Xu Hướng 5/2023 # Chuyên Đề Hoán Vị, Chỉnh Hợp Và Tổ Hợp # Top 13 View | Ictu-hanoi.edu.vn

Xu Hướng 5/2023 # Chuyên Đề Hoán Vị, Chỉnh Hợp Và Tổ Hợp # Top 13 View

Bạn đang xem bài viết Chuyên Đề Hoán Vị, Chỉnh Hợp Và Tổ Hợp được cập nhật mới nhất trên website Ictu-hanoi.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất.

1 Hoán vị, chỉnh hợp và tổ hợp PHẦN 1. CÁC KIẾN THỨC CƠ BẢN 1. Hoán vị * Cho tập hợp A có n phần tử ( n 1 ). Mỗi cách sắp xếp n phần tử của nó theo một thứ tự được gọi là một hoán vị của n phần tử của A . * Số các hoán vị của tập hợp có n phần tử là nP n! 1.2.3. … .n  . Quy ước: 0P 0! 1  . 2. Chỉnh hợp * Cho tập hợp A có n phần tử ( n 1 ) và số nguyên k với 1 k n  . Mỗi cách lấy ra k phần tử của A và sắp xếp chúng theo một thứ tự được gọi là một chỉnh hợp chập k của n phần tử của A . * Số các chỉnh hợp chập k của tập hợp có n phần là        kn n!A n n 1 n 2 … n k 1 n k !        . Quy ước: 0nA 1 . 3. Tổ hợp * Cho tập hợp A có n phần tử ( n 1 ) và số nguyên k với 1 k n  . Mỗi cách lấy ra k phần tử của A được gọi là một tổ hợp chập k của n phần tử của A . * Số các tổ hợp chập k của tập hợp có n phần tử là:        kk n n n n 1 n 2 … n k 1A n!C k ! k ! n k ! k !         . Quy ước: 0nC 0 . * Hai tính chất cơ bản của số tổ hợp: THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 – WEBSITE: chúng tôi 2 +) k n kn nC C  . +) k k k 1n 1 n nC C C     (Hằng đẳng thức Pa-xcan). THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 – WEBSITE: chúng tôi 3 PHẦN 2. CÁC LOẠI BÀI TẬP ĐIỂN HÌNH Loại 1. Tính toán trên các số hoán vị, số chỉnh hợp, số tổ hợp A. Một số ví dụ Ví dụ 1. Chứng minh các đẳng thức sau 1) n k 2 k 1 11 k! n!    với n , n 2 . 2)    3 n n nn n 2n 3nP C C C 3n ! với n . 3) n 2 k 2 k 1 n 1 nA   với n ; n 2 . Giải 1) Ta có n k 2 k 1 k !    n k 2 1 1 k 1 ! k !           1 1 1 1 1 1… 1! 2! 2! 3! n 1 ! n!                       11 n!   (ĐPCM). 2) Ta có  3 n n nn n 2n 3nP C C C             3 2n ! 3n !n!n! . . n! n n ! n! 2n n ! n! 3n n !            3 2n ! 3n !n!n! . . n!0! n!n! n! 2n !   3n ! (ĐPCM). 3) Với mọi k nguyên, 2 k n  ta có    2k k !A k k 1 k 2 !       2k 1 1 1 1 k k 1 k 1 kA      . Do đó n 2 k 2 k 1 A  n k 2 1 1 k 1 k        1 1 1 1 1 1… 1 2 2 3 n 1 n                        11 n   THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 – WEBSITE: chúng tôi 4 n 1 n   (ĐPCM). Ví dụ 2. Giải các phương trình, bất phương trình và hệ sau 1) [TN2007] 4 5 6n n n 1C C 3C   . 2) [TN2005] n 1 n 2n 2 n 2 n 5C C A 2     . 3) [TN2003] y x 1 y 1 x y 1 x y 1 x C 6 5C C 5 2C             . Giải 1) Điều kiện để phương trình có nghĩa: n là số nguyên và n 5 . Áp dụng hằng đẳng thức Pa-xcan ta có 4 5 5n n n 1C C C   . Phương trình đã cho tương đương với 5 6 n 1 n 1C 3C           n 1 ! n 1 ! 3 5! n 4 ! 6! n 5 !       1 1 n 4 2    n 6 (TMĐK). 2) Điều kiện để phương trình có nghĩa: n là số nguyên và n 2 . Áp dụng hằng đẳng thức Pa-xcan ta có n 1 n nn 2 n 2 n 3C C C      . Bất phương trình đã cho tương đương với n 2 n 3 n 5C A 2       n 3 ! 5 n! n!3! 2 n 2 !             n 1 n 2 n 3 5 3n n 1              n 1 n 2 n 3 15n n 1      3 2n 9n 26n 6 0    .  1 Với mọi n 2 , áp dụng bất đẳng thức Cô-si cho 2 số dương 3n và 226n , ta có 3 3 2 2 2n 26n 2 n .26n 2 26n 2.5n 10n     . Do đó   2 2 2VT 1 10n 9n 6 n 6 0        1 nhận mọi n 2 là nghiệm  BPT đã cho nhận mọi n 2 là nghiệm. THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 – WEBSITE: chúng tôi 5 3)     y x 1 y 1 x y 1 x y 1 x C 6 1 5C C 5 2 2C             . Điều kiện để hệ có nghĩa: x , y nguyên, 1 y x 1   . Ta có  1         x 1 ! y 1 ! x y 1 ! 6. y ! x y 1 ! x! 5                 x 1 y 1 6 x y x y 1 5       .  3  2         y 1 ! x y 1 !x! 5. y 1 ! x y 1 ! x! 2               x y x y 1 5 y y 1 2      .  4 Nhân từng vế  3 và  4 ta có x 1 3 y    x 3y 1  .  5 Thay  5 vào  4 ta được     2y 2y 1 5 y y 1 2         2y 2y 1 5 y y 1 2     23y 9y 0   y 3 (chú ý tới điều kiện y 1 ) .  6 Thay y 3 vào  5 ta được x 8 . Ta thấy cặp giá trị x 8 , y 3 thỏa mãn điều kiện để hệ có nghĩa. Vậy hệ có nghiệm duy nhất    x;y 8;3 . Ví dụ 3. [ĐHD05] Tính giá trị của biểu thức   4 3 n 1 nA 3AM n 1 !    biết rằng 2 2 2 2 n 1 n 2 n 3 n 4C 2C 2C C 149       .  1 Giải ĐK: n nguyên, n 3 . Ta có  VT 1               n 1 ! n 2 ! n 3 ! n 4 ! 2. 2. 2! n 1 ! 2!n! 2! n 1 ! 2! n 2 !                          n n 1 n 3 n 4 n 1 n 2 n 2 n 3 2 2            THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 – WEBSITE: chúng tôi 6  21 6n 24n 282   23n 12n 14   . Do đó  1  23n 12n 14 149    23n 12n 135 0        thoûa maõn loaïi x 5 x 9      . Ví dụ 4. Chứng minh các đẳng thức sau 1) k k 1 k 2 k 3 kn n n n n 3C 3C 3C C C        ,  1 với k , n là các số nguyên dương thỏa mãn 3 k n  . 2) k k 1 k 1 k 1 k 1n n 1 n 2 k k 1C C C … C C            ,  1 với k , n là các số nguyên dương thỏa mãn k n . Giải 1) Áp dụng liên tiếp hằng đẳng thức Pa-xcan, ta có  VP 1 k k 1n 2 n 2C C       k k 1 k 1 k 2n 1 n 1 n 1 n 1C C C C         k k 1 k 2 n 1 n 1 n 1C 2C C             k k 1 k 1 k 2 k 2 k 3n n n n n nC C 2 C C C C          k k 1 k 2 k 3 n n n nC 3C 3C C        VT 1 (ĐPCM). 2) Áp dụng hằng đẳng thức Pa-xcan, ta có k k k 1 n n 1 n 1C C C     k k k 1 n 1 n 2 n 2C C C       k k k 1 k 1 k kC C C     . Cộng từng vế các đẳng thức trên, giản ước k kn 1 k 1C … C   ở hai vế, ta được knC k 1 k 1 k 1 k n 1 n 2 k kC C … C C          k 1 k 1 k 1 k 1n 1 n 2 n 2 k 1C C … C C             (chú ý: k k 1 k k 1C 1 C    ). THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 – WEBSITE: chúng tôi 7 Ví dụ 5. Chứng minh 1 1 1 1 2 1! 2! 3! n!     ,  1 với *n . Giải Ta có  1  1 1 1 1 2! 3! n!    .  2 Lại có 1 1 2 1 1 1 2! 1.2 1.2 1 2      , 1 1 3 2 1 1 3! 2.3 2.3 2 3      , 1 1 4 3 1 1 4! 3.4 3.4 3 4      ,        n n 11 1 1 1 n! n 1 n n 1 n n 1 n          . Cộng từng vế n 1 đẳng thức, bất đẳng thức nói trên, ta thu được  VT 2 1 1 1 1 1 1 1 1 1 2 2 3 3 4 n 1 n                                 11 1 n    (ĐPCM). Ví dụ 6. Cho *n . Tìm  k2n k 0;2n max C  . Giải 1) Với k 0;2n 1  , xét tỷ số           k 1 2n k 2n 2n ! k ! 2n k !C 2n kT . k 1 ! 2n k 1 ! 2n ! k 1C           . Ta có T 1  2n k 1 k 1     12k n   k 0;n 1  , chú ý rằng dấu “ ” không xảy ra. Thay từng giá trị của k vào T ta được THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 – WEBSITE: chúng tôi 8 1 0 n 1 n n 1 2n 1 2n 2n 2n 2n 2n 2n 2n 2nC C C C C C C            . Vậy  k n2n 2n k 0;2n max C C   . Ví dụ 7. [ĐHB06] Cho tập hợp A gồm n phần tử ( n 4 ). Biết rằng số tập con gồm 4 phần tử của A bằng 20 lần số tập con gồm 2 phần tử của A . Tìm  k 1;2;…;n sao cho số tập con gồm k phần tử của A lớn nhất. Giải Mỗi một cách chọn k phần tử từ tập A cho ta một tập con gồm gồm k phần tử của A  số tập con gồm k phần tử của A là knC . Số tập con gồm 4 phần tử của A bằng 20 lần số tập con gồm 2 phần tử của A nghĩa là 4 2 n nC 20C      n! n!20 4! n 4 ! 2! n 2 !         1 20 12 n 3 n 2     2n 5n 234 0        thoûa maõn loaïi n 18 n 13      . Vậy số phần tử của A là 18 . Với k 1;17 , xét tỷ số      k 118 k 18 k ! 18 k !C 18! 18 kT . k 1 ! 17 k ! 18! k 1C          . Ta có T 1  18 k 1 k 1     17k 2   k 1;8 , chú ý rằng dấu “ ” không xảy ra. Thay từng giá trị của k vào T ta được 1 2 8 9 10 17 18 18 18 18 18 18 18 18C C … C C C … C C        . Do đó  k k18 18 k 1;18 C max C    k 9 . Vậy số tập con gồm 9 phần tử của A là tập con có số tập con lớn nhất. THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 – WEBSITE: chúng tôi 9 B. Bài tập Bài 1. Chứng minh 1)  n n 1 n 1P P n 1 P    với *n . 2) k 1 k n 1 n nC C k   với k , *n , k n . 3)     2n 1 1 n! n 1 ! n 2 !     với *n , n 2 . 4) [ĐHB08] k k 1 k n 1 n 1 n n 1 1 1 1 n 2 C C C           với k,n , 0 k n  . 5) n 2 n 1 2 nn k n k n kA A k A       với n , *k , k 2 . 6) 2 2 2 5k n 1 n 3 n 5 n 5P A A A nk !A    với *n . 7)  n 1 2 3 n 1P 1 P 2P 3P … n 1 P        với n ; n 2 . 8)  2 3 n1 n n n n 2 2 n 1 n n n n n 1C C C C 2 3 n 2C C C       với *n . 9) 2 3 n 1 2n n n n n 11 2 n 1 n n n C C C C 2 3 … n C C C C       với *n . 10)  1.1! 2.2! 3.3! … n.n! n 1 !      với *n . 11) n kk 1 k 1 1 P   với *n . Bài 2. Chứng minh 1) k 4 k k 1 k 2 k 3 k 4n 4 n n n n nC C 4C 6C 4C C            , với k , n , 0 k n 4   ; 2) n 1 n 1 n 1 n 1 nn n 1 n 2 2n 1 2nC C C C C            với *n . Bài 3. Giải các phương trình, bất phương trình, hệ phương trình sau: 1)     n! n 1 ! 1 n 1 ! 6     . 2)     n 1 ! 72 n 1 !    . THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 – WEBSITE: chúng tôi 10 3)           n 1 ! n n 1 !1 5 . 5 n 2 n 1 n 3 !4! 12 n 3 n 4 !2!             . 4) 3nA 20n . 5) 5 4n n 2A 18A  . 6) 5n 3 n n 5P 72A P  . 7)     4 n 4A 15 n 2 ! n 1 !     . 8) y yy 1x x 1 x 1A : A : C 21: 60 :10     . 9) x x y y x x y y 2A 5C 90 5A 2C 80       . Bài 4. Cho *n . Tìm  k2n 1 k 0;2n 1 max C    . THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 – WEBSITE: chúng tôi 11 C. Đáp số Bài 3 1) 2 , 3 . 2) 8 . 3) 5 , 6 . 4) 6 . 5) 10 . 6) 7 . 7) 3 , 4 , 5 . 8)    x;y 7;3 . 9)    x;y 2;5 . Bài 4  k n n 12n 1 2n 1 2n 1 k 0;2n 1 max C C C        . THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 – WEBSITE: chúng tôi 12 Loại 2. Ứng dụng ba khái niệm cơ bản vào bài toán … Vậy theo quy tắc nhân thì số cách phân công là 4 1 4 11 2 12 3 8 2n n C C C C 207900  . Ví dụ 7. [ĐHD06] Đội thanh niên xung kích của một trường phổ thông có 12 học sinh, gồm 5 học sinh lớp T, 4 học sinh lớp L và 3 học sinh lớp H. Cần chọn ra 4 học sinh đi làm nhiệm vụ sao cho 4 học sinh đó thuộc không quá 2 trong 3 lớp nói trên. Hỏi có bao nhiêu cách chọn như vậy? Giải Nếu bỏ qua điều kiện 4 học sinh thuộc không quá 2 trong 3 lớp thì số cách chọn là 41 12n C . Bây giờ ta đếm số cách chọn mà 4 học sinh đó bao gồm học sinh của cả 3 lớp. Để làm như vậy ta có sau phương án sau. +) Phương án 1: Chọn 2 học sinh lớp T, 1 học sinh lớp L, 1 học sinh lớp H. Theo quy tắc nhân, số cách thực hiện phương án này là 2 1 12 5 4 4n C C C . +) Phương án 2: Chọn 1 học sinh lớp T, 2 học sinh lớp L, 1 học sinh lớp H. Theo quy tắc nhân, số cách thực hiện phương án này là 1 2 13 5 4 4n C C C . +) Phương án 3: Chọn 1 học sinh lớp T, 1 học sinh lớp L, 2 học sinh lớp H. Theo quy tắc nhân, số cách thực hiện phương án này là 1 1 23 5 4 4n C C C . Số cách chọn 4 học sinh thỏa mãn yêu cầu bài toán là 4 2 1 1 1 2 1 1 1 2 1 2 3 4 12 5 4 4 5 4 4 5 4 4n n n n C C C C C C C C C C 225        . Ví dụ 8. Một thầy giáo có 12 cuốn sách đôi một khác nhau trong đó có 5 cuốn sách văn học, 4 cuốn sách âm nhạc và 3 cuốn sách hội họa. Ông muốn lấy ra 6 cuốn và đem tặng cho 6 em học sinh A , B , C , D , E , F , mỗi em một cuốn. Hỏi thầy có bao nhiêu cách tặng sách sao cho sau khi tặng, mỗi loại sách : văn học, âm nhạc, hội hoạ, thầy vẫn còn ít nhất một cuốn. Giải Ta thấy tổng hai loại sách bất kỳ đều lớn hơn 6 nên không thể chọn sao cho cùng hết 2 loại sách. THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 – WEBSITE: chúng tôi 16 Số cách chọn 6 cuốn sách từ 12 cuốn sách là 612A 665280 . Số cách chọn sao cho không còn sách văn là 56A .7 5040 . Số cách chọn sao cho không còn sách nhạc là 4 26 8A .A 20160 . Số cách chọn sao cho không còn sách hoạ là 3 36 9A .A 60408 . Số cách chọn cần tìm là  665280 – 5040 20160 60480 579600   . Ví dụ 9. Hỏi từ 10 chữ số 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 có thể lập được bao nhiêu số gồm 6 chữ số khác nhau, sao cho trong các chữ số đó có mặt số 0 và 1 . Giải Giả sử 1 2 3 4 5 6A a a a a a a là số cần lập. Để lập số A , ta lần lượt làm như sau *) Bước 1: Chọn vị trí cho chữ số 0 . Vì 1a 0 nên bước này có số cách thực hiện là 1n 5 cách. *) Bước 2: Chọn vị trí cho chữ số 1 . Ta có hai phương án thực hiện bước này. +) Phương án 1: 1a 1 . Số cách chọn 4 vị trí còn lại là 4 2 8n A . +) Phương án 2: 1a 1 . Vì 1a 1 và chữ số 0 đã chiếm một vị trí nên để chọn vị trí cho chữ số 1 có 3n 4 cách. Vì  1a 0;1 nên có 4n 8 cách chọn 1a . Số cách chọn 3 chữ số cho 3 vị trí còn lại là 35 7n A . Theo quy tắc nhân thì số cách thực hiện phương án 2 là 36 3 4 5 7n n n n 32A  . Theo quy tắc cộng, số cách thực hiện bước 2 là 4 37 2 6 8 7n n n A 32A    . Theo quy tắc nhân, số cách lập số A là  4 31 7 8 7n .n 5 A 32A 42000   . Ví dụ 10. Tính tổng các số chẵn có 5 chữ số đôi một khác nhau được lập từ các chữ số 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 . Giải * Giả sử 1 2 3 4 5A a a a a a là số thỏa mãn yêu cầu bài toán. Do đó để lập số A ta lần lượt làm như sau THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 – WEBSITE: chúng tôi 17 +) Bước 1: Chọn 5a . A chẵn  5a chia hết cho 2   a 2;4;6;8 . Như vậy, bước này có 1n 4 cách thực hiện. +) Bước 2: Chọn các chữ số còn lại. Mỗi một cách chọn các chữ số 1a , 2a , 3a , 4a là một chỉnh hợp chập 4 của 8 phần tử    51;2;3;4;5;6;7;8;9 a nên số cách chọn các chữ số này là 4 2 8n A . Theo quy tắc nhân thì số cách lập số A là 41 2 8n n n 4.A 6720   . * Để tính tổng các số lập được, ta tính tổng từng vị trí. +) Vì vai trò của các chữ số 2 , 4 , 6 , 8 là giống nhau nên số lần xuất hiện của mỗi chữ số này ở hàng đơn vị là n 1680 4  . Từ đây suy ra tổng các chữ số ở hàng đơn vị là  1680 2 4 6 8 33600    . +) Nếu cố định 4a 1 thì có 4 cách chọn 5a , 3 7A cách chọn các vị trí còn lại. Như vậy số lần chữ số 1 xuất hiện ở vị trí hàng chục là 374.A 840 . Vì vai trò của các chữ số 1 , 3 , 5 , 7 , 9 là như nhau nên số lần xuất hiện mỗi chữ số này ở vị trí hàng chục cũng là 840 . Tổng số lần xuất hiện các chữ cố 2 , 4 , 6 , 8 ở vị trí hàng chục là 6720 5.840 2520  . Vì vai trò của các chữ số 2 , 4 , 6 , 8 là như nhau nên số lần xuất hiện mỗi chữ số này ở vị trí hàng chục cũng là 2520 630 4  . Như vậy, tổng các chữ số hàng đơn vị là    840 1 3 5 7 9 630 2 4 6 8 33600         . Tương tự, tổng các chữ số hàng trăm, hàng nghìn và hàng vạn bằng nhau và bằng 33600 . Vậy tổng các số lập được là  33600 1 10 100 1000 10000 33600.11111 373329600      . THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 – WEBSITE: chúng tôi 18 B. Bài tập Bài 1. Từ các chữ số 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 có thể lập được bao nhiêu số có 6 chữ số đôi một khác nhau thỏa mãn thêm điều kiện 1) là số chẵn. 2) chia hết cho 5 . Bài 2. Tính tổng các số có 5 chữ số đôi một khác nhau thõa mãn điều kiện chia hết cho 5 được lập từ các chữ số 1 , 2 , 3 , 4 , 5 . Bài 3. Tính tổng các số có 5 chữ số đôi một khác nhau thõa mãn điều kiện chia hết cho 5 được lập từ các chữ số 0, 1 , 2 , 3 , 4 , 5 . Bài 4. Từ các chữ số 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 có thể lập được bao nhiêu số có 5 chữ số. Biết chữ số 1 xuất hiện đúng hai lần, còn các chữ số còn lại đôi một khác nhau. Bài 5. Từ các chữ số 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 có thể lập được bao nhiêu số có 5 chữ số. Biết chữ số 1 có thể không xuất hiện hoặc xuất hiện một số chẵn lần, còn các chữ số còn lại đôi một khác nhau. Bài 6. Từ các chữ số 0 , 1 , 2 , 4 , 5 , 6 , 9 có thể lập được bao nhiêu số có 6 chữ số chia hết cho 2 . Biết chữ số 2 xuất hiện hai lần, còn các chữ số còn lại đôi một khác nhau. Bài 7. Từ các chữ số 0 , 1 , 2 , 4 , 5 , 6 , 9 có thể lập được bao nhiêu số có 6 chữ số đôi một khác nhau và trong các chữ số có chữ số 2 và chữ số 4 . Bài 8. Từ các chữ số 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 có thể lập được bao nhiêu số có 6 chữ số biết rằng trong hai chữ số liên tiếp bất kỳ thì chữ số đứng trước lớn hơn chữ số đứng sau nó. Bài 9. Từ các chữ số 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 có thể lập được bao nhiêu số có 6 chữ số thỏa mãn một trong hai điều kiện: trong hai chữ số liên tiếp bất kỳ thì chữ số đứng trước lớn hơn chữ số đứng sau nó hoặc trong hai chữ số liên tiếp bất kỳ thì chữ số đứng trước nhỏ hơn chữ số đứng sau nó. Bài 10. Một trường Phổ thông trung học có 280 nam sinh và 325 nữ sinh. 1) Có bao nhiêu cách chọn ra 11 học sinh. 2) Có bao nhiêu cách chọn ra 3 học sinh có cả nam và nữ. 3) Giả sử trong các học sinh nam có một bạn bạn tên là Long và trong các nữ sinh có một bạn tên là Ngọc. Hỏi có bao nhiêu cách chọn ra 3 học sinh có cả nam và nữ nhưng không đồng thời có hai bạn Long và Ngọc. Bài 11. Trong một lớp học có 7 nam sinh và 4 nữ sinh ưu tú (trong số đó có nam sinh Hưng và nữ sinh Hoa). Cần lập một ban cán sự lớp gồm 6 người từ những học sinh ưu tú với yêu cầu có THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 – WEBSITE: chúng tôi 19 ít nhất hai nữ sinh, ngoài ra ban cán sự không đồng thời có cả Hưng và Hoa. Hỏi có bao nhiêu cách lập ban cán sự này. Bài 12. Có 5 nhà toán học nam, 3 nhà toán học nữ và 4 nhà vật lý nam. Hỏi có bao nhiêu cách lập một đoàn công tác 3 người từ các nhà khoa học nói trên sao cho trong đoàn có cả nam và nữ, có cả nhà toán học và nhà vật lý. Bài 13. Một trường trung học có 8 thầy dạy toán, 5 thầy dạy lý và 3 thầy dậy hóa học. Hỏi có bao nhiêu cách cử 3 thầy thuộc đủ cả 3 bộ môn đó đi đại hội. Bài 14. Hội đồng quản trị của một xí nghiệp gồm 11 người, trong đó có 7 nam và 4 nữ. Hỏi có bao nhiêu cách lập ra một hội đồng thường trực gồm 3 người từ những thành viên nói trên sao cho trong đó có ít nhất 1 nam. Bài 15. Có bao nhiêu cách xếp 3 người bạn nam và 2 bạn nữ vào một cái ghế dài sao cho bất kỳ ai đều ngồi bên cạnh ít nhất một người cùng giới. Bài 16. Một nhóm gồm 10 học sinh, trong đó có 7 nam và 3 nữ. Có bao nhiêu cách xếp 10 học sinh trên thành một hàng dọc sao cho 7 học sinh nam đừng liền nhau. Bài 17. Có 10 câu hỏi trong đó có 4 câu lý thuyết và 6 câu bài tập. Thầy giáo có bao nhiêu cách để lập ra một đề thi gồm 3 câu, trong đó có cả lý thuyết và bài tập từ 10 câu hỏi nói trên. Bài 18. Một đồn cảnh sát khu vực có 9 người. Hỏi có bao nhiêu cách phân công 3 cảnh sát làm nhiệm vụ ở khu vực A, 4 cảnh sát làm nhiệm vụ ở khu vực B và 2 người còn lại trực tại đồn. Bài 19. Có 5 tem thư khác nhau và 6 bì thư khác nhau. Có bao nhiêu cách chọn và dán 3 tem thư lên 3 bì thư. Bài 20. Có 7 nghệ sĩ, trong đó có 4 nam và 3 nữ, tham gia một buổi biểu diễn mà mỗi người phải biểu diễn đúng một tiết mục. 1) có bao nhiêu cách sắp xếp chương trình sao cho trong chương trình ấy xen kẽ hết nam lại đến nữ nghệ sĩ biểu diễn. 2) có bao nhiêu cách sắp xếp chương trình sao cho 2 tiết mục đầu và tiết mục sau cùng là do nam biểu diễn. Bài 21. Có bao nhiêu cách xếp 10 vật phân biệt vào 4 hộp phân biệt sao cho hộp thứ nhất chứa 3 vật, hộp thứ hai chứa 2 vật, hộp thứ ba chứa 2 vật, hộp thứ tư chứa 3 vật. Bài 22. Đội dự tuyển bóng bàn có 10 nữ, 7 nam, trong đó có danh thủ nam là Đường Ngọc Hưng và danh thủ nữ là Lý Thu Thủy. Người ta cần lập một đội tuyển bóng bàn quốc gia gồm 3 nữ và 4 nam từ đội dự tuyển nói trên sao cho trong đội phải có cả nam lẫn nữ và có mặt hai danh thủ. THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 – WEBSITE: chúng tôi 20 Bài 23. Chia nhóm 16 học sinh gồm 3 học sinh giỏi, 5 học sinh khá và 8 học sinh trung bình thành hai tổ có số học sinh bằng nhau. Hỏi có bao nhiêu cách chia mà mỗi tổ đều có học sinh giỏi và có ít nhất là 2 học sinh khá. Bài 24. Tổ I gồm 10 người và tổ II gồm 9 người. Hỏi có bao nhiêu cách lập một nhóm câu lạc bộ bóng bàn gồm 8 thành viên sao cho mỗi tổ có ít nhất hai người thuộc câu lạc bộ này. Bài 25. Trong một lớp có 33 người trong đó có 7 nữ và 26 nam. Có bao nhiêu cách chia lớp thành ba tổ sao cho: tổ 1 gồm 10 người, tổ 2 gồm 11 người, tổ 3 gồm 12 người và mỗi tổ có ít nhất hai nữ. Bài 26. Một trường tiểu học có 50 học sinh đạt danh hiệu Cháu ngoan Bác Hồ, trong đó có 4 cặp anh em sinh đôi. Hỏi có bao nhiêu cách chọn một nhóm 3 học sinh trong số 50 học sinh trên đi dự đại hội Cháu ngoan Bác Hồ sao cho trong nhóm không có cặp anh em sinh đôi nào. Bài 27. Một đội tuyển học sinh giỏi của một trường gồm 18 em, trong đó có 7 học sinh khối 12 , 6 học sinh khối 11 và 5 học sinh khối 10 . Hỏi có bao nhiêu cách cử 8 học sinh trong đội đi dự trại hè sao cho mỗi khối có ít nhất một em được chọn đi. Bài 28. Từ một tổ gồm 7 học sinh nữ và 5 học sinh nam. Có bao nhiêu cách chọn ra 6 em trong đó số học sinh nữ phải nhỏ hơn 4 .

Bài Tập Hoán Vị Chỉnh Hợp Tổ Hợp 11 (Có Đáp Án)

bài tập hoán vị chỉnh hợp tổ hợp 11 (có đáp án)

§2 HOÁN VỊ – CHỈNH HỢP – TỔ HỢPA. LÝ THUYẾT1. Hoán vị: Cho một tập hợp A có n phần tử (). Bài toán hoán vị là bài toán sắp xếp, đổi chỗ n phần tử đó vào n vị trí tương ứng.Định lý: Số hoán vị của một tập hợp có n phần tử là Chú ý: 2. Chỉnh hợp: Cho tập hợp A gồm n phần tử và số nguyên k với . Bài toán chỉnh hợp là bài toán chọn k phần tử trong n phần tử, cách chọn này có phân biệt thứ tự (công việc, chức vụ…)Định lý: Số các chỉnh hợp chập k của một tập hợp có n phần tử (1 ≤ k ≤ n) là .3. Tổ hợp: Cho tập hợp A có n phần tử và số nguyên k với . Bài toán tổ hợp là bài toán chọn k phần tử trong n phần tử, cách chọn này không phân biệt thứ tự.Định lý: Gọi là số các tổ hợp chập k của một tập hợp có n phần tử (1 ≤ k ≤ n) thì: 4. Hai tính chất cơ bản của số CnkTính chất 1: Cnk = Cnn-k Tính chất 2: Cnk-1 + Cnk = Cn+1kB. BÀI TẬPCó bao nhiêu cách xếp 6 học sinh ( trong đó có 2 bạn A và B) đứng thành một hàng dọc để chào cờ sao cho trong đó có hai bạn A và B đứng kề nhau? (240) Cho 10 điểm phân biệt nằm trên một đường tròn. a/ Có bao nhiêu đoạn thẳng mà hai đầu là hai trong số 10 điểm đã cho ? b/ Có bao nhiêu véctơ có gốc và ngọn trùng với hai trong số 10 điểm đã cho ? c/ Có bao nhiêu tam giác mà các đỉnh là ba trong số 10 điểm đã cho ?Một họ 4 đường thẳng song song cắt một họ khác gồm 3 đường thẳng song song (không song song với 4 đường ban đầu). Có bao nhiêu hình bình hành được tạo nên ? (18)Cho hai đường thẳng d1 và d2 song song nhau. Trên d1 lấy 5 điểm, trên d2 lấy 3 điểm. Hỏi có bao nhiêu tam giác mà các đỉnh của nó được lấy từ các điểm đã chọn ? (45)Trên 3 cạnh của một tam giác lần lượt cho 4 , 5 , 6 điểm phân biệt. Có bao nhiêu tam giác mà 3 đỉnh của nó được lấy từ các điểm đã cho? (Có bao nhiêu tam giác tạo thành từ các điểm đã cho?) (421)Có 4 bi xanh, 3 bi đỏ. Hỏi có bao nhiêu cách chọn ra 4 viên bi trong đó có bi xanh ít hơn bi đỏ? Trên một giá sách có 4 cuốn sách Toán , 5 cuốn sách Lý và 6 cuốn sách Hóa. Cần chọn 3 cuốn sách. Hỏi có bao nhiêu cách chọn nếu 3 cuốn sách đó cùng một môn.Một nhóm có 4 học sinh khối 10, 5 học sinh khối 11 và 6 học sinh khối 12. Có bao nhiêu cách chọn 4 học sinh sao cho có đúng 1 học sinh khối 11Có 7 bút xanh, 3 bút đỏ. Có bnhiêu cách chọn ra 3 bút sao cho luôn có đủ 2 loại bút xanh và đỏ? (84)Có 3 bi trắng, 4 bi vàng, 6 bi đen (tất cả bi đều khác nhau). Có bao nhiêu cách chọn ra:2 bi cùng màu? b) 3 bi khác màu? c) 3 bi có 2 màu khác nhau?Trong một cuộc đua thuyền có 16 thuyền cùng xuất phát. Hỏi có bao nhiêu khả năng xếp loại?4 thuyền về đích đầu tiên ? b) 3 thuyền về nhất, nhì, ba ? Một tổ có 7 nam và 5 nữ. Người ta cần chọn ra 4 em để tham gia đồng diễn thể dục, yêu cầu có ít nhất hai em nữ. Hỏi có bao nhiêu cách chọn ?Từ một hộp có 3 quả cầu trắng, 4 quả cầu xanh và 5 quả cầu đỏ. Có bao nhiêu cách chọn ra 5 quả sao cho trong 5 quả cầu đó có ít nhất 1 quả màu đỏ? (Phải có bi đỏ)Có 4 bạn nam và 3 bạn nữ. Có bao nhiêu cách xếp họ thành 1 hàng sao cho?Họ ngồi tùy ý? b)Nam nữ ngồi xen kẽ? (144)Trên một kệ sách có 5 quyển sách Toán, 4 quyển sách Lí, 3 quyển sách Văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên: a) Một cách tuỳ ý? b) Theo từng môn? c) Theo từng môn và sách Toán nằm ở giữa?Xếp 6 người A, B, C, D, E, F vào 1 ghế dài. Hỏi có bao nhiêu cách sắp xếp nếu:6 người

Bài 1; Giải Tích Tổ Hợp.

Chương II: TỔ HỢP – XÁC SUẤT

Bài 1: GIẢI TÍCH TỔ HỢPQuy tắc cộng: Giả sử một công việc có thể tiến hành theo một trong hai phương án A hoặc B. Phương án A có thể thực hiện bởi m cách ; phương án B có thể thực hiện theo n cách. Khi đó, công việc có thể thực hiện bởi m + n cách.

Mở rộng: Nếu một công việc có thể tiến hành theo một trong k phương án. Phương án thứ j có thể thực hiện bởi 𝑛𝑗 cách 𝑗=1,2,…,𝑘. Khi đó, công việc có thể thực hiện bởi 𝑛1𝑛2𝑛𝑘 cách .

Quy tắc nhân: Giả sử một công việc nào đó bao gồm hai công đoạn A và B. Công đoạn A có thể làm theo m cách, công đoạn B có thể làm theo n cách. Khi đó, công việc được thực hiện theo 𝑚.𝑛 cách.

Mở rộng: Nếu một công việc nào đó bao gồm k công đoạn. Công đoạn thứ j có thể làm theo 𝑛𝑗 cách 𝑗=1,2,…,𝑘. Khi đó, công việc có thể thực hiện theo 𝑛1𝑛2𝑛𝑘 cách.𝑁𝐴.𝐵=𝑁𝐴.𝑁𝐵 (3)Chú ý: Khi giải các bài toán về phép đếm, người ta có thể giải theo hai cách chính sau đây:PP trực tiếp: là PP giải thẳng vào các yêu cầu bài toán đặt ra, nói một cách nôm na “hỏi gì, đếm nấy”.PP gián tiếp: dựa trên nguyên lí “đếm những cái không cần đếm, để biết những cái cần đếm”. Đó chính là phép lấy phần bù.Số phần tử của tập hợp A kí hiệu là: 𝐴

Phép đếm không lặp: mỗi phần tử cần đếm chỉ xuất hiện tối đa 1 lần, không có sự lặp lại.Phép đếm có lặp: mỗi phần tử cần đếm có thể xuất hiện nhiều lần. Để giải các bài toán về phép đếm có lặp, người ta quy về phép đếm không lặp.

Dạng 1: Sử dụng quy tắc đếmCần phân biệt 2 hành độngXảy ra độc lập: Quy tắc cộng (hay/ hoặc)Xảy ra liên tiếp: Quy tắc nhân (và)

B1: Một hộp có chứa 8 bóng đèn màu đỏ và 5 bóng đèn màu xanh. Hỏi có bao nhiêu cách chọn được một bóng đèn trong hộp đó?B2: Trong một lớp có 30 học sinh, trong đó có 18 em giỏi Toán, 14 em giỏi Văn và 10 em không giỏi môn nào. Hỏi có bao nhiêu em giỏi cả Văn lẫn Toán?B3: Chợ Bến Thành có bốn cửa Đông, Tây, Nam, Bắc. Một người đi chợ (đi vào mua hàng rồi đi ra). Hỏi có bao nhiêu cách đi vào và đi ra biết rằng khi vào và ra phải đi hai cửa khác nhau?B4: Một lớp học có 18 học sinh nam và 20 học sinh nữ.Nếu GVCN chọn một HS tham dự trại thì có bao nhiêu cách chọn?Nếu GVCN chọn một HS nam và một HS nữ thì có bao nhiêu cách chọn?B5: Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên mà mỗi số có sáu chữ số khác nhau và chữ số 2 đứng cạnh chữ số 3.

Hoán vị: 1 phép hoán vị của n phần tử là một sự sắp xếp theo một thứ tự nhất định của n phần tử đó.Số phép hoán vị của n phần tử là: 𝑃𝑛=𝑛!=1.2.3….𝑛 (4)

Chỉnh hợp: Gọi 𝑁𝐴=𝑛. Cho 1≤𝑘≤𝑛Một phép chỉnh hợp chấp k của n phần tử là một sự sắp xếp theo một thứ tự nhất định của k phần tử lấy trong số n phần tử đã cho (hay là một cách sắp xếp thứ tự k phần tử khác nhau).

Tổ hợp: Gọi 𝑁𝐴=𝑛

Bổ Túc Về Giải Tích Tổ Hợp

Tập hợp là một nhóm các đối tượng có chung một số các tính chất nhất định nào đó. Mỗi đối tượng thuộc tập hợp được gọi là phần tử của tập hợp.

Các ví dụ về tập hợp:

– Tập hợp sinh viên trong trường đại học nào đó.

– Tập hợp N mọi số tự nhiên.

– Tập hợp R mọi số thực.

Muốn xác định một tãp hợp, có thể dùng một trong hai cách:

a) Liệt kê mọi phần tử của nó, chẳng hạn: A = {a, b, c, d} là tập hợp bốn chữ cái đầu tiên của bảng chữ cái tiếng Việt.

b) Chỉ ra một đặc tính đặc trưng cho các phần tử của tập hợp.

Thí dụ: là tập hợp số thực thỏa mãn tính chất .

Tập hợp có số phần tử hữu hạn được gọi là tập hợp hữu hạn. Còn tập hợp có số phần tử là vô hạn được gọi là tập hợp vô hạn.

Tập hợp vô hạn được chia làm hai loại:

– Tập hợp vô hạn đếm được. Thí dụ: tập hợp tất cả các số nguyên dương: 1, 2, 3, …

– Tập hợp vô hạn không đếm được. Thí dụ: tập hợp tất cả các điểm của một đường thẳng, tập hợp tất cả các số thực trong khoảng (0, 2) là những tập hợp không đếm được.

Quy tắc nhân được phát biểu như sau:

Một công việc nào đó được chia làm hai giai đoạn, có n1 cách hoàn thành giai đoạn I và có n2 cách hoàn thành giai đoạn II. Khi đó sẽ có tất cả: n = n1.n2 cách hoàn thành công việc.

Thí dụ: Ta muốn đi từ vị trí A đến vị trí B. Trên đường đi ta muốn ghé qua vị trí C. Có 2 cách đi từ A đến C và có 3 cách đi từ C tới B. Ki đó ta có tất cả n = 2.3 = 6 cách đi khác nhau từ A đến B.

Một cách tổng quát, ta phát biểu quy tắc nhân:

Giả sử một công việc nào đó được chia làm k giai đoạn. có n1 cách hoàn thành giai đoạn thứ I, có n2 cách hoàn thành giai đoạn thứ II,…, có nk cách hoàn thành giai đoạn cuối cùng. Khi đó sẽ có tất cả: cách hoàn thành công việc.

Chỉnh hợp chập k của n phần tử () là một nhóm có thứ tự gồm k phần tử khác nhau được chọn từ n phần tử đã cho.

Thí dụ: cho ba phần tử 2,3,5. Các chỉnh hợp chập 2 của 3 phần tử đó là: 23, 25, 32, 35, 52, 53.

Như vậy từ n phần tử ta có thể tạo nên nhiều chỉnh hợp chập k khác nhau. Chỉnh hợp này khác chỉnh hợp kia hoặc bởi có ít nhất một phần tử khác nhau hoặc chỉ do thứ tự sắp xếp.

Số chỉnh hợp chập k của n phần tử được ký hiệu là:

(1.1)

Trong đó: n! = n(n -1)(n -2) … 2.1 ; 0! = 1

3.3 Thí dụ: Mỗi lớp phải học 6 môn, mỗi ngày học 2 môn. Hỏi có bao nhiêu cách xếp thời khóa biểu trong mỗi ngày.

Giải: Vì mỗi cách xếp thời khóa biểu trong một ngày là việc ghép 2 môn trong số 6 môn học. Các cách này do ít nhất 1 môn khác nhau hoặc chỉ do thứ tự sắp xếp trước sau giữa hai môn. Vì thế mỗi cách sắp xếp ứng với một chỉnh hợp chập 2 từ 6 phần tử.

Do đó có tất cả: cách

Chỉnh hợp lặp chập k của n phần tử là một nhóm có thứ tự gồm k phần tử lấy từ n phần tử đã cho, trong đó mỗi phần tử có thể có mặt 1, 2, …, k lần trong nhóm tạo thành.

Vì mỗi phần tử có thể xuất hiện nhiều lần trong một chỉnh hợp lặp, nên k có thể lớn hơn n. Chẳng hạn cho ba phần tử 2, 3, 5. Các chỉnh hợp lặp chập 2 của ba phần tử sẽ là:

22 23 25

32 33 35 52 53 55

Số chỉnh lặp chập k của n phần tử được ký hiệu là:

Ta thành lập công thức tổng quát để tính . Muốn vậy ta lập luận như sau: để có một chỉnh hợp lặp chập k ta có thể chọn phần tử thứ nhất theo n cách. Phần tử thứ hai cũng có n cách chọn … phần tử thứ k cũng có n cách chọn ( vì mỗi phần tử có thể chọn lại nhiều lần). Vì vậy theo quy tắc nhân ta có: n . n … n = cách thành lập một chỉnh hợp lặp chập h khác nhau từ n phần tử đã cho.

Do đó: (1.3)

4.3 Thí dụ: Để đăng ký mỗi loại máy mới người ta dùng 3 con số trong 9 con số 1 … 2 … 9. Hỏi có thể đánh số được bao nhiêu máy.

Giải: Ở đây mỗi số của máy là một chỉnh hợp lặp chập 3 từ 9 phần tử đã cho. Vậy có thể đánh số được: máy.

Hoán vị của n phần tử là một nhóm có thứ tự gồm đủ mặt n phần tử đã cho.

Số hoán vị của n phần tử được ký hiệu là

Theo định nghĩa ta thấy các hoán vị của n phần tử chỉ khác nhau bởi thứ tự sắp xếp giữa các phần tử mà thôi. Một hoán vị của n phần tử cũng chính là một chỉnh hợp chập n của n phần tử. Do đó:

Vậy (1.4)

5.3 Thí dụ: Một bàn có 4 học sinh ngồi. Hỏi có bao nhiêu cách xếp chỗ ngồi?

Ta thấy mỗi cách xếp chỗ cho 4 học sinh là một hoán vị của 4 phần tử. Do đó số cách sắp xếp là: cách

Tổ chập k của n phần tử ( ) là một nhóm không phân biệt thứ tự gồm k phần tử khác nhau chọn từ n phần tử đã cho.

Số tổ hợp chập k của n phần tử được ký hiệu là

6.2 – Công thức tính:

Từ định nghĩa tổ hợp ta thấy tổ hợp cũng chính là một chỉnh hợp (không lặp). Nhưng các chỉnh hợp nếu chỉ khác nhau về thứ tự sắp xếp của các phần tử được coi như cùng một tổ hợp mà thôi.

Giả sử từ n phần tử ta có thể thành lập tổ hợp chập k khác nhau. Ta đem hoán vị các phần tử trong các tổ hợp này thì mỗi tổ hợp sẽ tạo ra k! chỉnh hợp, mà ta có tất cả tổ hợp. Vậy ta có đẳng thức:

6.3 Thí dụ: Có mười đội bóng đá thi đấu với nhau theo thể thức vòng tròn một lượt (tức hai đội bất kỳ trong mười đội bóng này phải thi đấu với nhau một trận). Hỏi phải tổ chức bao nhiêu trận đấu.

Giải: Ta thấy mỗi trận đấu giữa hai đội bóng là một tổ hợp chập 2 của 10 phần tử (vì hai đội thi đấu với nhau thì không cần phân biệt thứ tự). Do đó số trận đấu cần tổ chức là:

6.4 – Các tính chất của tổ hợp:

1) Chứng minh: 2) 3)

7. CÔNG THỨC NHỊ THỨC NEWTON:

Nhị thức Newton là lũy thừa bậc nguyên dương của tổng hai số hạng trong đó a, b là hằng số thực tùy ý, n = 1, 2, 3, …

Đôi lời

Cập nhật thông tin chi tiết về Chuyên Đề Hoán Vị, Chỉnh Hợp Và Tổ Hợp trên website Ictu-hanoi.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!