Xu Hướng 5/2023 # Chuyên Đề Hệ Phương Trình Đối Xứng # Top 10 View | Ictu-hanoi.edu.vn

Xu Hướng 5/2023 # Chuyên Đề Hệ Phương Trình Đối Xứng # Top 10 View

Bạn đang xem bài viết Chuyên Đề Hệ Phương Trình Đối Xứng được cập nhật mới nhất trên website Ictu-hanoi.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất.

Hệ phương trình đối xứng là dạng toán hay trong chương trình Toán của bậc học Phổ thông. Để giải quyết tốt được bài toán dạng này, học sinh cần vận dụng nhiều kiến thức Toán. Điều đó giúp cho học sinh biết huy động các kĩ năng Toán vào việc giải một bài toán cụ thể và còn rèn luyện cho học sinh kỹ năng về tư duy. Tính cần cù trong học tập, biết vận dụng các kiến thức đã học vào việc giải quyết một bài toán cụ thể. Chính vì lí do đó, nên tôi đã sưu tầm và dạy cho học sinh chuyên đề: “Hệ phương trình đối xứng” Phần b: những nội dung cụ thể I. Hệ phương trình đối xứng loại I: Phần 1- Định nghĩa: Dựa vào lý thuyết đa thức đối xứng – Phương trình n ẩn x1, x2, …, xn gọi là đối xứng với n ẩn nếu thay xi bởi xj; xj bởi xi thì phương trình không thay đổi. – Khi đó phương trình luôn biểu diễn được dưới dạng: x1 + x2 + … + xn x1x2 + x1x3 + … + x1xn + x2x1 + x2x3 + … + xn-1xn …………………………. x1x2 … xn – Hệ phương trình đối xứng loại I là hệ mà trong đó gồm các phương trình đối xứng. – Với học sinh phổ thông ta đưa vào hệ đối xứng loại I với 2 ẩn số, với học sinh chuyên ta nên đưa vào hệ đối xứng loại I với 3 ẩn số. – Để giải được hệ phương trình đối xứng loại I ta phải có định lý Viet. *) Nếu đa thức F(x) = a0xn + a1xn-1 +… an, a0 ≠ 0, ai ẻ P có nghiệm trên P là c1, …, cn thì phần 2 – Hệ phương trình đối xứng loại I, 2 ẩn: A. Lý thuyết: 1.Định lý Vi-et cho phương trình bậc 2 (lớp 10). Nếu phương trình bậc hai ax2 + bx + c = 0 có 2 nghiệm x1, x2 thì Ngược lại nếu 2 số x1, x2 có thì x1, x2 là nghiệm của phương trình X2 – SX + P = 0. 2.Định nghĩa: Hệ gồm 2 phương trình đối xứng gọi là hệ đối xứng loại I, 2 ẩn. Một phương trình 2 ẩn gọi là đối xứng nếu đổi vị trí hai ẩn thì phương trình không đổi VD: 3.Cách giải: + Biểu diễn từng phương trình của hệ qua x+y và xy + Đặt S = x+y, P = xy, ta có hệ mới chứa ẩn S, P. Giải nó tìm S, P. + Với mỗi cặp S, P ta có x, y là nghiệm của phương trình X2 – SX + P = 0. + Tuỳ theo yêu cầu của bài toán ta giải hoặc biện luận hệ ẩn S, P và phương trình X2 – SX + P = 0. để có kết luận cho bài toán. 4.Bài tập: Loại 1: Giải hệ đơn thuần VD1: Giải hệ (I) Giải: (I) Û Đặt S = x+y, P = xy ta có Û Û Û Với S = 2, P = 0 có x, y là nghiệm của phương trình X2 – 2X = 0 Û ị {(x;y)} = {(0;2); (2;0)} Với S = -3, P = 5 có x, y là nghiệm của phương trình X2 + 3X +5 = 0 vô nghiệm Vậy hệ có tập nghiệm {(x;y)} = {(0;2); (2;0)}. Loại 2: Đối xứng giữa các biểu thức của ẩn VD2: Giải hệ (II) Giải: (II) Û Û Giải ra được nghiệm của hệ {(x;y)} = {(1;1); (-3;9)}. VD3: Giải hệ Giải: Vậy x5, y5 là nghiệm của phương trình X2 – 4X -32 = 0 Û Vậy Û Chú ý: Với hệ có dạng + Nâng hai vế của (2) lên luỹ thừa n và coi xn, yn như nghiệm của phương trình X2 – aX + bn = 0. + Giải và biện luận phương trình bậc hai, sau đó lấy căn bậc n của nghiệm thu được. VD4: Giải hệ (1) Giải : Đặt -y= t ta được hệ (2) Đăt S= x+t ,P= xt ta có (3) Giải (3) ta được S = 0, P = 0 và S = 1 và P = -6 Từ đó suy ra nghiệm của (2) . có nghiệm (x; y) là (0; 0), (3; 2) ,(-2; -3). VD 5: Giải hệ: (1) Giải: Đặt ta có hệ (2) Hệ (2) là hệ đối xứng đối với u,v. Giải (2) tìm u, v từ đó suy ra nghiệm của (1). Loại 3: Giải và biện luận hệ theo tham số . VD6: Giải và biện luận hệ: Giải: ĐK: x, y ≠ 0. Khi đó hệ trên tương đương với: Û Û Với m = -2: Hệ vô nghiệm Với m -2: Hệ tương đương với (*) Ta có (*) có nghiệm khác 0 khi 64 – 4. Vậy với m =2 thì hệ là với -2 < m < 2 thì hệ vô nghiệm. VD7: Tìm m để hệ có đúng hai nghiệm Giải: Đặt xy= P ,x+y = S hệ trở thành Vậy (x;y) là nghiệm của: Để hệ có đúng hai nghiệm thì m=0 khi đó 2 nghiệm là {(x;y)} = {(1;1); (-1;-1)}. Loại 4: Một số bài toán giải bằng cách đưa về hệ. VD1: Giải hệ phương trình: (ĐHSP-91) Giải: Đặt . Vậy ta có hệ : Û Û u, v là nghiệm của phương trình ị ị Vậy phương trình có 2 nghiệm {x} = {}. VD2: Cho x, y, z thoả mãn: (I) CMR: . Giải: (I) Û Đặt y + z = S; yz = P ị y, z là ngiệm của phương trình X2 – SX + P = 0 ị S2 – 4P ³ 0 Từ hệ có Vậy (5-x)2 -4(x2-5x+8) Do vai trò của x,y,z là như nhau nên ta có . B. Bài tập: I) Giải hệ phương trình: 1) (ĐHAN -97) 2) (ĐHNT-98) 3) 4) 5) 6) (ĐHNT_99) 7) (ĐHAN-99) 8) (ĐH HH-99) 9) 10) 11) II. giải Hệ phương trình có tham số: 1. Giải và biện luận: a) (QHQT-99) b) (129-III) c) (ĐHT-96) 2. Tìm các giá trị của m để hệ phương trình a) có nghiệm (ĐHQG-99) b) có nghiệm duy nhất (HVQS-00) c) có đúng hai nghiệm (19-I) d) có nghiệm (x; y) và x.y đạt nhỏ nhất (4I) 3. (1II) a. Giải hệ khi m = 5 b. Tìm các giá trị của m để hệ có nghiệm 4. (7I) a. Giải hệ khi m = 7/2 b. Tìm các giá trị của m để hệ có nghiệm 5. (40II) a. Giải hệ khi m=2 6. Cho x,y,z thoả mãn; CMR: III. PHƯƠNG TRìNH GIảI BằNG CáCH ĐƯA Về Hệ 1. Giải phương trình: (ĐHKT-95) 2. Tìm m để mỗi ptrình sau có nghiệm a. (ĐHQG-98) b. (ĐHNT-95) c. (ĐHNT-98) phần 3 – Hệ phương trình đối xứng loại I, 3 ẩn: a. Định nghĩa: Là hệ ba ẩn với các phương trình trong hệ là đối xứng. b. Định lý Vi-et cho phương trình bậc 3: Cho 3 số x, y, z có: Thì x, y, z ;à nghiệm của phương trình X3 – αX2 + βX – γ = 0. (*) Thậy vậy: (X – x)(X – y)(X – z) = 0 [ X2 – (x + y)X + xy ](X – z) = 0 X3 – X2z – X2(x + y) + (x + y)zX + xyX – xyz = 0 X3 – αX2 + βX – γ = 0. (*) có nghiệm là x, y, z ị phương trình X3 – αX2 + βX – γ = 0 có 3 nghiệm là x, y, z. c.Cách giải: + Do các phương trình trong hệ là đối xứng nên ta luôn viết được dưới dạng α, β, γ Khi đó ta đặt Ta được hệ của α, β, γ. + Giải phương trình X3 – αX2 + βX – γ = 0 (1) tìm được nghiệm (x, y, z) của hệ. Chú ý: (1) có nghiệm duy nhất ị hệ vô nghiệm. có 1 nghiệm kép duy nhất ị hệ có nghiệm. có 2 nghiệm : 1 nghiệm kép, 1 nghiệm đơn ị hệ có 3 nghiệm. (1) có 3 ngiệm ị hệ có 6 nghiệm. d. Bài tập: VD1: Giải hệ: Giải: áp dụng hằng đẳng thức ta có: x2 + y2 + z2 = (x + y + z)2 – 2(xy + yz + zx). x3 + y3 + z3 = (x + y + z)3 – 3(x + y + z)(xy + yz + zx) + 3xyz. Vậy 6 = 22 – 2(xy + yz + zx) ị xy + yz + zx = -1. 8 = 23 – 3.2.(-1) + 3xyz ị xyz = -2. ị x, y, z là nghiệm của phương trình:t3 – 2t2 – t + 2 = 0 Û Vậy hệ có 6 cặp nghiệm (1;-1;2); (-1;1;2); (1;2;-1); (-1;2;1); (2;1;-1); (2;-1;1). VD2: Giải hệ Giải: ĐK: x, y, z ≠ 0. Từ (3) Û Do (2) ị xyz = 27 Vậy hệ Û Do đó (x; y; z) là nghiệm của phương trình: X3 – 9X2 + 27X – 27 = 0 Û (X – 3)3 = 0 Û X = 3. Vậy hệ có nghiệm là (3; 3; 3). VD3: Giải hệ Giải: x2 + y2 + z2 = (x + y + z)2 – 2(xy + yz + zx) ị xy + yz + zx = 0. x3 + y3 + z3 = (x + y + z)3 – 3(x + y + z)(xy + yz + zx) + 3xyz ị xyz = 0. Vậy có: ị (x; y; z) là nghiệm của phương trình: X3 – aX2 = 0 ị Vậy hệ có nghiệm là {(a; 0; 0); (0; a; 0); (0; 0; a)} e.Chú ý: Có nhiều vấn đề cần lưu ý khi giải hệ loại này + Với cách giải theo định lý Vi-et từ hệ ta phải đưa ra được x + y + z; xy + yz + zx; xyz có thể nó là hệ quả của hệ nên khi tìm được nghiệm nên thử lại. + Vì là hệ đối xứng giữa các ẩn nên trong nghiệm có ít nhất 2 cặp nghiệm có cùng x, cùng y hoặc cùng z nên có thể giải hệ theo phương trình cộng, thế. VD: Giải: Rõ ràng x = 0, y = 0, z = 0 không là nghiệm của hệ Với x ≠ 0, y ≠ 0, z ≠ 0, nhân hai vế của (3) với xyz ta có xy + yz + zx = xyz (4). Từ (2) và (4) ị xyz = 27 (5) Từ (2) ị x2(y + z) + xyz = 27x (6) Từ (1), (5), (6) ta có: x2(9 – x) + 27 – 27x = 0 x3 – 9×2 + 27x – 27 = 0 (x – 3)3 = 0 Û x = 3 Thay x = 3 vào (1), (5) ta có: ị y = z = 3. Vậy hệ có nghiệm là x = y = z = 3. Ii. Hệ phương trình đối xứng loại iI: 1.Hệ đối xứng loại 2, 2 ẩn: A. Định nghĩa: – Hệ phương trình 2 ẩn mà khi đổi vị trí hai ẩn trong hệ ta có phương trình này trở thành phương trình kia gọi là hệ đối xứng loại 2, 2ẩn. B. Bài tập ví dụ: VD1: Giải hệ Giải: (I) Vậy hệ có tập nghiệm: VD2: Giải hệ: Giải: Đặt Hệ trở thành (Do u, v ≥ 0) Vậy hệ có nghiệm (1,1) VD3: Cho hệ (I) a.Tìm m để hệ có nghiệm b. Tìm m để hệ có nghiệm duy nhất Giải:(I) a)Hệ có nghiệm Û b) C1: Hệ có nghiệm duy nhất Û Û Û m = 1. Vậy m = 1. C2: Giả sử hệ có nghiệm (x0, y0) thì hệ cũng có nghiệm (y0, x0). Nếu hệ có nghiệm duy nhất thì điều kiện cần là x0 = y0. Thay x = y = x0 vào ta có x0 = x02 – x0 + m. Û x02 – 2×0 + m = 0. Do x0 cũng là duy nhất ị ∆’xo = 0 Û 1 – m = 0 Û m = 1 Điều kiện đủ: Thay m = 1 vào hệ ta có: Û Û Vậy với m = 1 thì hệ có nghiệm duy nhất (1;1). VD1: Giải phương trình: (73II) Giải: Đặt ị 2x – 1 = t3. Ta có hệ Û Û Û ị Vậy phương trình có 3 nghiệm 1; . C. Bài tập: 1.Giải hệ phương trình: a. (ĐHQG – 99) b. (ĐHTL- 01) c. (ĐHTN – 01) d. (TH – 94) e. (TH – 96) g. (ĐHNG – 00) h. 2. (ĐHCĐ – 99) a. Giải hệ với m = 0. b. Tìm m để hệ có nghiệm duy nhất. 3. Tìm m để hệ: có nghiệm duy nhất. 4. Giải phương trình: a. (112III) b. (TH – 94). 2. Hệ phương trình đối xứng loại 2, 3 ẩn: A. Dùng chủ yếu là phương pháp biến đổi tương đương bằng phép cộng và thế. Ngoài ra sử dụng sự đặc biệt trong hệ bằng cách đánh giá nghiệm, hàm số để giải. B. Ví dụ: Giải hệ (ĐHSP-91) Giả bằng cách cộng (1), (2), (3) và lấy (1) trừ đi (2) ta có hệ đã cho tương đương với hệ Hệ này đương tương với 4 hệ sau: Giải (I): (I) Û Û Û Û Vậy (I) có 2 nghiệm (0;0;0); () Làm tương tự (II) có nghiệm ();() Hệ (III) có nghiệm (0;0;1); () Hệ (IV) có nghiệm (0;1;0); (1;0;0). Vậy hệ đã cho có 8 nghiệm kể trên. VD2: Giải hệ phương trình: Giải: Hệ Û Û Giải các hệ bằng phương pháp thế được 5 nghiệm (-1;-1;-1); (0;0;1); (0;1;0); (0;0;1); (). VD4: Giải hệ: Giải: Xét hai trường hợp sau: TH1: Trong 3 số ít nhất có 2 nghiệm số bằng nhau: Giả sử x=y có hệ Từ đó có nghiệm của hệ (x;y;z) là : Tương tự y=z, z=x ta cũng được nghiệm như trên. TH2 : 3 số x, y, z đôi một khác nhau . z<y<xịf(x)<f(y)<f(z)ịy+1<z+1<x+1ịy<z<x(vô lý). Vậy điều giả sử là sai. TH2 vô nghiệm. VD5: (Vô địch Đức) Giải: TH1: Trong x, y, z ít nhất có 2 nghiệm số bằng nhau Giả sử x = y ta có hệ Từ (1) ị x = 0, x = -1. x = 0. Thay vào (2), (3) ị z=0. x = -1. Thay vào (2), (3) ị vô lý Vậy hệ có nghiệm (0,0,0) Nếu y = z hay x = z cũng chỉ có nghiệm (0,0,0). TH2: 3 số đôi 1 khác nhau. Từ 2x + x2y = y thấy nếu x2 = 1 ị ± 2 = 0 (vô lý) Vậy x2 ≠ 1 ị 2x + x2y = y Û Hai phương trình còn lại tương tự ta có hệ phương trình tương đương với: f(t) = xác định trên D = R {±1} f’(t) = với mọi tẻD ị hàm số đồng biến trên D Vậy điều giả sử sai. Do vai trò x, y, z như nhau. Vậy TH2 – hệ vô nghiệm Vậy hệ đã cho có nghiệm duy nhất là (0; 0; 0) C. Bài tập 1. 2. Hướng dẫn: Đặt . Đưa về giải hệ 3. 4. 5. Phần C: kết luận Trong thực tế giảng dạy, tôi đã làm rõ cho học sinh các dạng bài về “Hệ phương trình đối xứng”. Tuy nhiên, chuyên đề của tôi còn hạn chế về số lượng các bài tập cũng như về phương pháp giảng dạy. Tôi rất mong được sự đóng góp ý kiến của các thầy cô trong tổ bộ môn Toán và của các đồng nghiệp. Xin trân trọng cám ơn ! Yên Lạc, tháng 01 năm 2006 Người viết Doãn Hoài Nam

Bài Tập Hệ Phương Trình Đối Xứng

Bài tập hệ phương trình đối xứng

BÀI TẬP HỆ PHƯƠNG TRÌNH_Loại 1:Hệ phương trình đối xứng loại 1Bài 1: Giải các hệ phương trình sau:

Bài 2: Cho hệ phương trình sau: a.Tìm m để hệ phương trình có 1 nghiệm duy nhất. b.Tìm m để hệ có 2 nghiệm phân biệt.Bài 3:Cho hệ phương trình: a.Giải hệ với m = 1. b.Tìm m để hệ phương trình có đúng 2 cặp nghiệmBài 4: Cho hệ phương trình: a.Giải hệ với m = -3. b.Tìm m để hệ phương trình có nghiệm duy nhất.Bài 5: Cho hệ phương trình: Tìm m để hệ phương trình có nghiệm.Bài 6: Giải các hệ phương trình sau:

Loại 2: Hệ phương trình đối xứng loại 2Bài 1: Giải các hệ phương trình sau:

Bài 2: Tìm m để hệ phương trình sau có 1 nghiệm duy nhất

ĐỀ THI THỬ ĐẠI HỌC – CAO ĐẲNG- ĐỀ SỐ 4PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm)Câu I (2 điểm) Cho hàm số , m là tham số 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên khi m = 1. 2. Xác định các giá trị của m để hàm số không có cực trị.Câu II (2 điểm) 1. Giải phương trình : 2. Giải phương trình: Câu III (1 điểm) Tính tích phân Câu IV (1 điểm) Cho hình nón có đỉnh S, đáy là đường tròn tâm O, SA và SB là hai đường sinh, biết SO = 3, khoảng cách từ O đến mặt phẳng SAB bằng 1, diện tích tam giác SAB bằng 18. Tính thể tích và diện tích xung quanh của hình nón đã cho.Câu V (1 điểm) Tìm m để hệ bất phương trình sau có nghiệm PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2)1. Theo chương trình chuẩn.Câu VI.a (2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC biết phương trình các đường thẳng chứa các cạnh AB, BC lần lượt là 4x + 3y – 4 = 0; x – y – 1 = 0. Phân giác trong của góc A nằm trên đường thẳng x + 2y – 6 = 0. Tìm tọa độ các đỉnh của tam giác ABC. 2. Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng Viết phương trình của mặt cầu (S) đi qua gốc tọa độ O, qua điểm A(5;2;1) và tiếp xúc với cả hai mặt phẳng (P) và (Q).Câu VII.a (1 điểm) Tìm số nguyên dương n thỏa mãn các điều kiện sau:(Ở đây lần lượt là số chỉnh hợp và số tổ hợp chập k của n phần tử)2. Theo chương trình nâng cao.Câu VI.b)1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: x – 5y – 2 = 0 và đường tròn (C): .Xác định tọa độ các giao điểm A, B của đường tròn (C) và đường thẳng d (cho biết điểm A có hoành độ dương). Tìm tọa độ C thuộc đường tròn (C) sao cho tam giác ABC vuông ở B. 2. Cho mặt phẳng (P): và các đường thẳng . Tìm các điểm sao cho MN

Chuyên Đề Các Phương Pháp Giải Hệ Phương Trình

Chuyên đề: CÁC PHƯƠNG PHÁP GIẢI HỆ PHƯƠNG TRÌNHNgày dạy:A. Kiến thức cơ bản1. Phương pháp thế1. Quy tắc thế– từ một trong các phương trình của hệ biểu diễn x theo y (hoặc y theo x)– dùng kết quả đó thế cho x (hoặc y) trong pt còn lại rồi thu gọn2. Cách giải hệ phương trình bằng phương pháp thế– dùng quy tắc thế biến đổi hệ phương trình đã cho để đc 1 hpt mới trong đó có 1 pt 1 ẩn– giải pt 1 ẩn vừa tìm đc, rồi suy ra nghiệm của hpt đã cho1. Phương pháp cộng đại số1. Quy tắc cộng đại số: gồm 2 bước– Cộng hay trừ từng vế 2 pt của hpt đã cho để đc pt mới– Dùng pt mới ấy thay thế cho 1 trong 2 pt của hệ (giữ nguyên pt kia)2. Tóm tắt cách giải hệ phương trình bằng phương pháp cộng đại số– Giải theo quy tắc: “Nhân bằng, đổi đối, cộng, chia Thay vào tính nốt ẩn kia là thành”– Nghĩa là:+ nhân cho hệ số của 1 ẩn trong hai phương trình bằng nhau+ đổi dấu cả 2 vế của 1 pt: hệ số của 1 ẩn đối nhau+ cộng vế với vế của 2 pt trong hệ, rút gọn và tìm 1 ẩn+ thay vào tính nốt ẩn còn lạiB. Các dạng toánDạng 1: Giải hệ phương trình bằng pp thế và cộng đại sốBài 1: Giải các hpt sau bằng phương pháp thế

Bài 2: giải các hpt bằng phương pháp thế

Bài 3: Giải các hệ phương trình sau bằng phương pháp cộng đại số

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số)Bài 5: Giải hpt bằng phương pháp cộng đại số

2. Dạng 2: Tìm tham số m, n để hệ có nghiệm (a;b)Bài 1: Tìm các giá trị của m, n sao cho mỗi hpt ẩn x, y sau đâya) hpt có nghiệm (2; 1); đáp số: b) hpt có nghiệm (-3; 2); đáp số: c) hpt có nghiệm (1; -5); đáp số: d) hpt có nghiệm (3; -1); đáp số: Bài 2: Tìm a, b trong các trường hợp sau:a) đg thg d1: ax + by = 1 đi qua các điểm A(-2; 1) và B(3; -2)b) đg thg d2: y = ax + b đi qua các điểm M(-5; 3) và N(3/2; -1)c) đg thg d3: ax – 8y = b đi qua các điểm H(9; -6) và đi qua giao điểm của 2 đường thẳng (d): 5x – 7y = 23; (d’): -15x + 28y = -62d) đt d4: 3ax + 2by = 5 đi qua các điểm A(-1; 2) và vuông góc với đt (d”): 2x + 3y = 1đáp số

Hệ Phương Trình Đối Xứng Loại 1 Và Bài Tập Ứng Dụng

Lý thuyết cần nắm

Định nghĩa

Hệ phương trình đối xứng loại 1 là hệ phương trình có dạng

(I) trong đó f(x; y), g(x; y) là các biểu thức đối xứng, tức là f(x; y) = f(y; x), g(x; y) = g(y; x).

Cách giải hệ phương trình đối xứng loại 1:

+ Đặt S = x + y, P = xy. + Biểu diễn f(x; y), g(x; y) qua S và P, ta có hệ phương trình:

, giải hệ phương trình này ta tìm được^ S, P.

+ Khi đó x, y là nghiệm của phương trình X^2- SX + P = 0 (1).

Một số biểu diễn biểu thức đối xứng qua S và P:

x^2 + y^2 = ( x + y)^2 – 2xy = S^2 – 2P

x^3 + y^3 = (x+y)( x^2 + y^2 – xy) = S^3 – 3SP

x^2y + y^2x = xy(x+y) = SP

x^4 + y^4 = ( x^2 + y^2) – 2x^2y^2 = ( S^2 – 2P) – 2P^2

+ Nếu (x; y) là nghiệm của hệ (I) thì (y; x) cũng là nghiệm của hệ (I). + Hệ (I) có nghiệm khi (1) có nghiệm hay S^2- 4P ≥ 0.

Ví dục minh họa

Ví dụ 1. Giải các hệ phương trình sau:

1.x + y + 2xy = 2 x^3 + y^3 = 8

2. x^3 + y^3 = 19 (x + y)(8 + xy) = 2

1. Đặt S = x + y, P = xy. Khi đó hệ phương trình đã cho trở thành: S + 2P = 2 S(S^2- 3P) = 8 ⇔ P =(2 – S)/2 S[S^2-( 6 – 3S)/2 = 8

⇒ 2S^3 + 3S^2- 6S- 16 = 0 ⇔ (S- 2)( 2S^2 + 7S + 8) = 0 ⇔ S = 2 ⇒ P = 0.

Suy ra x, y là nghiệm của phương trình: X^2- 2X = 0 ⇔ X = 0 X = 2

Suy ra x, y là nghiệm của phương trình X^2- X- 6 = 0 ⇔ X = 3 X = – 2 Vậy hệ phương trình đã cho có cặp nghiệm: (x; y) = ( − 2; 3), (3; − 2).

Ví dụ 5. Tìm m để các hệ phương trình sau đây có nghiệm:

1.x + y = m x^2 + y^2 = 2m + 1

2.x +1/x+ y +1/y= 5

x^3 +1/x^3 + y^3 +1y^3 = 15m- 10

Hệ phương trình có nghiệm khi và chỉ khi: S^2- 4P ≥ 0 ⇔ m^2- 2( m^2- 2m- 1) = – m^2 + 4m + 2 ≥ 0 ⇔ 2- √6 ≤ m ≤ 2 + √6.

Ví dụ 8: Cho hai số thực x, y thỏa x + y = 1.

Tìm giá trị nhỏ nhất của biểu thức: A = x^3 + y^3

Ta có: x, y tồn tại ⇔ hệ có nghiệm ⇔ S^2- 4P ≥ 0 ⇔ 1- (13-A)/3≥ 0 ⇔ A ≥1/4 Vậy giá trị nhỏ nhất của A là min A =1/4 ⇔ x = y =1/2

Ví dụ 9. Cho các số thực x ≠ 0, y ≠ 0 thỏa mãn:

(x + y)xy = x^2 + y^2- xy. Tìm giá trị lớn nhất của biểu thức: A =1/x^3 +1/y^3 .Xét hệ phương trình:

(x + y)xy = x^2 + y^2- xy

1/x^3 +1/y^3 = A

Đặt a =1/x, b =1/y (a, b ≠ 0), hệ phương trình trên trở thành: a + b = a^2 + b^2- ab

a^3 + b^3 = A

Hệ phương trình này có nghiệm ⇔ S^2 ≥ 4P ⇔ 3S^2 ≥ 4(S^2- S)⇔ S ≤ 4 ⇔ A = S^2 ≤ 16.

Đẳng thức xảy ra ⇔S = 4 P =(S^2 – S)/3= 4 ⇔ a = b = 2 ⇔ x = y =1/2 Vậy giá trị lớn nhất của A là max A = 16 ⇔ x = y =1/2.

Bài tập hệ phương trình đối xứng loại 1

Cập nhật thông tin chi tiết về Chuyên Đề Hệ Phương Trình Đối Xứng trên website Ictu-hanoi.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!