Xu Hướng 11/2022 # Cách Tính Diện Tích Hình Thang, Công Thức Tính Diện Tích Hình Thang Ch / 2023 # Top 15 View | Ictu-hanoi.edu.vn

Xu Hướng 11/2022 # Cách Tính Diện Tích Hình Thang, Công Thức Tính Diện Tích Hình Thang Ch / 2023 # Top 15 View

Bạn đang xem bài viết Cách Tính Diện Tích Hình Thang, Công Thức Tính Diện Tích Hình Thang Ch / 2023 được cập nhật mới nhất trên website Ictu-hanoi.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất.

Công thức tính diện tích hình thang cũng như các công thức tính diện tích tam giác, khá đơn giản và gần như đã trở thành một công thức phổ thông được nhiều học sinh, sinh viên áp dụng để giải quyết các bài toán cơ bản trong môn toán hoặc chèn công thức toán học trong Word.

Tuy nhiên trong nhiều trường hợp, không phải ai cũng hiểu và biết cách tính diện tích hình thang đúng cũng như cách áp dụng vào thực tế.

Cách tính diện tích hình thang, công thức tính diện tích hình thang thường, vuông, cân

Hình thang là một tứ giác lồi có hai cạnh đáy song song, 2 cạnh còn lại được gọi là hai cạnh bên.

Ngoài định nghĩa chung, hình thang còn được chia các trường hợp đặc biệt như sau:

– Hình thang vuông: Hình thang có 1 góc vuông– Hình thang cân: Hình thang có 2 cạnh đối song song, 2 góc kề một đáy bằng nhau– Hình bình hành: Hình thang có 2 cặp cạnh đối song song và bằng nhau

2. Công thức tính diện tích hình thang:

* Công thức chung: S = h x ((a +b)/2)

Trong đó:

+ S: diện tích hình thang+ h: chiều cao nối từ đỉnh tới đáy của hình thang+ a và b: hai cạnh đáy của hình thang

* Công thức tính diện tích hình thang khi biết 4 cạnh (bài toán nâng cao): Trong trường hợp bài toán cho dữ kiện biết độ dài của 4 cạnh, nói rõ cạnh đáy a, c với cạnh đáy c lớn hơn cạnh đấy a, cạnh bên là b và d thì bạn có thể tính được diện tích hình thang theo công thức sau.

Công thức tính diện tích hình thang khi biết 4 cạnh

Trong đó:

S: Diện tícha: cạnh đáy béc: cạnh đáy lớnb, d: cạnh bên hình thang

* Công thức tính diện tích hình thang vuông

Trong đó:

– S: Diện tích hình thang– a và b: Độ dài hai cạnh đáy– h: Độ dài cạnh bên vuông góc với hai đáy

* Công thức tính diện tích hình thang cân

Đối với hình thang cân, bên cạnh tính theo công thức chung,bạn có thể tính diện tích hình thang cân ABCD bằng cách tính diện tích từng phần nhỏ rồi cộng lại với nhau.

3. Công thức tính chiều cao hình thang, đáy lớn, đáy nhỏ hình thang

Với công thức tính diện tích hình thang ở trên, ta cũng có thể dễ dàng giải các bài tập nâng cao về hình thang: tính chiều cao hình thang khi biết diện tích; tính đáy lớn, đáy nhỏ hình thang khi biết diện tích như sau:

* Công thức tính chiều cao hình thang khi biết diện tích, chiều dài 2 cạnh * Công thức tính tổng hai đáy của hình thang khi biết diện tích, chiều cao

4. Ví dụ về công thức tính diện tích hình thang

Ví dụ cho một hình thang có chiều dài cạnh a= 20cm, cạnh b= 14cm và chiều cao nối từ đỉnh hình tháng xuống đáy là 12cm. Hỏi diện tích hình thang là bao nhiêu?

Cách giải: Có a= 20 cm, b = 14cm, h=25cm. Hỏi S=?

Dựa theo công thức tính diện tích hình thang, ta có:

S = h x (a +b/2) hoặc 1/2 (a+b) x h

S = 12 x ((20 + 14)/2) hoặc 1/2 x (20+14) x 25

S = 1/2 x 34 x 25 = 425 cm.

Như vậy dựa vào công thức tính diện tích hình thang, chúng ta có thể tìm ra diện tích hình thang bằng 425 cm.

5. Lưu ý khi giải các bài tập về tính diện tích hình thang

– Trong quá trình giải toán, nhiều bậc phụ huynh, nhiều bạn học sinh băn khoăn không biết ” hình thang có thể tích hay không? Công thức tính thể tích hình thang cân thế nào?“. Với câu hỏi này, các bạn sẽ không thể tìm được đáp án trả lời vì hình thang là đa giác trong hình học phẳng, không có thể tích như hình không gian.

– Ở hình học cấp 2, các bạn học sinh sẽ tiếp tục được tiếp cận với các dạng toán về hình thang. Tuy nhiên, các bài tập lúc này không chỉ đơn giản là tính chu vi, diện tích mà đòi hỏi sự tư duy sâu, kết hợp các tính chất về góc (tổng 2 góc kề 1 đáy trong hình thang bằng 180° tính chất các cạnh bên, tính chất về đường trung bình của hình thang,… Tuy nhiên, ở cấp tiểu học, các bạn chỉ cần nắm được các công thức tính diện tích hình thang kể trên là đã có thể giải được hầu hết các bài toán trong chương trình học của mình rồi.

Bài 1: Cho hình chữ nhật ABCD có diện tích là 15cm2, AB = 5cm. Cho E nằm trên đường thẳng DC với C nằm giữa D và E và độ dài DE = 7. Tính diện tích hình ABED.

Giải:

Theo đề bài đưa ra, ta có hình như sau:ABCD là hình chữ nhật, E nằm trên DC nên AB

Lưu ý: Các em học sinh có thể làm thêm nhiều bài tập về hình thang lớp 5 để làm quen với hình học này, nhớ công thức tính diện tích hình thang hiệu quả.

https://thuthuat.taimienphi.vn/cach-tinh-dien-tich-hinh-thang-22868n.aspx Đối với các bạn thường xuyên phải làm bài tập toán trên Word, việc biết công thức tính diện tích hình thang cũng quan trọng không kém việc học cách chèn công thức toán học trong Word do đây là một công thức được sử dụng khá nhiều trong các bài toán hình học phức tạp.

Cách Tính Diện Tích Tam Giác Nhanh Nhất, Công Thức Tính Diện Tích Hình / 2023

Cách tính, công thức diện tích tam giác thường, vuông, cân, đều … sẽ được chúng tôi chia sẻ trong bài viết sau đây, nếu các bạn quên kiến thức cơ bản này có thể bổ sung lại để làm bài tập hiệu quả, áp dụng đúng vào thực tế.

Các em học sinh, sinh viên hoặc những người thích học Toán chắc chắn không thể quên những công thức toán học quan trọng khi áp dụng vào các bài tập ứng dụng, ví dụ như công thức tính diện tích tam giác, hình vuông, hình bình hành,…Mặc dù vậy trong mỗi hình, đặc biệt hình tam giác lại có rất nhiều các tính diện tích tam giác khác nhau, đơn cử như cách tính diện tích tam giác thướng sẽ khác so với khi tính diện tích tam giác vuông, cân hoặc đều.

Với mẹo tính diện tích tam giác các em học sinh, sinh viên sẽ có thể dễ dàng áp dụng vào trong bài học của mình để hoàn thành dễ dàng hơn.

Công thức tính diện tích tam giác, cách tính diện tích tam giác vuông, cân, đều

Tổng hợp cách tính diện tích Tam Giác: Thường, Vuông, Cân, Đều

1. Tam giác là gì? Các trường hợp đặc biệt của tam giác?

Để giải các bài tập về tính diện tích tam giác, đầu tiên bạn bạn cần xác định loại tam giác đó là gì, từ đó tìm ra công thức tính diện tích chính xác nhất. Hiện tại, các loại tam giác phổ biến được chia thành 7 dạng chính như sau:– Tam giác thường: Tam giác là đa giác lồi có 3 cạnh với 3 đỉnh nối 3 cạnh bên không thẳng hàng. Tổng các góc trong tam giác bằng 180°– Tam giác vuông: là tam giác có 1 góc bằng 90°– Tam giác cân: là tam giác có hai cạnh bên bằng nhau, 2 góc kề cạnh đáy bằng nhau.– Tam giác đều: là tam giác có 3 cạnh bên bằng nhau, 3 góc bằng nhau và bằng 60°– Tam giác vuông cân: là tam giác có 1 góc bằng 90°, 2 cạnh bên bằng nhau, 2 góc đáy bằng 45°.– Tam giác tù: là tam giác có 1 góc lớn hơn 90°– T am giác nhọn: là tam giác có ba góc trong tam giác nhỏ hơn 90°

Hình ảnh các loại tam giác phổ biến

2. Cách tính diện tích tam giác

Để dễ hình dung hơn, chúng tôi sẽ hướng dẫn các bạn cách tính diện tích hình tam giác theo thứ tự từ tam giác thường đến các trường hợp đặc biệt của tam giác như tam giác vuông, cân, đều,…

* Công thức tính diện tích tam giác thường

– Diễn giải: Diện tích tam giác thường được tính bằng cách nhân chiều cao với độ dài đáy, sau đó tất cả chia cho 2. Nói cách khác, diện tích tam giác thường sẽ bằng 1/2 tích của chiều cao và chiều dài cạnh đáy của tam giác.– Công thức tính diện tích tam giác thường

Trong đó:

+ a: Chiều dài đáy tam giác (đáy là một trong 3 cạnh của tam giác tùy theo quy đặt của người tính)+ h: Chiều cao của tam giác, ứng với phần đáy chiếu lên (chiều cao tam giác bằng đoạn thẳng hạ từ đỉnh xuống đáy, đồng thời vuông góc với đáy của một tam giác).

– Công thức suy ra: H= (Sx2)/ A hoặc a= (Sx2)/ H– Ví dụ: Cho một hình tam giác ABC, trong đó có chiều cao nối từ đỉnh Ảnh xuống đáy BC bằng 3, chiều dài đáy BC bằng 6. Tính diện tích tam giác thường ABC? (Đơn vị tính: cm)

Đáp án: Gọi a =6 và h=3.Suy ra S = (a x h)/ 2 = (6×3)/2 hoặc 1/2 x (6×3) = 9 cm* Chú ý: Trường hợp không cho cạnh đáy hoặc chiều cao, mà cho trước diện tích và cạnh còn lại, các bạn hãy áp dụng công thức suy ra ở trên để tính toán.

* Công thức tính diện tích tam giác vuông

– Diễn giải: Công thức tính diện tích tam giác vuông tương tự với cách tính diện tích tam giác thường, đó là bằng1/2 tích của chiều cao với chiều dài đáy. Mặc dù vậy hình tam giác vuông sẽ khác biệt hơn so với tam giác thường do thể hiện rõ chiều cao và chiều dài cạnh đáy, và bạn không cần vẽ thêm để tính chiều cao tam giác.– Công thức tính diện tích tam giác vuông: S = (A X H)/ 2 + a: Chiều dài đáy tam giác vuông (đáy là một trong 3 cạnh của tam giác và vuông góc với một cạnh còn lại)+ h: Chiều cao của tam giác, ứng với phần đáy chiếu lên (chiều cao tam giác bằng đoạn thẳng hạ từ đỉnh xuống đáy, đồng thời vuông góc với đáy của một tam giác).– Công thức suy ra: H=(Sx2)/ A hoặc A= (Sx2)/ H– Ví dụ: Có một hình tam giác vuông ABC, vuông góc nhau tại điểm B, chiều dài cạnh đáy BC là 5 cm, chiều cao là 2 cm. Hỏi diện tích của hình tam giác vuông ABC bằng bao nhiêu? Đơn vị tính: cm.

Đáp án: Gọi a =5 và h=2.Suy ra S = (a x h)/ 2 = (5×2)/2 hoặc 1/2 x (5×2) = 5 cmTương tự nếu dữ liệu hỏi ngược về cách tính chiều dài cạnh đáy hoặc chiều cao, các bạn có thể sử dụng công thức suy ra ở trên.

* Công thức tính diện tích tam giác cân

Tam giác cân là tam giác trong đó có hai cạnh bên và hai góc bằng nhau. Trong đó cách tính diện tích tam giác cân cũng tương tự cách tính tam giác thường, chỉ cần bạn biết chiều cao tam giác và cạnh đáy.– Diễn giải: Diện tích tam giác cân bằng Tích của chiều cao nối từ đỉnh tam giác đó tới cạnh đáy tam giác, sau đó chia cho 2.– Công thức tính diện tích tam giác cân: S = (A X H)/ 2 + a: Chiều dài đáy tam giác cân (đáy là một trong 3 cạnh của tam giác)+ h: Chiều cao của tam giác (chiều cao tam giác bằng đoạn thẳng hạ từ đỉnh xuống đáy).– Ví dụ: Cho một tam giác cân ABC có chiều cao nối từ đỉnh A xuống đáy BC bằng 7 cm, chiều dài đáy cho là 6 cm. Hỏi diện tích của tam giác cân ABC bằng bao nhiêu.

Đáp án: Gọi a =6 và h=7.Suy ra S = (a x h)/ 2 = (6×7)/2 hoặc 1/2 x (6×7) = 21 cm

* Công thức tính diện tích tam giác vuông cân

Ví dụ: Cho tam giác ABC vuông cân tại A, có AB = AC = 6cm. Tính diện tích tam giác ABC.Giải: Do cạnh AB = AC = a = 6cmXét tam giác ABC vuông cân tại A, ta có:S = (a2) : 2 = 36 : 2 = 13 cm2

* Công thức tính diện tích tam giác đềuTam giác đều là tam giác có 3 cạnh bằng nhau và mỗi góc trong tam giác đều có góc bằng 60 độ, và bất cứ tam giác nào có ba góc bằng nhau cũng được coi là một tam giác đều.– Công thức tính diện tích tam giác đều: S = A2 X (√3)/4

Trong đó:+ a: chiều dài một cạnh bất kỳ trong tam giác đều.– Ví dụ: Có một tam giác đều ABC với chiều dài các cạnh bằng nhau là 9 cm, biết các góc của tam giác này đều bằng 60 độ. Hỏi diện tích tam giác đều ABC bằng bao nhiêu?

Đáp án: Do mỗi cạnh AB = AC = BC = 9 nên ta có chiều dài cạnh a = 9.

Thay vào công thức tính diện tích tam giác đều ta có: S = a2 x (√3)/4 = S = 92 x (√3)/4 = 81 x (√3)/4 = 81 x (1,732/4) = 35,07 cm

3. Các cách tính diện tích tam giác nâng cao

Ngoài những cách tính diện tích tam giác ở trên, thực tế, toán học còn phổ biến các cách tính diện tích tam giác bằng công thức Heron, tính diện tích tam giác bằng góc và hàm lượng giác. Cụ thể:

* Công thức tính diện tích tam giác khi biết 1 góc

* Công thức tính diện tích tam giác theo công thức Heron

* Công thức tính diện tích tam giác mở rộng

Lưu ý: Khi dùng công thức này thì bạn cần chứng minh trước.

Công thức 1:

Trong đó:

– a, b, c: Độ dài cạnh của tam giác– R: Bán kính đường tròn ngoại tiếp tam giác

Công thức 2:

Trong đó:

– p: nửa chu vi tam giác– r: bán kính đường tròn nội tiếp tam giác

4. Lưu ý khi làm bài tính diện tích tam giác

– Khi làm, cần chú ý các đơn vị đo lường cần phải giống nhau.– Với diện tích, đơn vị đo lường tính theo mũ 2, chẳng hạn như m2, cm2 …Dù sử dụng công thức tính diện tích tam giác nào đi chăng nữa thì các bạn, các em học sinh, sinh viên cần hiểu rằng, không phải lúc chiều cao cũng nằm trong tam giác, lúc này cần vẽ thêm một chiều cao và cạnh đáy bổ sung. Và quan trọng khi tính diện tích tam giác, cần chú ý chiều cao phải ứng với cạnh đáy nơi nó chiếu xuống.

Hiện nay, đã có rất nhiều công cụ hỗ trợ người dùng, đặc biệt là các em học sinh trong việc tính toán, một số phần mềm trên máy tính hỗ trợ tính toán khá phổ biến như FxCalc, DubCen, SpeQ Mathematics, Calculatormatik, Magiccalc, download CocCoc giải toán,…trong đó nhiều người thường tính toán bằng Fxcalc Chức năng CocCoc giải toán khá tiện dụng và hiệu quả. Tất nhiên những phần mềm như vậy chỉ hỗ trợ phần nào, quan trọng nhất vẫn là kiến thức và cách tính được các bạn, các em ghi nhớ và áp dụng đúng.

https://thuthuat.taimienphi.vn/cong-thuc-tinh-dien-tich-tam-giac-21883n.aspx

Cách Tính Diện Tích Hình Thang Và Bài Tập Áp Dụng Có Lời Giải / 2023

1. Cách tính diện tích hình thang

1.1. Tính diện tích hình thang theo công thức chung

Công thức để tính diện tích hình thang thông thường là:

1.2. Cách tính diện tích hình thang khi biết 4 cạnh

Bên cạnh những bài tập cho rõ số đo 2 cạnh và chiều cao thì vẫn có những bài tập không cho cụ thể như vậy mà cho số đo của 4 cạnh, lúc này cách tính diện tích hình thang cần thực hiện theo cách khác. Với hình thang như dưới hình đây:

2. Bài tập ứng dụng tính diện tích hình thang

Bài tập 1: Cho hình thang ABCD có chiều dài các cạnh: AB = 8, cạnh đáy CD = 13, chiều cao giữa 2 cạnh đáy là 7. Hãy tính diện tích hình thang. Bài giải: Theo công thức tính diện tích hình thang ta có: S(ABCD) = (8+13)/2 * 7 = 73.5Bài tập 2: Mảnh đất hình thang có đáy lớn là 38m và đáy bé là 28m. Mở rộng hai đáy về bên phải của mảnh đất với đáy lớn thêm 9cm và đáy bé thêm 8m thu được mảnh đất hình thang mới có diện tích hơn diện tích mảnh đất hình thang ban đầu là 107,1m2. Hãy tính diện tích mảnh đất hình thang ban đầu. Bài giải: Phần diện tích tăng thêm chính là diện tích hình thang có đáy lớn là 9m và đáy bé là 8m, chiều cao cùng với chiều cao hình thang ban đầu. Ta tính được chiều cao mảnh đất hình thang là: 107,1 x 2 : (9 + 8) = 12,6 (m) Vậy diện tích mảnh đất hình thang ban đầu là: (38 + 28) : 2 x 12,6 = 415,8 (m2)Bài tập 3: Cho hình thang vuông có khoảng cách hai đáy là 96cm và đáy nhỏ bằng 4/7 đáy lớn. Tính độ dài hai đáy, biết diện tích hình thang là 6864cm2. Lời giải: Khoảng cách hai đáy chính là chiều cao của hình thang đó. Tổng độ dài hai đáy là: 6864 x 2 : 96 = 143 (cm) Độ dài đáy bé là: 143 : ( 4 + 7) x 4 = 52 (cm) Đáy lớn là: 143 – 52 = 91 (cm) Đáp số: 52cm và 91cmBài tập 4: Cho hình thang có hiệu độ dài hai đáy là 124cm và có đáy nhỏ bằng 1/5 đáy lớn. Mở rộng đáy lớn thêm 12cm thu được hình thang mới có diện tích lớn hơn diện hình ban đầu là 216cm2. Hãy tính diện tích hình thang ban đầu. Lời giải Ta có: Đáy lớn gấp 5 lần đáy nhỏ nên hiệu độ dài hai đáy gấp 4 lần đáy nhỏ. Vậy đáy bé nhỏ hình thang là: 124 : 4 = 31 (cm) Kích thước đáy lớn hình thang là: 124 + 31 = 155 (cm) Phần diện tích tăng thêm khi mở rộng đáy lớn thêm 12cm là diện tích hình tam giác có đáy là 12cm, chiều cao là chiều cao hình thang ban đầu. Chiều cao hình thang là: 216 x 2 : 12 = 36 (cm). Diện tích hình thang ban đầu là:(155 + 31) : 2 x 36 = 3348 (cm2).Bài tập 5: Cho 1 hình chữ nhật có chiều rộng là 35cm. Khi giảm một cạnh chiều dài của hình chữ nhật ta thì thu được hình thang vuông có tổng độ dài hai đáy là 225cm và đáy bé bằng 2/3 đáy lớn. Tính diện tích hình thang vuông đó. Bài giải Khi giảm một cạnh chiều dài của hình chữ nhật ta được hình thang vuông nên chiều rộng của hình chữ nhật ban đầu chính là chiều cao của hình thang. Diện tích hình thang là: 225 x 35 : 2 = 3937,5 (cm2) Đáp số: 3937,5cm2

Công Thức Tính Chu Vi Hình Chữ Nhật Và Diện Tích Hình Chữ Nhật / 2023

Cách tính chu vi hình chữ nhật, diện tích hình chữ nhật

Công thức tính chu vi và diện tích hình chữ nhật

Thường gặp nhất chính là bạn tính diện tích đất đai, nhà cửa, các đồ vật… Thường đều tính theo hình chữ nhật hoặc quy về hình chữ nhật.

Thực tế nếu bạn hiểu mấu chốt của vấn đề thì việc nhớ công thức tính diện tích hình chữ nhật khá dễ và có thể tự suy luận ra bằng cách: Cứ tưởng tượng tính diện tích là bạn sẽ phải tính tất cả các điểm, trên mặt phẳng của hình đó. Thì với hình chữ nhật chúng ta sẽ phải tính sao cho đủ các điểm đó.

Ví dụ chúng ta tính diện tích hình chữ nhật với chiều dài là 10cm và chiều rộng là 6cm. Có thể dễ dàng thấy bài toán của chúng ta là phải đi tím số lượng đơn vị ô vuông có trong hình này chính là diện tích.

Và số lượng này là tích của 10 nhân với 6 là 60cm 2.

2. Công thức diện tích và chu vi hình chữ nhật

a) Diện tích hình chữ nhật

+ Công thức tính diện tích hình chữ nhật bằng tích chiều dài nhân chiều rộng.

Ở đây ta có diện tích hình chữ nhật có chiều rộng là a và chiều dài là b thì công thức là:

S = a.b

(Trong đó S là kí hiệu diện tích của hình chữ nhật)

b) Chu vi hình chữ nhật

Chu vi hình chữ nhật bằng 2 lần tổng của chiều dài và chiều rộng:

C = 2 x (a+b)

(Trong đó C là kí hiệu chu vi hình chữ nhật)

+ Bài toán áp dụng:

Tính diện tích hình chữ nhật ABCD có chiều dài AB là 15cm và chiều rộng BD là 8cm?

Diện tích của hình chữ nhật ABCD là:

Chu vi của hình chữ nhật ABCD là:

C ABCD = 2 x (15 + 8) = 46 cm

✮ Để tính nửa chu vi hình chữ nhật, ta tính chu vi hình chữ nhật rồi chia 2.

Video hướng dẫn chi tiết cách tính chu vi và diện tích hình chữ nhật

3. Bài tập về tính chu vi hình chữ nhật, diện tích hình chữ nhật

Chu vi của hình chữ nhật là:

(20 + 25) x 2 = 90 (cm)

Diện tích của hình chữ nhật là:

20 x 25 = 500 (cm 2)

Đáp số: 90cm và 500cm 2

Bài 2: Tính chu vi và diện tích của hình chữ nhật có chiều rộng bằng 15cm và nửa chu vi bằng 40cm?

Chu vi của hình chữ nhật là:

40 x 2 = 80 (cm)

Chiều dài của hình chữ nhật là:

40 – 15 = 25 (cm)

Diện tích của hình chữ nhật là:

15 x 25 = 375 (cm 2)

Đáp số: 80cm và 375cm 2

Bài 3: Một miếng bìa hình chữ nhật có chu vi 96 cm, nếu giảm chiều dài 13 cm và giảm chiều rộng 5 cm thì được một hình vuông. Hỏi miếng bìa hình chữ nhật đó có diện tích bằng bao nhiêu?

Miếng bìa hình chữ nhật có chiều dài hơn chiều rộng là:

13 – 5 = 8 (cm)

Nửa chu vi hình chữ nhật:

96 : 2 = 48 (cm)

Chiều rộng hình chữ nhật là:

(48 – 8) : 2 = 20 (cm)

Chiều dài hình chữ nhật là:

20 + 8 = 28 (cm)

Diện tích miếng bìa hình chữ nhật là:

28 x 20 = 560 (cm 2)

Đáp số: 560 (cm 2)

Bài 4: Tìm diện tích của một hình chữ nhật có chiều rộng 26 cm và có chu vi gấp 3 lần chiều dài?

Ta có:

Chu vi = chiều dài x 3 = chiều dài x 2 + chiều dài.

Lại có:

Chu vi = chiều dài x 2 + chiều rộng x 2

Vậy: Chiều dài = chiều rộng x 2.

Chiều dài hình chữ nhật là:

26 x 2 = 52 (cm)

Diện tích hình chữ nhật là:

52 x 26 = 1352 (cm 2)

Đáp số: 1352 (cm 2)

Bài 5: Một miếng đất hình chữ nhật có chiều dài 64 m, chiều rộng 34 m. Người ta giảm chiều dài và tăng chiều rộng để miếng đất là hình vuông, biết phần diện tích giảm theo chiều dài là 272. Tìm phần diện tích tăng thêm theo chiều rộng.

Số đo bị giảm của chiều dài miếng đất là:

272 : 34 = 8 (m)

Cạnh của miếng đất hình vuông là:

64 – 8 = 56 (m)

Chiều rộng miếng đất được tăng thêm số mét là:

56 – 34 = 22 (m)

Diện tích phần tăng theo chiều rộng miếng đất là:

56 x 22 = 1232 (m 2)

Đáp số: 1232 (m 2)

4. Bài luyện tập tính chu vi, diện tích hình chữ nhật

Bài 1: Một hình chữ nhật có chu vi 72 cm. Nếu giảm chiều rộng đi 6cm và giữ nguyên chiều dài thì diện tích giảm đi 120 cm 2.

Tính chiều dài và chiều rộng hình chữ nhật đó.

Bài 2: Một mảnh đất hình chữ nhật có chiều dài 14 m. Nếu chiều rộng tăng 2 m, chiều dài giảm 3m thì mảnh đất đó trở thành hình vuông. Tính chu vi mảnh đất đó.

Bài 3: Một mảnh đất hình chữ nhật có chiều dài 12 m, biết rằng 3 lần chiều rộng thì bằng 2 lần chiều dài. Tính chu vi mảnh đất đó.

Bài 4: Nếu bớt một cạnh hình vuông đi 4 cm thì được hình chữ nhật có diện tích kém diện tích hình vuông 60 cm 2. Tính chu vi hình vuông đó.

Bài 5: Một hình vuông có chu vi là 24 cm. Một hình chữ nhật có chiều rộng bằng cạnh của hình vuông và biết 3 lần cạnh hình vuông thì bằng 2 lần chiều dài hình chữ nhật. Tính diện tích mỗi hình đó.

Bài 6: Biết chu vi một hình chữ nhật gấp 6 lần chiều rộng. Hỏi chiều dài hình chữ nhật đó gấp mấy lần chiều rộng?

Bài 7: Một hình chữ nhật có chiều dài gấp đôi chiều rộng. Tính chu vi hình chữ nhật đó, biết diện tích của nó là 32 cm 2.

Bài 8: Một hình chữ nhật có chu vi là 64 m, chiều rộng bằng 1/3 chiều dài. Tính diện tích hình chữ nhật đó.

Bài 9: Một hình chữ nhật và một hình vuông có chu vi bằng nhau và bằng 36cm. Chiều rộng hình chữ nhật bằng 1/2 chiều dài. Hỏi diện tích hình vuông hơn diện tích hình chữ nhật bao nhiên xăng-ti-mét vuông?

Bài 10: Một hình vuông được chia thành 2 hình chữ nhật. Tính chu vi hình vuông, biết rằng tổng chu vi 2 hình chữ nhật là 6420 cm.

Bài 11: Một hình chữ nhật có chu vi gấp đôi chu vi hình vuông cạnh 415m. Tính chiều dài và chiều rộng hình chữ nhật đó. Biết chiều dài gấp 4 lần chiều rộng.

Bài 12: Một hình chữ nhật có chu vi bằng 5 lần chiều rộng. Biết chiều dài bằng 60 cm. Tính chu vi hình chữ nhật.

Bài 13: Một tấm bìa hình chữ nhật có hai lần chiều rộng kém chiều dài 6cm, nhưng chiều dài lại kém năm lần chiều rộng là 3cm. Tính diện tích tấm bìa hình chữ nhật đó.

Bài 14: Một hình chữ nhật có chiều rộng 4cm, chiều rộng kém chiều dài 8 m.

a. Tính diện tích hình chữ nhật.

b. Hãy chia hình chữ nhật trên thành 2 hình: một hình vuông có cạnh bằng chiều rộng hình chữ nhật ban đầu và một hình chữ nhật. Tính tổng chu vi của hình vuông và hình chữ nhật mới đó.

Bài 15: Một hình chữ nhật có chu vi 70 cm, được chia thành hai phần bởi một đoạn thẳng song song với chiều rộng sao cho phần thứ nhất là một hình vuông, phần thứ hai là hình chữ nhật có chiều dài gấp 3 lần chiều rộng. Tìm diện tích hình chữ nhật ban đầu?

Như vậy là VnDoc đã cùng bạn tìm hiểu định nghĩa hình chữ nhật là gì, cách tính diện tích hình chữ nhật và chu vi hình chữ nhật. Hy vọng rằng các tài liệu này sẽ giúp cho bạn học tốt hơn. Tham khảo các dạng Toán về hình chữ nhật:

Các công thức tổng hợp rất quan trọng trong các kì thi, các em học sinh có thể tham khảo chi tiết các công thức sau đây:

Cập nhật thông tin chi tiết về Cách Tính Diện Tích Hình Thang, Công Thức Tính Diện Tích Hình Thang Ch / 2023 trên website Ictu-hanoi.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!