và x<100} B={x thuộc N: x chia hết 8 và x<100} a. Liệt kê các phân tử của A và B b. Có nhận xét gì về các

Các Dạng Toán Về Dãy Số Và Phương Pháp Giải

Cách giải các bài toán về dãy số

Các dạng toán về dãy số và phương pháp giải tổng hợp các kiến thức về dãy số, các loại dãy số và cách giải các dạng toán về dãy số. Các ví dụ và lời giải chi tiết giúp các em học sinh có thể tự luyện tập và kiểm tra lại kiến thức của mình. Hi vọng đây sẽ là tài liệu hữu ích với quý thầy cô và các em học sinh tiểu học trong quá trình giảng dạy và học tập.

Lưu ý: Nếu không tìm thấy nút Tải về bài viết này, bạn vui lòng kéo xuống cuối bài viết để tải về.

1. Các kiến thức cần nhớ dãy số

Trong dãy số tự nhiên liên tiếp cứ một số chẵn lại đến một số lẻ rồi lại đến một số chẵn… Vì vậy, nếu:

Dãy số bắt đầu từ số lẻ và kết thúc là số chẵn thì số lượng các số lẻ bằng số lượng các số chẵn.

Dãy số bắt đầu từ số chẵn và kết thúc cũng là số lẻ thì số lượng các số chẵn bằng số lượng các số lẻ.

Nếu dãy số bắt đầu từ số lẻ và kết thúc cũng là số lẻ thì số lượng các số lẻ nhiều hơn các số chẵn là 1 số.

Nếu dãy số bắt đầu từ số chẵn và kết thúc cũng là số chẵn thì số lượng các số chẵn nhiều hơn các số lẻ là 1 số.

a. Trong dãy số tự nhiên liên tiếp bắt đầu từ số 1 thì số lượng các số trong dãy số chính bằng giá trị của số cuối cùng của số ấy.

b. Trong dãy số tự nhiên liên tiếp bắt đầu từ số khác số 1 thì số lượng các số trong dãy số bằng hiệu giữa số cuối cùng của dãy số với số liền trước số đầu tiên.

2. Các loại dãy số:

+ Dãy số cách đều:

– Dãy số tự nhiên.

– Dãy số chẵn, lẻ.

– Dãy số chia hết hoặc không chia hết cho một số tự nhiên nào đó.

+ Dãy số không cách đều.

– Dãy Fibonacci hay tribonacci.

– Dãy có tổng (hiệu) giữa hai số liên tiếp là một dãy số.

+ Dãy số thập phân, phân số:

3. Cách giải các dạng toán về dãy số lớp 5

Dạng 1: Điền thêm số hạng vào sau, giữa hoặc trước một dãy số

Trước hết ta cần xác định lại quy luật của dãy số:

+ Mỗi số hạng (kể từ số hạng thứ 2) bằng số hạng đứng trước nó cộng (hoặc trừ) với một số tự nhiên a.

+ Mỗi số hạng (kể từ số hạng thứ 2) bằng số hạng đứng trước nó nhân (hoặc chia) với một số tự nhiên q khác 0.

+ Mỗi số hạng (kể từ số hạng thứ 3) bằng tổng 2 số hạng đứng liền trước nó.

+ Mỗi số hạng (kể từ số hạng thứ 4) bằng tổng của số hạng đứng trước nó cộng với số tự nhiên d rồi cộng với số thứ tự của số hạng ấy.

+ Số hạng đứng sau bằng số hạng đứng trước nhân với số thứ tự của nó.

+ Mỗi số hạng (kể từ số hạng thứ 2) trở đi đều bằng a lần số liền trước nó.

+ Mỗi số hạng (kể từ số hạng thứ 2) trở đi, mỗi số liền sau bằng a lần số liền trước nó cộng (trừ ) n (n khác 0).

………………………….

Bài 1: Điền thêm 3 số hạng vào dãy số sau:

1, 2, 3, 5, 8, 13, 21, 34……

Muốn giải được bài toán trên trước hết phải xác định quy luật của dãy số như sau:

Ta thấy: 1 + 2 = 3 3 + 5 = 8

2 + 3 = 5 5 + 8 = 13

Dãy số trên được lập theo quy luật sau: Kể từ số hạng thứ 3 trở đi mỗi số hạng bằng tổng của hai số hạng đứng liền trước nó.

Ba số hạng tiếp theo là: 21 + 34 = 55; 34 + 55 = 89; 55 + 89 = 144

Vậy dãy số được viết đầy đủ là: 1, 2, 3, 5, 8, 13, 34, 55, 89, 144.

Bài 2: Viết tiếp 3 số hạng vào dãy số sau: 1, 3, 4, 8, 15, 27

Ta nhận thấy: 8 = 1 + 3 + 4 27 = 4 + 8 + 15

15 = 3 + 4 + 8

Từ đó ta rút ra được quy luật của dãy số là: Mỗi số hạng (kể từ số hạng thứ 4) bằng tổng của ba số hạng đứng liền trước nó.

Viết tiếp ba số hạng, ta được dãy số sau: 1, 3, 4, 8, 15, 27, 50, 92, 169.

Bài 3: Tìm số hạng đầu tiên của các dãy số sau biết rằng mỗi dãy số có 10 số hạng.

a)…, …, 32, 64, 128, 256, 512, 1024

b)…, …, 44, 55, 66, 77, 88, 99, 110

a). Ta nhận xét :

Số hạng thứ 10 là: 1024 = 512 x 2

Số hạng thứ 9 là: 512 = 256 x 2

Số hạng thứ 8 là: 256 = 128 x 2

Số hạng thứ 7 là: 128 = 64 x 2

……………………………..

Từ đó ta suy luận ra quy luật của dãy số này là: mỗi số hạng của dãy số gấp đôi số hạng đứng liền trước đó.

Vậy số hạng đầu tiên của dãy là: 1 x 2 = 2.

b). Ta nhận xét :

Số hạng thứ 10 là: 110 = 11 x 10

Số hạng thứ 9 là: 99 = 11 x 9

Số hạng thứ 8 là: 88 = 11 x 8

Số hạng thứ 7 là: 77 = 11 x 7

…………………………..

Từ đó ta suy luận ra quy luật của dãy số là: Mỗi số hạng bằng số thứ tự của số hạng ấy nhân với 11.

Vậy số hạng đầu tiên của dãy là: 1 x 11 = 11.

Bài 4: Tìm các số còn thiếu trong dãy số sau :

a. 3, 9, 27, …, …, 729.

b. 3, 8, 23, …, …, 608.

Giải:

Muốn tìm được các số còn thiếu trong mỗi dãy số, cần tim được quy luật của mỗi dãy số đó.

a. Ta nhận xét: 3 x 3 = 9

9 x 3 = 27

Quy luật của dãy số là: Kể từ số hạng thứ 2 trở đi, mỗi số hạng gấp 3 lần số liền trước nó.

Vậy các số còn thiếu của dãy số đó là:

27 x 3 = 81; 81 x 3 = 243; 243 x 3 = 729 (đúng).

Vậy dãy số còn thiếu hai số là: 81 và 243.

b. Ta nhận xét: 3 x 3 – 1 = 8; 8 x 3 – 1 = 23.

……………………………………

Quy luật của dãy số là: Kể từ số hạng thứ 2 trở đi, mỗi số hạng bằng 3 lần số liền trước nó trừ đi 1. Vì vậy, các số còn thiếu ở dãy số là:

23 x 3 – 1 = 68; 68 x 3 – 1 = 203; 203 x 3 – 1 = 608 (đúng).

Dãy số còn thiếu hai số là: 68 và 203.

Bài 5: Lúc 7h sáng, một người đi từ A đến B và một người đi từ B đến A; cả hai cùng đi đến đích của mình lúc 2h chiều. Vì đường đi khó dần từ A đến B; nên người đi từ A, giờ đầu đi được 15km, cứ mỗi giờ sau đó lại giảm đi 1km. Người đi từ B giờ cuối cùng đi được 15km, cứ mỗi giờ trước đó lại giảm 1km. Tính quãng đường AB.

Giải:

2 giờ chiều là 14h trong ngày.

2 người đi đến đích của mình trong số giờ là:

14 – 7 = 7 giờ.

Vận tốc của người đi từ A đến B lập thành dãy số:

15, 14, 13, 12, 11, 10, 9.

Vận tốc của người đi từ B đến A lập thành dãy số:

9, 10, 11, 12, 13, 14, 15.

Nhìn vào 2 dãy số ta nhận thấy đều có các số hạng giống nhau vậy quãng đường AB là: 9 + 10 + 11 + 12 + 13 + 14 + 15 = 84

Đáp số: 84km.

Bài 6: Điền các số thích hợp vào ô trống sao cho tổng số 3 ô liên tiếp đều bằng 2010

Giải:

Ta đánh số thứ tự các ô như sau:

Theo điều kiện của đề bài ta có:

Vậy Ô 9 = 783; từ đó ta tính được:

Điền các số vào ta được dãy số:

Một số lưu ý khi giảng dạy Toán dạng này là: Trước hết phải xác định được quy luật của dãy là dãy tiến, dãy lùi hay dãy số theo chu kỳ. Từ đó mà học sinh có thể điền được các số vào dãy đã cho.

* Bài tập tự luyện:

Bài 1: 13, 19, 25, 31,……,

Dãy số vừa được viết ra

Ba số viết tiếp là ba số nào?

Số nào suy nghĩ thấp cao?

Đố em, đố bạn làm sao kể liền?

Bài 2: Tìm và viết ra các số hạng còn thiếu trong dãy số sau:

a. 7, 10, 13,…, …, 22, 25.

b. 103, 95, 87,…, …, …., 55, 47.

Bài 3: Điền số thích hợp vào ô trống, sao cho tổng các số ở 3 ô liền nhau bằng:

a. n = 14,5

b. n = 23,4

Dạng 2: Xác định số A có thuộc dãy đã cho hay không?

Cách giải của dạng toán này:

– Xác định quy luật của dãy;

– Kiểm tra số A có thoả mãn quy luật đó hay không?

Các ví dụ:

Bài 1: Cho dãy số: 2, 4, 6, 8,……

a. Dãy số được viết theo quy luật nào?

b. Số 2009 có phải là số hạng của dãy không? Vì sao?

Giải:

a. Ta nhận thấy: Số hạng thứ 1: 2 = 2 x 1

Số hạng thứ 2: 4 = 2 x 2

Số hạng thứ 3: 6 = 2 x 3

…………

Số hạng thứ n: ? = 2 x n

Quy luật của dãy số là: Mỗi số hạng bằng 2 nhân với số thứ tự của số hạng ấy.

b. Ta nhận thấy các số hạng của dãy là số chẵn, mà số 2009 là số lẻ, nên số 2009 không phải là số hạng của dãy.

Bài 2: Cho dãy số: 2, 5, 8, 11, 14, 17,……

– Viết tiếp 3 số hạng vào dãy số trên?

– Số 2009 có thuộc dãy số trên không? Tại sao?

Giải:

– Ta thấy: 8 – 5 = 3; 11 – 8 = 3; ………

Dãy số trên được viết theo quy luật sau: Kể từ số thứ 2 trở đi, mỗi số hạng bằng số hạng đứng liền trước nó cộng với 3.

Vậy 3 số hạng tiếp theo của dãy số là:

17 + 3 = 20 ; 20 + 3 = 23 ; 23 + 3 = 26

Dãy số được viết đầy đủ là: 2, 5, 8, 11, 14, 17, 20, 23, 26.

– Ta thấy: 2 : 3 = 0 dư 2; 5 : 3 = 1 dư 2; 8 : 3 = 2 dư 2; …..

Vậy đây là dãy số mà mỗi số hạng khi chia cho 3 đều dư 2. Mà:

2009 : 3 = 669 dư 2. Vậy số 2009 có thuộc dãy số trên vì cũng chia cho 3 thì dư 2.

Bài 3: Em hãy cho biết:

a. Các số 60, 483 có thuộc dãy 80, 85, 90,…… hay không?

b. Số 2002 có thuộc dãy 2, 5, 8, 11,…… hay không?

c. Số nào trong các số 798, 1000, 9999 có thuộc dãy 3, 6, 12, 24,…… giải thích tại sao?

Giải:

a. Cả 2 số 60, 483 đều không thuộc dãy đã cho vì:

– Các số hạng của dãy đã cho đều lớn hơn 60.

– Các số hạng của dãy đã cho đều chia hết cho 5, mà 483 không chia hết cho 5.

b. Số 2002 không thuộc dãy đã cho vì mọi số hạng của dãy khi chia cho 3 đều dư 2, mà 2002 chia 3 thì dư 1.

c. Cả 3 số 798, 1000, 9999 đều không thuộc dãy 3, 6, 12, 24,… vì:

– Mỗi số hạng của dãy (kể từ số hạng thứ 2) đều gấp đôi số hạng liền trước nhận nó; cho nên các số hạng (kể từ số hạng thứ 3) có số hạng đứng liền trước là số chẵn, mà 798 chia cho 2 = 399 là số lẻ.

– Các số hạng của dãy đều chia hết cho 3, mà 1000 lại không chia hết cho 3.

– Các số hạng của dãy (kể từ số hạng thứ 2) đều chẵn, mà 9999 là số lẻ.

Bài 4: Cho dãy số: 1; 2,2; 3,4; ……; 13; 14,2.

Nếu viết tiếp thì số 34,6 có thuộc dãy số trên không?

Giải:

– Ta nhận xét: 2,2 – 1 = 1,2; 3,4 – 2,2 = 1,2; 14,2 – 13 = 1,2;……

Quy luật của dãy số trên là: Từ số hạng thứ 2 trở đi, mỗi số hạng đều hơn số hạng liền trước nó là 1,2 đơn vị:

– Mặt khác, các số hạng trong dãy số trừ đi 1 đều chia hết cho 1,2.

Ví dụ: (13 – 1) chia hết cho 1,2

(3,4 – 1) chia hết cho 1,2

Mà: (34,6 – 1) : 1,2 = 28 dư 0.

Vậy nếu viết tiếp thì số 34,6 cũng thuộc dãy số trên.

Bài 5: Cho dãy số: 1996, 1993, 1990, 1987,……, 55, 52, 49.

Các số sau đây có phải là số hạng của dãy không?

100, 123, 456, 789, 1900, 1436, 2009?

Giải:

Nhận xét: Đây là dãy số cách đều 3 đơn vị.

Trong dãy số này, số lớn nhất là 1996 và số bé nhất là 49. Do đó, số 2009 không phải là số hạng của dẫy số đã cho vì lớn hơn 1996.

Các số hạng của dãy số đã cho là số khi chia cho 3 thì dư 1. Do đó, số 100 và số 1900 là số hạng của dãy số đó.

Các số 123, 456, 789 đều chia hết cho 3 nên các số đó không phải là số hạng của dãy số đã cho.

Số 1436 khi chia cho 3 thì dư 2 nên không phải là số hạng của dãy số đã cho.

* Bài tập lự luyện:

Bài 1: Cho dãy số: 1, 4, 7, 10,…

a. Nêu quy luật của dãy.

b. Số 31 có phải là số hạng của dãy không?

c. Số 2009 có thuộc dãy này không? Vì sao?

Bài 2: Cho dãy số: 1004, 1010, 1016,…, 2012.

Hỏi số 1004 và 1760 có thuộc dãy số trên hay không?

Bài 3: Cho dãy số: 1, 7, 13, 19,…,

a. Nêu quy luật của dãy số rồi viết tiếp 3 số hạng tiếp theo.

b. Trong 2 số 1999 và 2009 thì số nào thuộc dãy số? Vì sao?

Bài 4: Cho dãy số: 3, 8, 13, 18,……

Có số tự nhiên nào có chữ số tận cùng là 6 mà thuộc dãy số trên không?

Bài 5: Cho dãy số: 1, 3, 6, 10, 15,……, 45, 55,……

a. Số 1997 có phải là số hạng của dãy số này hay không?

b. Số 561 có phải là số hạng của dãy số này hay không?

Dạng 3: Tìm số số hạng của dãy

* Cách giải ở dạng này là:

Đối với dạng toán này, ta thường sử dụng phương pháp giải toán khoảng cách (toán trồng cây). Ta có công thức sau:

Số các số hạng của dãy = số khoảng cách + 1.

Đặc biệt, nếu quy luật của dãy là : Mỗi số hạng đứng sau bằng số hạng liền trước cộng với số không đổi d thì:

Số các số hạng của dãy = (Số hạng lớn nhất – Số hạng nhỏ nhất ) : d + 1.

Các ví dụ:

Bài 1: Cho dãy số 11; 14; 17;…..;65; 68.

Hãy xác định dãy số trên có bao nhiêu số hạng?

Lời giải:

Ta có: 14 – 11= 3; 17 – 14 = 3;….

Vậy quy luật của dãy số đó là mỗi số hạng đứng liền sau bằng số hạng đứmg liền trước nó cộng với 3. Số các số hạng của dãy số đó là:

(68 – 11) : 3 + 1 = 20 (số hạng)

Bài 2: Cho dãy số: 2, 4, 6, 8, 10,……, 1992

Hãy xác định dãy số trên có bao nhiêu số hạng?

Giải:

Ta thấy: 4 – 2 = 2 ; 8 – 6 = 2

6 – 4 = 2 ; ………

Vậy, quy luật của dãy số là: Mỗi số hạng đứng sau bằng một số hạng đứng trước cộng với 2. Nói các khác: Đây là dãy số chẵn hoặc dãy số cách đều 2 đơn vị.

Dựa vào công thức trên:

(Số hạng cuối – số hạng đầu) : khoảng cách + 1

Ta có: Số các số hạng của dãy là:

(1992 – 2) : 2 + 1 = 996 (số hạng).

Bài 3: Cho 1, 3, 5, 7, ……… là dãy số lẻ liên tiếp đầu tiên; hỏi 1981 là số hạng thứ bao nhiêu trong dãy số này? Giải thích cách tìm?

(Đề thi học sinh giỏi bậc tiểu học 1980 – 1981)

Giải:

Ta thấy:

Số hạng thứ nhất bằng: 1 = 1 + 2 x 0

Số hạng thứ hai bằng: 3 = 1 + 2 x 1

Số hạng thứ ba bằng: 5 = 1 + 2 x 2

………

Còn số hạng cuối cùng: 1981 = 1 + 2 x 990

Vì vậy, số 1981 là số hạng thứ 991 trong dãy số đó.

Bài 4: Cho dãy số: 3, 18, 48, 93, 153,…

a. Tìm số hạng thứ 100 của dãy.

b. Số 11703 là số hạng thứ bao nhiêu của dãy?

Giải:

a. Số hạng thứ nhất: 3 = 3 + 15 x 0

Số hạng thứ hai: 18 = 3 + 15 x 1

Số hạng thứ ba: 48 = 3 + 15 x 1 + 15 x 2

Số hạng thứ tư: 93 = 3 + 15 x 1 + 15 X 2 + 15 x 3

Số hạng thứ năm: 153 = 3 + 15 x 1 + 15 x 2 + 15 x 3 + 15 x 4

………

Số hạng thứ n: 3 + 15 x1 + 15 x 2 +15 x 3 + …… + 15 x (n – 1)

Vậy số hạng thứ 100 của dãy là:

3 + 15 x 1 + 15 x 2 + …… + 15 x (100 – 1)

= 3 + 15 x (1 + 2 + 3 + …… + 99) (Đưa về một số nhân với một tổng.

= 3 + 15 x (1 + 99) x 99 : 2 = 74253

b. Gọi số 11703 là số hạng thứ n của dãy:

Theo quy luật ở phần a ta có:

3 + 15 x 1 + 15 x 2 + 15 x 3 + …… x (n – 1) = 11703

3 + 15 x (1 + 2 + 3 + ……+ (n – 1)) = 11703

3 + 15 x (1 + n – 1) x (n – 1) : 2 = 11703

15 x n x (n – 1) = (11703 – 3) x 2 = 23400

n x (n – 1) = 23400 : 15 = 1560

Nhận xét: Số 1560 là tích của hai số tự nhiên liên tiếp 39 và 40 (39 x 40 = 1560)

Vậy, n = 40, số 11703 là số hạng thứ 40 của dãy.

Bài 5: Trong các số có ba chữ số, có bao nhiêu số chia hết cho 4?

Lời giải:

Ta nhận xét : Số nhỏ nhất có ba chữ số chia hết cho 4 là 100 và số lớn nhất có ba chữ số chia hết cho 4 là 996. Như vậy các số có ba chữ số chia hết cho 4 lập thành một dãy số có số hạng nhỏ nhất là 100, số hạng lớn nhất là 996 và mỗi số hạng của dãy (kể từ số hạng thứ hai ) bằng số hạng đứng liền trước cộng với 4.

Vậy số các số có ba chữ số chia hết cho 4 là:

(996 – 100) : 4 = 225 (số)

* Bài tập tự luyện:

Bài 1: Cho dãy số: 3, 8, 13, 23, ……,2008

Tìm xem dãy số có bao nhiêu số hạng ?

Bài 2: Tìm số số hạng của các dãy số sau:

a. 1, 4, 7, 10, ……,1999.

b. 1,1 ; 2,2 ; 3,3 ; … ; 108,9 ; 110,0.

Bài 3: Xét dãy số: 100, 101, ………, 789.

Dãy này có bao nhiêu số hạng?

Bài 4: Có bao nhiêu số khi chia cho 4 thì dư 1 mà nhỏ hơn 2010 ?

Bài 5: Người ta trồng cây hai bên đường của một đoạn đường quốc lộ dài 21km. Hỏi phải dùng bao nhiêu cây để đủ trồng trên đoạn đường đó ? Biết rằng cây nọ trồng cách cây kia 5m.

Dạng 4: Tìm số hạng thứ n của dãy số

Bài toán 1: Cho dãy số: 1, 3, 5, 7,…………Hỏi số hạng thứ 100 của dãy số là số nào

Giải:

Số khoảng cách từ số đầu đến số hạng thứ 100 là:

98 – 1 = 99

Mỗi khoảng cách là

3 – 1 = 5 – 3 = 2

Số hạng thứ 100 là

1 + 99 ´ 2 = 199

Công thức tổng quát:

Số hạng thứ n = số đầu + khoảng cách x (Số số hạng – 1)

Bài toán 2: Tìm số hạng thứ 100 của các dãy số được viết theo quy luật:

a) 3, 8, 15, 24, 35,… (1)

b) 3, 24, 63, 120, 195,… (2)

c) 1, 3, 6, 10, 15,…. (3)

Giải: a) Dãy (1) có thể viết dưới dạng: 1×3, 2×4, 3×5, 4×6, 5×7,…

Mỗi số hạng của dãy (1) là tích của hai thừa số, thừa số thứ hai lớn hơn thừa số thứ nhất 2 đơn vị. Các thừa số thứ nhất làm thành một dãy: 1, 2, 3, 4, 5, …; Dãy này có số hạng thứ 100 là 100.

Số hạng thứ 100 của dãy (1) bằng: 100×102 = 10200.

b) Dãy (2) có thể viết dưới dạng: 1×3, 4×6, 7×9, 10×12, 13×15,…

Mỗi số hạng của dãy (2) là tích của hai thừa số, thừa số thứ hai lớn hơn thừa số thứ nhất 2 đơn vị. Các thừa số thứ nhất làm thành một dãy: 1, 4, 7, 10, 13, …; Số hạng thứ 100 của dãy 1, 4, 7, 10, 13,… là: 1 + (100 – 1 ) x 3 = 298.

Số hạng thứ 100 của dãy (2) bằng: 298 x 300 = 89400.

c) Dãy (3) có thể viết dưới dạng:

Số hạng thứ 100 của dãy (3) bằng:

Dạng 5: Tìm số chữ số của dãy khi biết số số hạng

Bài toán 1: Cho dãy số: 1, 2, 3,…….150. Hỏi để viết dãy số này người ta phải dùng bao nhiêu chữ số

Giải:

Dãy số đã cho có: (9 – 1) : 1 + 1 = 9 số có 1 chữ số.

Có (99 – 10 ) : 1 + 1 = 90 số có 2 chữ số

Có (150 – 100) : 1 + 1 = 51 số có 3 chữ số.

Vậy số chữ số cần dùng là:

9 x 1 + 90 x 2 + 51 x 3 = 342 chữ số

Bài toán 2: Một quyển sách có 234 trang. Hỏi để đánh số trang quyển sách đó người ta phải dùng bao nhiêu chữ số.

Giải:

Để đánh số trang quyển sách đó người ta phải viết liên tiếp các số tự nhiên từ 1 đến 234 thành dãy số. Dãy số này có

(9 – 1) : 1 + 1 = 9 số có 1 chữ số

Có: (99 – 10) : 1 + 1 = 90 số có 2 chữ số

Có: (234 – 100) : 1 + 1 = 135 số có 3 chữ số

Vậy người ta phải dùng số chữ số là:

9 x 1 + 90 x 2 + 135 x 3 = 594 chữ số

* Bài tập tự luyện:

Bài 1: Một bạn học sinh viết liên tiếp các số tự nhiên từ 101 đến 2009 thành 1 số rất lớn. Hỏi số đó có bao nhiêu chữ số

Bài 2: Trường Tiểu học Thành Công có 987 học sinh. Hỏi để ghi số thứ tự học sinh trường đó người ta phải dùng bao nhiêu chữ số

Bài 3: Cần bao nhiêu chữ số để đánh số trang của một cuốn sách có tất cả là:

a) 752 trang.

b) 1251 trang.

Dạng 6: Tìm số số hạng khi biết số chữ số

Bài toán 1: Để đánh số trang 1 quyển sách người ta dùng hết 435 chữ số. Hỏi quyển sách đó có bao nhiêu trang?

Giải:

Để đánh số trang quyển sách đó, người ta phải viết liên tiếp các số tự nhiên bắt đầu từ 1 thành dãy số. Dãy số này có

9 số có 1 chữ số

có 90 số có 2 chữ số

Để viết các số này cần số chữ số là

9 x 1 + 90 ´ 2 = 189 chữ số

Số chữ số còn lại là:

435 – 189 = 246 chữ số

Số chữ số còn lại này dùng để viết tiếp các số có 3 chữ số bắt đầu từ 100. Ta viết được

246 : 3 = 82 số

Số trang quyển sách đó là

99 + 82 = 181 (trang)

Bài toán 2:

Để đánh số trang một cuốn sách người ta phải dùng tất cả 600 chữ số. Hỏi quyển sách đó có bao nhiêu trang?

Giải: 99 trang đầu cần dùng 9×1 + 90×2 = 189 chữ số.

999 trang đầu cần dùng: 9×1 + 90×2 + 900×3 = 2889 chữ số

Vì: 189 < 600 < 2889 nên trang cuối cùng phải có 3 chữ số. Số chữ số để đánh số các trang có 3 chữ số la: 600 – 189 = 411 (chữ số)

Số trang có 3 chữ số là 411: 3 = 137 trang.

Vậy quyển sách có tất cả là: 99 + 137 = 236 trang.

Bài toán 3: Để ghi thứ tự các nhà trên một đường phố, người ta dùng các số chẵn 2, 4, 6, 8 . . . để ghi các nhà ở dãy phải và các số lẻ 1, 3, 5, 7 . . . để ghi các nhà ở dãy trái của đường phố đó. Hỏi số nhà cuối cùng của dãy chẵn trên đường phố đó là bao nhiêu, biết rằng khi đánh thứ tự các nhà của dãy này, người ta đã dùng 367 lượt chữ số cả thảy.

Giải:

Số nhà có số thứ tự ghi bằng 1 chữ số chẵn là: (8 – 2) : 2 + 1 = 4 (nhà)

Số nhà có số thứ tự ghi bằng 2 chữ số chẵn là: (98 – 10) : 2 + 1 = 45 (nhà)

Số lượt chữ số để đánh số thự tự các nhà có 1 và 2 chữ số là:

4 + 45 2 = 94 (lượt)

Số lượt chữ số để đánh số thứ tự nhà có 3 chữ số là: 367 – 94 = 273 (lượt)

Số nhà có số thứ tự 3 chữ số là: 273 : 3 = 91 (nhà)

Tổng số nhà của dãy chẵn là: 4 + 45 + 91 = 140 (nhà)

Số nhà cuối cùng của dãy chẵn là: (140 – 1) 2 + 2 = 280.

Dạng 7: Tìm chữ số thứ n của dãy

Bài toán 1: Cho dãy số 1, 2, 3,….. Hỏi chữ số thứ 200 là chữ số nào?

Giải:

Dãy số đã cho có 9 số có 1 chữ số

Có 90 số có 2 chữ số

Để viết các số này cần

9 x 1 + 90 x 2 = 189 chữ số

Số chữ số còn lại là

200 – 189 = 11 chữ số

Số chữ số còn lại này dùng để viết các số có 3 chữ số bắt đầu từ 100. Ta viết được

11 : 3 = 3 số (dư 2 chữ số)

Nên có 3 số có 3 chữ số được viết liên tiếp đến

99 + 3 = 102

Còn dư 2 chữ số dùng để viết tiếp số 103 nhưng chỉ viết được 10. Vậy chữ số thứ 200 của dãy là chữ số 0 của số 103.

Bài toán 2: Cho dãy số 2, 4, 6, 8, ….. Hỏi chữ số thứ 2010 của dãy là chữ số nào?

Giải:

Dãy số đã cho có 4 số có 1 chữ số

Có (98 – 10) : 2 + 1 = 45 số có 2 chữ số

Có (998 – 100) : 2 + 1 = 450 số có 3 chữ số

Để viết các số này cần:

4 x 1 + 45 x 2 + 450 x 3 = 1444 chữ số

Số chữ số còn lại là:

2010 – 1444 = 566 chữ số

Số chữ số còn lại này dùng để viết các số có 4 chữ số bắt đầu từ 1000. Ta viết được:

566 : 4 = 141 số (dư 2 chữ số)

Nên có 141 số có 4 chữ số được viết , số có 4 chữ số thứ 141 là:

(141 – 1) x 2 + 1000 = 1280

Còn dư 2 chữ số dùng để viết tiếp số 1282 nhưng mới chỉ viết được 12. Vậy chữ số thứ 2010 của dãy là chữ số 2 hàng trăm của số 1282.

Bài toán 3: Tìm chữ số thứ 2010 ở phần thập phân của số thập phân bằng phân số

Giải:

Số thập phân bằng phân số

Đây là số thập phân vô hạn tuần hoàn. Ta thấy cứ 6 chữ số thì lập thành 1 nhóm 142857. Với 2010 chữ số thì có số nhóm là:

2010 : 6 = 335 (nhóm). Vậy chữ số thứ 2010 ở phần thập phân của số thập phân bằng phân số

Bài toán 4: Cho 1 số có 2 chữ số, một dãy số được tạo nên bằng cách nhân đôi chữ số hàng đơn vị của số này rồi cộng với chữ số hàng chục, ghi lại kết quả; tiếp tục như vậy với số vừa nhận được … (Ví dụ có thể là dãy: 59, 23, 8, 16, 13, … ). Tìm số thứ 2010 của dãy nếu số thứ nhất là 14.

Giải:

Ta lập được dãy các số như sau:

14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, …..

Ta thấy cứ hết 18 số thì dãy các số lại được lặp lại như dãy 18 số đầu.

Với 2010 số thì có số nhóm là:

2010 : 18 = 111 nhóm (dư 12 số)

12 số đó là các số của nhóm thứ 112 lần lượt là: 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1. Vậy số thứ 2010 của dãy là số 1.

* Bài tập tự luyện:

Bài 1: Cho dãy số: 2, 5, 8, 11,…….Hãy tìm chữ số thứ 200 của dãy số đó.

Bài 2: Cho dãy số: 2, 4, 6, 8, ….. Bạn Minh tìm được chữ số thứ 2010 của dãy là chữ số 0, hỏi bạn tìm đúng hay sai?

Bài 3: Bạn Minh đang viết phân số dưới dạng số thập phân. Thấy bạn Thông sang chơi, Minh liền đố: Đố bạn tìm được chữ số thứ 100 ở phần thập phân của số thập phân mà tớ đang viết. Thông nghĩ 1 tí rồi trả lời ngay: đó là chữ số 6. Em hãy cho biết bạn Thông trả lời đúng hay sai?

Các dạng toán về dãy số và phương pháp giải được VnDoc sưu tầm, chọn lọc giúp các em họ sinh ôn luyện dạng toán dãy số từ cơ bản đến nâng cao. Các em tham khảo các dạng đề thi học kì 1 lớp 4, đề thi học kì 2 theo Thông tư 22 chương trình học lớp 4 mới nhất được cập nhật. Mời các em học sinh, các thầy cô cùng các bậc phụ huynh tham khảo đề thi, bài tập mới nhất.

Tham khảo các dạng Toán tiểu học khác:

Các Dạng Toán Và Phương Pháp Giải Đại Số Lớp 9 Thi Vào 10

Các dạng toán đại số lớp 9 và phương giải toán đại số lớp 9 ôn thi vào 10 THPT, tài liệu toán file word miễn phí tại chúng tôi dành cho mọi người. Tài liệu này bao gồm đầy đủ lý thuyết và các dạng bài tập môn toán phần đại số lớp 9 cả năm theo từng bài học SGK toán 9

TÀI LIỆU CÁC DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI TOÁN ĐẠI SỐ LỚP 9

Các dạng toán đại số lớp 9 và phương giải toán đại số lớp 9 ôn thi vào 10 THPT, tài liệu toán file word miễn phí tại chúng tôi dành cho mọi người. Tài liệu này bao gồm đầy đủ lý thuyết và các dạng bài tập môn toán phần đại số lớp 9 cả năm theo từng bài học SGK toán 9.

Sử dụng tài liệu “Các dạng toán và phương giải toán đại số lớp 9” này để: cũng cố kiến thức lý thuyết toán lớp 9 theo từng bài, làm bài tập rèn luyện toán 9 theo bài, biết được các dạng toán thường gặp toán lớp 9 phần đại số, tham khảo dạy thêm toán 9 đại số, ôn thi học kỳ 1 và cuối năm toán lớp 9, tài liệu ôn thi vào lớp 10 môn toán, làm các chuyên đề thi vào 10 môn toán…

Một số dạng toán lớp 9 đại số có trong tài liệu: Tìm điều kiện để biểu thức, căn thức có nghĩa; Tính giá trị biểu thức; So sánh căn bậc hai, Rút gọn biểu thức toán 9; Giải phương trình; Chứng minh bất đẳng thức; phương pháp khai căn bậc hai toán 9; Hàm số, hàm số bậc nhất; Kiểm tra đồ thị hàm số có phải là hàm số bậc nhất không? đồng biến hay nghịch biến?; Vẽ đồ thị hàm số, tìm giao điểm của hai đồ thị; Các dạng lập phương trình đường thẳng; Tính khoảng cách 1 điểm đến 1 đường thẳng toán đại số lớp 9; Phương pháp chứng minh hàm số đồng biến, nghịch biến; Chứng minh 3 điểm trên tọa độ không thẳng hàng(thẳng hàng); Dạng toán tìm m để 3 đường thẳng đồng quy; Tập nghiệm của phương trình bậc nhất hai ẩn; Dạng toán giải hệ phương trình toán lớp 9; Cách làm tốt dạng toán giải bài toán bằng cách lập phương trình hệ phương trình (Bài toán thực tế lớp 9 về quan hệ giữa các số; Toán làm chung công việc; Các dạng bài toán chuyển động lớp 9; Toán có nội dung hình học – toán thực tế lớp 9); Các dạng toán về hệ thức Vi-et; Các bài tập về phương trình chứa dấu giá trị tuyệt đối toán đại lớp 9.

Bôi đen đoạn bên dưới sẽ xuất hiện link dạng drive.google để DOWNLOAD Tài liệu CÁC DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI ĐẠI SỐ LỚP 9

https://drive.google.com/file/d/1mtOqtphakTaWQPobHa-uoRFAAYEQXBCL/view

Phương Pháp Giải Các Dạng Bài Toán Phương Trình Mặt Phẳng

1 PP GIẢI CÁC DẠNG BT PHƯƠNG TRÌNH MẶT PHẲNG Để viết pt măt phẳng em có 2 cách cơ bản : . Xác định 1 điểm và 1 VTPT . Hoặc gọi ptmp dạng Ax+By+Cz+D=0 rồi dựa vào giả thiết tìm A,B,C,D. Vậy khi nào sử dụng cách 1 , khi nào sử dụng cách 2 thì em phân biệt các dạng đề bài sau: Dạng 1: Viết PT mp đi qua A(x0; y0 ;z0) và có VTPT n  =(A;B;C) A(x-x0) + B(y-y0) + C(z-z0) = 0  Ax + By + Cz + D = 0 Dạng 2: Viết pt mặt phẳng đi qua A(x0; y0 ;z0) và – Từ ptmp(Q) VTPT n Q = (A;B;C) – Vì (P) – PT mp (P) đi qua A và có VTPT n  P Dạng 3: Viết pt mp đi qua A(x0; y0 ;z0) và vuông góc với đường thẳng d – Từ (d) VTCP u d = (A;B;C) – Vì (P) vuông góc với (d) Chọn VTPT n P=u d =(A;B;C) Viết ptmp (P) đi qua A và có vtpt n P. Dạng 4: Viết ptmp đi qua A và  (Q) ,  (R) – Từ pt mp (Q) và (R) VTPT n Q ; VTPT n R – Vì (P)  (Q) và  (R) VTPT n P  Qn và n P  n R Chọn n P = [ n Q; n R] – Vậy pt mp (P) đi qua A và có VTPT n  P = [ n  Q; n  R] Dạng 5: Viết Pt mp (P) đi qua 3 điểm A,B,C không thẳng hàng – Tính AB  , AC  và a  = [ AB  , AC  ] – PT mp (P) đi qua A và có VTPT n  P= a  = [ AB  , AC  ] Dạng 6: Viết ptmp (P) đi qua A,B và  (Q) – Tính AB  , vtpt n  Q và tính [ AB  , n  Q] – Vì A, B (P) ; (Q)  (P) nên chọn n P=[ AB , n Q] – Viết ptmp (P) Dạng 7: Viết ptmp (P) đi qua A ;  (Q) và – Tính VTPT n  Q của mp (Q); VTCP u  d của đường thẳng (d). – Tính [u  d, n  Q] – Vì (P)  (Q) và  d, n  Q] – Từ đó viết được PT mp (p) Dạng 8: Viết ptmp (P) là trung trực của AB. – Tình trung điểm I của ABvà AB  – Mp (P) đi qua I và nhận AB  làm VTPT. Dạng 9: Viết pt mp(P) chứa (d) và đi qua A – Tính VTCP u  d của đường thẳng (d) và tìm điểm M(d) – Tính AM  và [u  d, AM  ] – Ptmp (P) đi qua A và có VTPT n  P =[u  d, AM  ]. Dạng 10: Viết pt mp (P) chứa (d) và – Từ (d)  VTCP u d và điểm M (d) – Từ ( ) VTCP u và tính [u d, u  ] – PT mp (P) đi qua M và có VTPT n  = [u  d, u   ]. Dạng 11: Viết Pt mp(P) chứa (d) và  (Q) – Từ (d) VTCP u d và điểm M (d) – Từ (Q) VTPT n Q và tính [u d, n Q] Chuyên đề LTĐH – Giải tích trong không gian Biên soạn: Lê Minh Đạt – 0918 344 200 2 – PT mp (P) đi qua M và có VTPT n  =[u  d, n  Q]. Dạng 12: Viết PT mp (P) – Vì (P) ( theo pt của mp (Q) , trong đó D DQ) – Vì d(A,(P))= h nên thay vào ta tìm được D – Thay A,B,C,D ta có PT mp (P) cần tìm. Dạng 13: Viết PT mp(P) chứa (d) và d(A,(P))=h – Gọi VTPT của mp (P) là n  – Từ (d)  VTCP u d và điểm M (d) – Vì (d) nằm trong (P)  u d. n P=0 (1) – PT mp (p) đi qua M: A(x-x0) + B(y-y0) + C(z-z0) = 0 – d(A,(P)) = h (2) – Giải (1);(2) ta tìm được A,B theo C từ đó chọn A,B,C đúng tỉ lệ , ta viết được PT mp(P). Dạng 14: Viết Pt mp(P) chứa (d) và hợp với mp (Q) một góc   900 – Gọi VTPT của mp (P) là n  – Từ (d)  VTCP u d và điểm M  (d) – Vì d  (P)  u d. n P=0 (1) – Tính cos ((P),(Q)) (2) – Từ (1) và (2) ta tìm được A,B theo C từ đó chọn A,B,C đúng tỉ lệ , ta viết được PT mp(P). Dạng 15: Viết Pt mp (P) chứa (d) và hợp với đt( )một góc   900 – Gọi VTPT của mp (P) là n  – Từ (d)  VTCP u d và điểm M  (d) – Vì d  (P)  u d. n P=0 (1) – Tính sin ((P),(  )) (2) – Hệ (1) và (2) tìm được A,B theo C từ đó chọn A,B,C đúng tỉ lệ , ta viết được PT mp(P). Dạng 16: Cho A và (d) , viết PT mp (P) chứa (d) sao cho d(A,(P)) là lớn nhất – Gọi H là hình chiếu  của A lên (d) – Ta có : d(A,(P)) = AK AH (tính chất đường vuông góc và đường xiên) Do đó d(A(P)) max  AK = AH  KH – Viết PT mp (P) đi qua H và nhận AH làm VTPT Dạng 17: Viết Pt mp (P) – Xác định tâm I, bán kính R của mặt cầu (S) – Vì (P) (theo pt của mp (Q) , trong đó D’ DQ). – Mà (P) tiếp xúc với (S) nên d(I,(P))= R tìm được D’ – Từ đó ta có Pt (P) cần tìm Dạng 18: Viết PT mp(P) là đường tròn(C) có bán kính r ( hoặc diện tích, chu vi cho trước). – Xác định tâm I, bán kính R của mặt cầu (S) – Adct : Chu vi đường tròn C = 2 r và diện tích S = 2r tính r. – d(I,(P)) = 2 2R r (1) – Vì (P) (theo pt của mp (Q) , trong đó D’ DQ) – Suy ra d (I,(P)) (2) Giải hệ (1), (2) tìm được D’  viết được pt (P). Dạng 19: Viết PT mp(P) chứa (d) và tiếp xúc với mặt cầu (S) – Xác định tâm I, bán kính R của mặt cầu (S) – Gọi VTPT của mp (P) là n  Chuyên đề LTĐH – Giải tích trong không gian Biên soạn: Lê Minh Đạt – 0918 344 200 3 – Từ (d)  VTCP u d và điểm M (d) – d  (P)  u d. n P=0 (1) – Mà (P) tiếp xúc với (S) nên d(A,(P))= R (2) – Giải hệ (1) và (2) tìm được A,B theo C PT mp(P). Dạng 20: Viết Pt mp (P) chứa (d) và cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có bán kính r ( hoặc diện tích , chu vi cho trước) – Xác định tâm I, bán kính R của mặt cầu (S) – Adct : Chu vi đường tròn C = 2 r và diện tích S = 2r tính r. – Vì d  (P)  u d. n P=0 (1) – Gọi VTPT của mp (P) là n  chọn M trên đường thẳng d. – Vì (P) cắt (S) theo đường tròn bán kính r nên d(I,(P)= r (2) – Giải hệ (1) và (2) tìm được A,B theo C PT mp(P). Dạng 21: Viết PT mp (P) chứa (d) và cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có bán kính nhỏ nhất .(áp dụng trường hợp d cắt (S) tại 2 điểm). – Xác định tâm I, bán kính R của mặt cầu (S) – Bán kính r = 2 2( ,( ))R d I p để r min  d(I,(P)) max – Gọi H là hình chiếu  của I lên (d) ; K là hình chiếu  của I lên (P) – Ta có: d(I,(P))= IK Ih ( tính chất đường vuông góc và đường xiên) – Do đó: d(I,(P)) max AK = AH  KH – PT mp(P) đi qua H và nhận IH  làm VTPT PP GIẢI CÁC DẠNG PHƯƠNG TRÌNH ĐƯỜNG THẲNG Có 2 loại phương trình đường thẳng : PT ThamSố và PT ChínhTắc. Dạng 1: Viết ptđt (d) qua M(x0; y0 ;z0) và có VTCP u  =(a,b,c) PP: phương trình tham số của d là (d): 0 0 0 x x at y y bt z z ct       với t R * Chú ý : Nếu cả a, b, c  0 thì (d) có PT chính tắc 0 0 0x x y y z z a b c     * Chú ý: Đây là bài toán cơ bản. Về nguyên tắc muốn viết PT dt(d) thì cần phải biết 2 yếu tố đó là tọa độ một điểm thuộc d và toạ độ VTCP của d. Dạng 2: Viết pt dt(d) đi qua 2 điểm A,B – Tính AB  – Viết PT đường thăng đi qua A, và nhận AB  làm VTCP Dạng 3: Viết PT dt (d) đi qua A và – Từ pt( ) VTCP u  – Viết Pt dt(d) đi qua A và nhận u   làm VTCP Dạng 4: Viết PT dt(d) đi qua A và  (P) – Tìm VTPT của mp(P) là n  P – Pt dt(d) đi qua A và Có VTCP u  d = n  P Dạng 5: Viết Pt dt(d) đi qua A và vuông góc với cả 2 dt (d1),(d2) – Từ (d1),(d2) 1 2 1 2, à u à uVTCPd d l v    , 2u  ]. – Vì (d)  (d1),(d2) nên có VTCP u  d= [ 1u  , 2u  ] – Pt dt(d) đi qua A và có VTCP u  d= [ 1u  , 2u  ] Dạng 6: Viết PT của dt (d) là giao tuyến của 2 mp (P):Ax + By + Cz + D = 0 Chuyên đề LTĐH – Giải tích trong không gian Biên soạn: Lê Minh Đạt – 0918 344 200 4 (Q):A’x + B’y + C’z + D’ = 0 – Từ (P) và (Q)  n P , n Q – Tính [ n  P , n  Q] – Xét hệ ‘ ‘ ‘ ‘ Ax + By + Cz +D =0 A 0x B y C z D      . Chọn một nghiệm (x0; y0 ;z0) từ đó Md – Pt dt(d) đi qua M và có VTCP u  d =[ n  P , n  Q]. Dạng 7: Viết PT hình chiếu của d lên mp(P) Cách 1: – Viết ptmp(Q) chứa d và vuông góc với mp(P) – Hình chiếu cần tìm d’ = (P) (Q) Cách 2: + Tìm A = ( )d P ( chỉ áp dụng với giả thiết d cắt (P) ) + Lấy M d và xác định hình chiếu H của M lên (P) + Viết phương trình d’ đi qua M, H Dạng 8: Viết pt đg thẳng d đi qua điểm A và cắt 2 đường thẳng d1, d2: Cách 1 *Viết pt mặt phẳng ( ) đi qua điểm A và chứa đường thẳng d1 * Tìm B = 2( ) d  * Đường thẳng cần tìm đi qua A, B Cách 2 : Viết pt mặt phẳng ( ) đi qua điểm A và chứa đường thẳng d1 Viết pt mặt phẳng ( ) đi qua điểm B và chứa đường thẳng d2 Đường thẳng cần tìm d =   Dạng 9: Viết pt đường thẳng d song song d1 và cắt cả d2 , d3 – Viết phương trình mp (P) song song d1 và chứa d2 – Viết phương trình mp (Q) song song d1 và chứa d3 – Đường thẳng cần tìm d = ( ) ( )P Q Dạng 10 : Viết ptđt d đi qua A và vuông góc đường thẳng d1 và cắt d2 Cách 1 : – Viết pt mp ( ) qua A và vuông góc d1 – Tìm giao điểm B = 2( ) d  – Đường thẳng cần tìm đi qua A, B Cách 2 : * Viết pt mp ( ) qua A và vuông góc d1 * Viết pt mp ( ) qua A và chứa d1 * Đường thẳng cần tìm d =   Dạng 11 : Viết ptđt d đi qua A, song song mp ( ) , cắt đường thẳng d’ Cách 1 : – Viết ptmp(P) đi qua A và song song với ( ) – Viết ptmp(Q) đi qua A và chứa d’ – Đường thẳng cần tìm d = ( ) ( )P Q Cách 2 : * Viết ptmp(P) đi qua A và song song với ( ) * Tìm B = ( ) ‘P d * Đường thẳng cần tìm đi qua 2 điểm A,B Dạng 12 : Viết ptđt d nằm trong mp(P) và cắt 2 đường thẳng d1, d2 cho trước. – Tìm giao điểm A=d1 ( )P và B=d2 ( )P – Đường thẳng d đi qua 2 điểm A, B Dạng 13 : Viết ptđt d nằm trong mp(P) và vuông góc với đường thẳng d’ tại giao điểm I của (P) và d’. * Tìm giao điểm I’ = d’ ( )P * Tìm VTCP u  của d’ và VTPT n  của (P) và tính [u,n]v    * Viết ptđt d qua I và có VTCP v  Dạng 14 : Viết ptđt vuông góc chung d của 2 dường thẳng chéo nhau d1, d2 : – Gọi 0 0 0 1( , , )M x at y bt z ct d    , Chuyên đề LTĐH – Giải tích trong không gian Biên soạn: Lê Minh Đạt – 0918 344 200 5 và ‘ ‘ ‘0 0 0 2( ‘ ‘, ‘ ‘, ‘ ‘)N x a t y b t z c t d    là các chân đường vuông góc chung của d1, d2 – Ta có hệ 11 2 2 . 0 , ‘ . 0 MN d MN u t t MN d MN u            . – Thay t, t’ tìm M, N. Viết ptđt đi qua M,N. ( Với cách 2 em tính thêm được khoảng cách MN, cũng chính là độ dài đường vuông góc) Dạng 15 : Viết pt đường thẳng d vuông góc với mp(P) và cắt 2 đường thẳng d1,d2 . * Viết ptmp(Q) chứa d1 và vuông góc với mp(P) * Viết ptmp(R) chứa d2 và vuông góc với mp(P) * Đường thẳng d = ( ) ( )Q R Dạng 16 : Viết ptđt d đi qua điểm A , cắt và vuông góc với đường thẳng d1 . – Viết pt mp ( ) qua A và vuông góc d1 – Tìm giao điểm B = 1( ) d  – Đường thẳng cần tìm đi qua A, B Dạng 17 : Viết ptđt d đi qua A ,vuông góc với d1,tạo với d2 góc 0 0(0 ;90 ) (= 300, 450, 600) * Gọi VTCP của d là 2 2 2( ; ; ), : 0u a b c dk a b c    * Vì 11 . 0d d u u     Vì 2 2 . . u u cos u u     ( chú ý : nếu thay g … MẶT CẦU CẮT MẶT PHẲNG Bài 1: Lập phương trình mặt cầu có tâm tạo giao điểm I của mặt phẳng (P) và đường thẳng (d) sao cho mặt phẳng (Q) cắt khối cầu theo thíêt diện là hình tròn có diện tích 12ẽ ,biết : 1)   R tz ty tx d        t 2 3 1 : ,(P):x-y-z+3=0 2)   01 03 :     y zyx d , (P):x+y-2=0. Chuyên đề LTĐH – Giải tích trong không gian Biên soạn: Lê Minh Đạt – 0918 344 200 34 Bài 2: Lập phương trình mặt cầu có tâm thuộc đường thẳng (d) và cắt mặt phăng (P) theo thiết diện là đường tròn lớn có bán kính bằng 18.biết:   R tz ty tx d        t 1 39 412 : và (P):y+4z+17=0. Bài 3: Trong không gian 0xyz , cho hai điểm A(0,0,-3),B(2,0,-1) ,và mặt phẳng (P):3x-8y+7z-1=0 . 1) (HVNH-2000): Tìm toạ độ điểm C nằm trên mặt phẳng (P) sao cho tam giác đều . 2) Lập phương trình mặt cầu (S) đi qua 3 điểm A,B,C và có tâm thuộc mặt phẳng (P):x-y-z-2=0. MẶT CẦU TIẾP XÚC VỚI ĐƯỜNG THẲNG Bài 1: Viết phương trình mặt cầu (S) biết : 1) Tâm I(1,2,-1) và tiếp xúc với đường thẳng (d) có phương trình :   R z ty tx d        t 1 1 : 2) Tâm I(3,-1,2) và tiếp xúc với đường thẳng (d) có phương trình :   017322 0322 :     zyx zyx d Bài 2: Trong không gian 0xyz, cho hai đường thẳng (d1),(d2) ,biết :   R tz ty tx d        t 32 1 21 :1 ,   012 043 :2     zyx yx d Lập phương trình mặt cầu (S) tiếp xúc với (d1) tại điểm H(3,1,3) và có tâm thuộc đường thẳng (d2). Bài 3: Trong không gian 0xyz, cho hai đường thẳng (d1),(d2) ,biết :   01 012 :1     zyx yx d ,   012 033 :2     yx zyx d 1) CMR hai đường thẳng đó cắt nhau .Xác định tọa độ giao điểm I của chúng . 2) Viết phương trình tổng quát của mặt phẳng (P) đi qua hai đường thẳng (d1) và (d2). 3) Lập phương trình mặt cầu tiếp xúc với (d1),(d2) và có tâm thuộc đường thẳng (d) có phương trình :   R tz ty tx d        t 33 2 21 : Bài 4: Trong không gian 0xyz, cho hai đường thẳng (d1),(d2) ,biết :   R)(t 46 32 23 :1       tz ty tx d ,   015 0194 :2     zx yx d 1) CMR hai đường thẳng đó cắt nhau .Xác định tọa độ giao điểm I của chúng . 2) Viết phương trình tổng quát của mặt phẳng (P) đi qua hai đường thẳng (d1) và (d2). 3) Lập phương trình mặt cầu tiếp xúc với (d1),(d2) và có tâm thuộc đường thẳng (d) có phương trình :   4 9 1 5 3 7 :   zyxd Bài 5: Trong không gian 0xyz, cho hai đường thẳng (d1),(d2) ,biết :   4 1 32 2 :1    zyxd ,   129 2 6 7 :2 zyxd   1) CMR hai đường thẳng đó song song với nhau. 2) Viết phương trình tổng quát của mặt phẳng (P) đi qua hai đường thẳng (d1) và (d2). 3) Lập phương trình mặt cầu tiếp xúc với (d1),(d2) và có tâm thuộc đường thẳng (d) có phương trình : Chuyên đề LTĐH – Giải tích trong không gian Biên soạn: Lê Minh Đạt – 0918 344 200 35   R z ty tx d        t 1 1 : Bài 6: Trong không gian 0xyz, cho hai đường thẳng (d1),(d2) ,biết :   4 9 1 5 3 7 :1   zyxd ,   4 18 1 4 3 :2   zyxd 1) CMR hai đường thẳng đó song song với nhau. 2) Viết phương trình tổng quát của mặt phẳng (P) đi qua hai đường thẳng (d1) và (d2). 3) Lập phương trình mặt cầu tiếp xúc với (d1),(d2) và có tâm thuộc đường thẳng (d) có phương trình :   R tz ty tx d        t 1 3 23 : Bài 7: Trong không gian 0xyz, cho hai đường thẳng (d1),(d2) ,biết :   R)(t 33 2 21 :1       tz ty tx d ,   31 23 2 :2       uz uy ux d 1) CMR hai đường thẳng đó chéo nhau. 2) Viết phương trình đường vuông góc chung của(d1) và (d2). 3) Tính khoảng cách giữa (d1) và (d2). 4) Lập phương trình mặt cầu tiếp xúc với (d1),(d2) và có tâm thuộc mặt phẳng (P) : xy+z-2=0 Bài 8: Trong không gian 0xyz, cho hai đường thẳng (d1),(d2) ,biết :   01 03 :1     zx zyx d ,   01 0922 :2     zy zyx d 1) CMR hai đường thẳng đó chéo nhau. 2) Viết phương trình đường vuông góc chung của(d1) và (d2). 3) Lập phương trình mặt cầu tiếp xúc với (d1),(d2) và có tâm thuộc mặt phẳng (P):2x-y+3z-6=0. MẶT CẦU CẮT ĐƯỜNG THẲNG Bài 1: (ĐHQG-96): Cho điểm I(2,3,-1) và đường thẳng (d) có phương trình :   0843 020345 :     zyx zyx d 1) Xác định VTCP a của (d) suy ra phương trình mặt phẳng (P) qua I và vuông góc với (d): 2) Tính khoảng cách từ I đến (d) từ đó suy ra phương trình mặt cầu (S) có tâm sao cho (S) cắt (d) tại hai điểm phân biệt A,B thoả mãn AB=40. Bài 2: Cho đường thẳng (d) và mặt phẳng (P) có phương trình :   R tz ty tx d        t 3 2 21 : , (P):2x-y-2z+1=0. 1) (ĐHBK-98):Tìm toạ độ các điểm thuộc đường thẳng (d) sao cho khoảng cách từ mỗi điểm đó đến mặt phẳng (P) bằng 1. 2) (ĐHBK-98):Gọi K là điểm đối xứng của điểm I(2,-1,3) qua đường thẳng (d) .Xác định toạ độ K. 3) Lập phương trình mặt cầu tâm I cắt đường thẳng (d) tại hai điểm phân biệt A,B sao cho AB=12. 4) Lập phương trình mặt cầu tâm I tiếp xúc với mặt phẳng (P). 5) Lập phương trình mặt cầu tâm I cắt mặt phẳng (P) theo giao tuyến là một đường tròn có diện tích bằng 16ẽ MẶT CẦU NGOẠI TIẾP KHỐI ĐA DIỆN Bài 1: (ĐH Huế-96): Trong không gian với hệ toạ độ trực chuẩn 0xyz ,cho bốn điểm A(1,0,1), B(2,1,2),C(1,-1,1),D(4,5,-5). 1) Viết phương trình tham số của đường thẳng đi qua D và vuông góc với mặt phẳng (ABC). 2) Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD. Bài 2: Cho bốn điểm 0(0,0,0),A(6,3,0), B(-2,9,1), S(0,5,8) Chuyên đề LTĐH – Giải tích trong không gian Biên soạn: Lê Minh Đạt – 0918 344 200 36 1) (ĐHKT-99): CMR SB vuông góc SA. 2) (ĐHKT-99): CMR hình chiếu của cạnh SB lên mặt phẳng (0AB) vuông góc với cạnh 0A. Gọi K là giao điểm của hình chiếu đó với 0A. Hãy xác định toạ dộ của K. 3) Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD. 4) (ĐHKT-99): Gọi P,Q lần lượt là điểm giữa của các cạnh S0,AB . Tìm toạ độ của điểm M trên SB sao cho PQ và KM cắt nhau. Bài 3: Trong không gian với hệ toạ độ trực chuẩn 0xyz ,cho bốn điểm A(4,4,4), B(3,3,1), C(1,5,5), D(1,1,1). 1) (HVKTQS-98): Tìm hình chiếu vuông góc của D lên (ABC) và tính thể tích tứ diện ABCD. 2) (HVKTQS-98): Viết phương trình tham số đường thẳng vuông góc chung của AC và BD. 3) Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD. 4) Tính thể tích tứ diện ABCD. Bài 4: cho bốn điểm A(-1,3,2), B(4,0,-3), C(5,-1,4), D(0,6,1). 1) (HVNHTPHCM-99):Viết phương trình tham số của đường thẳng BC .Hạ AH vuông góc BC .Tìm toạ độ của điểm H. 2) (HVNHTPHCM-99):Viết phương trình tổng quát của (BCD) .Tìm khoảng cách từ A đến mặt phẳng (BCD). 3) Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD. Bài 5: Trong không gian 0xyz, cho hình chóp .biết toạ độ bốn đỉnh S(5,5,6), A(1,3,0), B(-1,1,4), C(1,-1,4), D(3,1,0). 1) Lập phương trình các mặt của hình chóp. 2) Lập phương trình mặt cầu (S) ngoại tiếp hình chóp . 3) Tính thể tích hình chóp SABCD Bài 6: (HVKTMM-97) Cho bốn điểm A(1,2,2), B(-1,2,-1), C(1,6,-1), D(-1,6,2). 1) CMR tứ diện ABCD có cặp cạnh đối diện bằng nhau . 2) Xác định toạ độ trọng tâm G của tứ diện. 3) Viết phương trình mặt cầu ngoại tiếp ,nội tiếp tứ diện ABCD. MẶT CẦU NGOẠI TIẾP KHỐI ĐA DIỆN Bài 1: Lập phương trình mặt cầu nội tiếp hình chóp SABCD ,biết: 1) )0,0, 3 4(   S ,A(0,-4,0), B(0,-4,0),C(3,0,0). Bài 2: Cho hình chóp SABCD .Đỉnh )4, 2 9 , 2 1(S đáy ABCD là hình vuông có A(-4,5,0) ,đươngf chéo BD có phương trình :   0 087 :     z yx d 1) Tìm toạ độ các đỉnh của hình chóp . 2) Lập phương trình nặt cầu ngoại tiếp hình chóp. 3) Lập phương trình mặt cầu nội tíêp hình chóp. Bài 3: Cho ba điểm A(2,0,0), B(0,2,0), C(0,0,3). 1) Viết phương trình tổng quát các mặt phẳng (0AB), (0BC), (0CA), (ABC). 2) Xác định tâm I của mặt cầu nội tiếp tứ diện 0ABC . 3) Tìm toạ độ điểm J đối xứng với I qua mặt phẳng (ABC). Bài 4: (HVKTMM-99):Cho bốn điểm A(1,2,2), B(-1,2,-1), C(1,6,-1), D(-1,6,2). 1) CMR tứ diện ABCD có các cặp cạnh đối diện bằng nhau. 2) Xác định toạ độ trọng tâm G của tứ diện . 3) Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD. 4) Viết phương trình mặt cầu nội tiếp tứ diện ABCD. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐIỂM VÀ MẶT CẦU Bài 1: Cho mặt cầu   034: 222  zyxzyxS .xét vị trí tưpng đối của điểm A đối với mặt cầu (S) trong các trường hợp sau: 1) điểm A(1,3,2). 2) điểm A(3,1,-4). 3) điểm A(-3,5,1). Bài 2: Tìm toạ độ điểm M thuộc mặt cầu   03242: 222  zyxzyxS .Sao cho khoảng cách MA đạt giá trị lớn nhất ,nhỏ nhất,biết: 1) điểm A(1,-2,0). 2) điểm A(1,1,-2). Chuyên đề LTĐH – Giải tích trong không gian Biên soạn: Lê Minh Đạt – 0918 344 200 37 VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ MẶT CẦU Bài 1: Cho mặt cầu   06222: 222  zyxzyxS .Tìm toạ độ điểm M thuộc (S) sao cho khoảng cách từ M đến (d) đạt giá trị lớn nhất, nhỏ nhất,biết: 1)   R tz ty tx d        t 1 1 2 : 2.   012 032 :     zy zyx d VỊ TRÍ TƯƠNG ĐỐI CỦA MẶT PHẲNG VÀ MẶT CẦU Bài 1: (ĐHDL-97):Trong không gian với hệ toạ đô trực chuẩn 0xyz, cho mặt cầu (S) và mặt phẳng (P) có phương trình :   022: 222  xzyxS ,(P):x+z-1=0. 1) Tính bán kính và toạ độ tâm của mặt cầu (S). 2) Tính bán kính và toạ độ tâm của đường tròn giao của (S) và (P). Bài 2: (ĐHSPV-99): Cho điểm I(1,2,-2) và mặt phẳng 2x+2y+z+5=0 . 1) Lập phương trình mặt cầu (S) tâm I sao cho giao của (S) và (P) là đường tròn có chu vi bằng 8ẽ . 2) CMR mặt cầu (S) tiếp xúc với mặt phẳng 2x-2=y+3=z. 3) Lập phương trình mặt phẳng chứa đường thẳng (d) và tiếp xúc với (S). Bài 3: (ĐHBK-A-2000): Cho hình chóp SABCD với S(3,2,-1), A(5,3,- 1), B(2,3,-4), C(1,2,0). 1) CMR SABC có đáy ABC là tam giác đều và ba mặt bên là các tam giác vuông cân. 2) Tính toạ độ điểm D đối xứng với điểm C qua đường thẳng AB. M là điểm bất kì thuộc mặt cầu tâm D, bán kính 18R .(điểm M không phụ thuộc mặt phẳng (ABC) ). Xét tam giác có độ dài các cạnh bằng độ dài các đoạn tjẳmg MA, MB, MC. Hỏi tam giác đó có đặc điểm gì ? Bài 4: (ĐHPCCC-2000): Cho đường tròn (C) có phương trình :       0 14 : 222 z zyxC .Lập phương trình mặt cầu chứa (C) và tiệp xúc với mặt phẳng: 2x+2y-z-6=0. Bài 5: (CĐHQ-96): Cho mặt cầu (S) và mặt phẳng (P) có phương trình :   9)1()2()3(: 222  zyxS ,(P):x+2y+2z+11=0. Tìm điểm M sao cho M thuộc (S) sao cho khoảng cách từ M tới mặt phẳng (P) nhỏ nhất . VỊ TRÍ TƯƠNG ĐỐI CỦA HAI MẶT CẦU Bài 1: Cho hai mặt cầu:   0722: 2221  yxzyxS ,  02: 2222  xzyxS 1) CMR hai mặt cầu (S1) và (S2) cắt nhau. 2) Viết phương trình mặt cầu qua giao điểm của (S1) và (S2) qua điểm M(2,0,1). Bài 2: Cho hai mặt cầu:   9: 2221  zyxS ,  06222: 2222  zyxzyxS 1) CMR hai mặt cầu (S1) và (S2) cắt nhau. 2) Viết phương trình mặt cầu qua giao điểm của (S1) và (S2) qua điểm M(-2,1,-1).

Cập nhật thông tin chi tiết về Các Dạng Toán Và Phương Pháp Giải Toán Lớp 6 trên website Ictu-hanoi.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!