Xu Hướng 5/2023 # Chuyên Đề Một Số Phương Pháp Giải Hệ Phương Trình # Top 7 View | Ictu-hanoi.edu.vn

Xu Hướng 5/2023 # Chuyên Đề Một Số Phương Pháp Giải Hệ Phương Trình # Top 7 View

Bạn đang xem bài viết Chuyên Đề Một Số Phương Pháp Giải Hệ Phương Trình được cập nhật mới nhất trên website Ictu-hanoi.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất.

SỞ GD VÀ ĐT HẢI DƯƠNG CHUYÊN ĐỀ DẠY THÊM TRƯỜNG THPT ĐOÀN THƯỢNG GIÁO VIÊN : NGUYỄN TRƯỜNG SƠN CHUYÊN ĐỀ MỘT SỐ PHƯƠNG PHÁP GIẢI HỆ PHƯƠNG TRÌNH Nội dung : Phương pháp thế. Phương pháp cộng đại số. Phương pháp biến đổi thành tích. Phương pháp đặt ẩn phụ. Phương pháp hàm số. Phương pháp sử dụng bất đẳng thức Tài liệu dạy thêm tự soạn. Nghiêm cấm sao chép in ấn dưới mọi hình thức. Tác giả : Nguyễn Trường Sơn Gmail : ngoisaocodon1911@gmail.com Sđt : 0988.503.138 Bài 1 : Một số dạng hệ phương trình đặc biệt. Hệ bậc nhất hai ẩn, ba ẩn. Hệ gồm một phương trình bậc nhất và phương trình bậc cao. PP chung : Sử dụng phương pháp thế. Hệ 2 phương trình. Hệ 3 phương trình. Hệ đối xứng loại 1. PP chung : Đặt ẩn phụ Hệ đối xứng loại 2. PP chung : Trừ từng vế hai phương trình cho nhau ta được : Hệ phương trình đẳng cấp bậc hai. PP chung : Có 2 cách giải Đặt ẩn phụ Chia cả hai vế cho , và đặt Bài 2 : Một số phương pháp giải hệ phương trình Phương pháp thế. * Cơ sở phương pháp. Ta rút một ẩn (hay một biểu thức) từ một phương trình trong hệ và thế vào phương trình còn lại. * Nhận dạng. Phương pháp này thường hay sử dụng khi trong hệ có một phương trình là bậc nhất đối với một ẩn nào đó. Bài 1 . Giải hệ phương trình Lời giải. Từ (1) ta có thế vào (2) ta được Vậy tập nghiệm của hệ phương trình là Bài 2 Giải hệ phương trình sau : Bài 3 Giải hệ : PT (2) là bậc nhất với y nên Từ (2) thay vào PT (1). Nghiệm Bài 4 a) Giải hệ : PT (2) là bậc nhất với y nên Từ (2) thay vào PT (1). b) Giải hệ : Bài 6 (Thử ĐT2012) Giải hệ : . Từ (1) thay vào (2). Nghiệm Bài 7. Giải hệ phương trình Phân tích. Phương trình (2) là bậc nhất đối với y nên ta dùng phép thế. Lời giải. TH 1 : x = 0 không thỏa mãn (2) TH 2 : thế vào (1) ta được Do nên hệ phương trình có nghiệm duy nhất Chú ý.: Hệ phương trình này có thể thế theo phương pháp sau: Hệ Phương pháp thế thường là công đoạn cuối cùng khi ta sử dụng các phương pháp khác Bài 8 (D – 2009 ) Giải hệ : . Từ (1) thế và thay vào PT (2). Bài 9 Giải hệ : HD : Thế (1) vào PT (2) và rút gọn ta được : Phương pháp cộng đại số. * Cơ sở phương pháp. Kết hợp 2 phương trình trong hệ bằng các phép toán: cộng, trừ, nhân, chia ta thu được phương trình hệ quả mà việc giải phương trình này là khả thi hoặc có lợi cho các bước sau. * Nhận dạng. Phương pháp này thường dùng cho các hệ đối xứng loại II, hệ phương trình có vế trái đẳng cấp bậc k. Bài 1 Giải hệ phương trình Bài 2. Giải hệ phương trình Lời giải. ĐK: Hệ . Trừ vế hai phương trình ta được TH 1. thế vào (1) ta được TH 2. . Từ , . Do đó TH 2 không xảy ra. Vậy hệ phương trình có nghiệm duy nhất (1 ; 1) Bài 2 Giải hệ phương trình Lời giải. ĐK: . Trừ vế hai pt ta được TH 1. thế vào (1) ta được Đặt ta được và TH 2. . TH này vô nghiệm do ĐK. Vậy hệ có nghiệm duy nhất (1; 1) Bài 5 Giải hệ phương trình: Bài 3. Giải hệ phương trình Phân tích. Đây là hệ phương trình có vế trái đẳng cấp bậc hai nên ta sẽ cân bằng số hạng tự do và thực hiện phép trừ vế. Lời giải. - Hệ - Giải phương trình này ta được thế vào một trong hai phương trình của hệ ta thu được kết quả * Chú ý Cách giải trên có thể áp dụng cho pt có vế trái đẳng cấp bậc cao hơn. Cách giải trên chứng tỏ rằng hệ phương trình này hoàn toàn giải được bằng cách đặt hoặc đặt . Bài 4. Tìm các giá trị m để hệ có nghiệm. Phân tích. Để có kết quả nhanh hơn ta sẽ đặt ngay Lời giải. TH 1. Vậy hệ có nghiệm TH 2. , Đặt . Hệ Ta có nên hệ có nghiệm pt (*) có nghiệm. Điều này xảy ra khi và chỉ khi hoặc Kết luận. Bài 5. Tìm các giá trị của m để hệ (I) có nghiệm. Lời giải. Nhân 2 vế của bpt thứ hai với -3 ta được Cộng vế hai bpt cùng chiều ta được Điều kiện cần để hệ bpt có nghiệm là Điều kiện đủ. Với . Xét hệ pt (II) Giả sử là nghiệm của hệ (II). Khi đó Vậy mọi nghiệm của hệ (II) đều là nghiệm của hệ (I) (II) Thay vào pt thứ 2 của hệ (II) ta được Hệ (II) có nghiệm, do đó hệ (I) cũng có nghiệm. Vậy . Bài 6. Giải hệ phương trình Phân tích. Các biểu thức trong ngoặc có dạng a + b và a – b nên ta chia hai vế pt thứ nhất cho và chia hai vế pt thứ hai cho . Lời giải. ĐK: . Dễ thấy hoặc không thỏa mãn hệ pt. Vậy Hệ Nhân theo vế hai pt trong hệ ta được TH 1. thế vào pt (1) ta được TH 2. không xảy ra do . Vậy hệ pt có nghiệm duy nhất . Chú ý. Hệ phương trình có dạng . Trong trường hợp này, dạng thứ nhất có vế phải chứa căn thức nên ta chuyển về dạng thứ hai sau đó nhân vế để mất căn thức. Tổng quát ta có hệ sau: Bài 7. Giải hệ phương trình Phân tích. Nếu chia hai vế của mỗi phương trình cho thì ta được hệ mới đơn giản hơn. TH 1. . Nếu thì hệ hoặc Tương tự với và ta thu được các nghiệm là TH 2. . Chia hai vế của mỗi pt trong hệ cho ta được . Cộng vế 3 phương trình của hệ ta được : Từ (4) và (1) ta có Tứ (4) và (2) ta có . Từ (4) và (3) ta có Tương tự, từ (5), (1), (2), (3) ta có . Vậy hệ có tập nghiệm là S = Nhận xét. Qua ví dụ trên ta thấy: từ một hệ phương trình đơn giản, bằng cách đổi biến số (ở trên là phép thay nghịch đảo) ta thu được một hệ phức tạp. Vậy đối với một hệ phức tạp ta sẽ nghĩ đến phép đặt ẩn phụ để hệ trở nên đơn giản. Phương pháp biến đổi thành tích. * Cơ sở phương pháp. Phân tích một trong hai phương trình của hệ thành tích các nhân tử. Đôi khi cần kết hợp hai phương trình thành phương trình hệ quả rồi mới đưa về dạng tích. Bài 1 (Khối D – 2012) Giải hệ Biến đổi phương trình (2) thành tích. Hoặc coi phương trình (2) là bậc hai với ẩn x hoặc y. Hệ đã cho . Hệ có 3 nghiệm Bài 2. (D – 2008) Giải hệ phương trình Phân tích. Rõ ràng, việc giải phương trình (2) hay kết hợp (1) với (2) không thu được kết quả khả quan nên chúng ta tập trung để giải (1). Lời giải. ĐK: (1) TH 1. (loại do ) TH 2. thế vào pt (2) ta được . Do . Vậy hệ có nghiệm Chú ý. Do có thể phân tích được thành tích của hai nhân tử bậc nhất đối y (hay x) nên có thể giải pt (1) bằng cách coi (1) là pt bậc hai ẩn y (hoặc x). Bài 3. (A – 2003) Giải hệ phương trình Phân tích. Từ cấu trúc của pt (1) ta thấy có thể đưa (1) về dạng tích. Lời giải. ĐK: . (1) TH 1. thế vào (2) ta được hoặc (t/m) TH 2. thế vào (2) ta được . PT này vô nghiệm. Vậy tập nghiệm của hệ là S = Bài 3. (Thi thử GL) Giải hệ phương trình Lời giải. TH 1. thế vào pt thứ hai ta được TH 2. . (2) Trường hợp này không xảy ra do Vậy tập nghiệm của hệ phương trình là S = Bài 4. Giải hệ phương trình Phân tích. Rõ ràng, việc giải phương trình (2) hay kết hợp (1) với (2) không thu được kết quả khả quan nên chúng ta tập trung để giải (1) Lời giải. ĐK: . (1) TH 1. thế vào (2) ta được TH 2. vô nghiệm do ĐK Vậy tập nghiệm của hệ là S = Bài 5 (Thử ĐT 2013) Giải hệ phương trình Điều kiện : PT 0,25 Từ PT (2) ta có 0,25 PT , thay vào PT (2) ta được : hoặc 0,25 Kết hợp với điều kiện ta có , KL: Vậy hệ đã cho có hai nghiệm (x; y) là : 0,25 Bài 6 (A – 2011 ) Giải hệ PT : HD : Biến đổi PT (2) thành tích ta có . TH1:thay vào PT (1). TH 2: PT(1) Bài 7 (Thử GL 2012) Giải hệ : HD : Từ (2) thay vào (1) ta có : Phương pháp đặt ẩn phụ. Bài 1. Giải hệ phương trình Lời giải. Đây là hệ đối xứng loại I đơn giản nên ta giải theo cách phổ biến. Hệ Đặt ta được TH 1. TH 2. . Vậy tập nghiệm của hệ là S = Chú ý. Nếu hệ pt có nghiệm là thì do tính đối xứng, hệ cũng có nghiệm là . Do vậy, để hệ có nghiệm duy nhất thì điều kiện cần là . Không phải lúc nào hệ đối xứng loại I cũng giải theo cách trên. Đôi khi việc thay đổi cách nhìn nhận sẽ phát hiện ra cách giải tốt hơn. Bài tập tương tự : (ĐT 2010) Giải hệ phương trình: Bài 2 (D – 2004 )Tìm m để hệ có nghiệm : Bài 4. Giải hệ phương trình Phân tích. Đây là hệ đối xứng loại I Hướng 1. Biểu diễn từng pt theo tổng và tích Hướng 2. Biểu diễn từng pt theo và . Rõ ràng hướng này tốt hơn. Lời giải. Hệ . Đặt ta được TH 1. TH 2. Đổi vai trò của a và b ta được . Vậy tập nghiệm của hệ là S = Nhận xét. Bài toán trên được hình thành theo cách sau Xuất phát từ hệ phương trình đơn giản (I) Thay vào hệ (I) ta được hệ (1) đó chính là ví dụ 2. Thay vào hệ (I) ta được hệ (2) Thay vào hệ (I) ta được hệ (3) Thay vào hệ (I) ta được hệ (4) Thay vào hệ (I) ta được hệ (5) Như vậy, với hệ xuất (I), bằng cách thay biến ta thu được rất nhiều hệ pt mới. Thay hệ xuất phát (I) bằng hệ xuất phát (II) và làm tương tự như trên ta lại thu được các hệ mới khác. Chẳng hạn : Thay vào hệ (II) ta được hệ (6) Thay vào hệ (II) ta được hệ (7) Thay vào hệ (II) ta được hệ (8) Thay vào hệ (II) ta được hệ (9) Thay vào hệ (II) ta được hệ (10) ... Bài 5 (D – 2007 ) Tìm m để hệ có nghiệm : . Đặt ẩn phụ Điều kiện Ta có hệ Bài 6 Giải hệ phương trình : (CĐ – 2010 ) (B – 2002) Bài 7 (Sát hạch khối 10 năm 2012) Giải hệ : a) Hệ Đặt Nghiệm b) Hệ Đặt Nghiệm Bài 8 (D – 2009 ) Giải hệ phương trình : ĐK. . Hệ Đặt ta được hệ : Bài 9 (A – 2008) Giải hệ phương trình : Hệ . Đặt ta được : Vậy tập nghiệm của hệ pt là S = Bài 10 Giải hệ phương trình : Hệ . Đặt ta được hệ hoặc Với hoặc Với hoặc Cách 2 : Thế (1) vào PT (2) và rút gọn ta được : Bài 11 (A – 2006) Giải hệ phương trình : ĐK: Hệ Đặt . ta được hệ pt (thỏa mãn đk) Bài 12 (Thử ĐT2010) Giải hệ phương trình: . Bình phương cả 2 PT. Bài 13 (Thử GL 2012) Giải hệ : PT (1) PT (2) Ta có Bài 14 (ĐT 2011) Giải hệ : . Lần lượt chia cho và đặt ẩn phụ. Bài 15 (B – 2009 ) Giải hệ : . Lần lượt chia cho và đặt ẩn phụ. Bài 16 (Thử ĐT2012) Giải hệ : Chia 2 vế của 2 PT cho y và đặt ẩn phụ. Bài 17 Giải hệ phương trình: Phương pháp hàm số. * Cơ sở phương pháp. Nếu đơn điệu trên khoảng và thì : Bài 1 Giải các HPT sau : Bài 2 Giải hệ phương trình : Bài 3. Giải hệ phương trình Phân tích. Ta có thể giải hệ trên bằng phương pháp đưa về dạng tích. Tuy nhiên ta muốn giải hệ này bằng phương pháp sử dụng tính đơn điệu của hàm số. Hàm số không đơn điệu trên toàn trục số, nhưng nhờ có (2) ta giới hạn được x và y trên đoạn . Lời giải. Từ (2) ta có Hàm số có nghịch biến trên đoạn . nên (1) thế vào pt (2) ta được . Vậy tập nghiệm của hệ là S = Nhận xét. Trong TH này ta đã hạn chế miền biến thiên của các biến để hàm số đơn điệu trên đoạn đó. Bài 4 Giải hệ phương trình: PT Xét hàm . HS đồng biến. Từ (1) Thay và (2) tiếp tục sử dụng PP hàm số CM PT (2) có 1 nghiệm duy nhất . Bài 5 (A – 2003) Giải hệ : Xét hàm số nên hàm số đồng biến. Từ Thay vào (2) có nghiệm Bài 6 (Thử GL) Giải hệ phương trình . Xét hàm số nên hàm số đồng biến. Từ Thay vào (2) có nghiệm . vậy hệ có nghiệm . Bài 7 (Thi HSG tỉnh Hải Dương 2012) Từ điều kiện và từ phương trình (2) có , xét hàm số trên Hàm số đồng biến trên , ta có Với thay vào (2) giải được Bài 8 (A – 2012) Giải hệ phương trình Từ phương trình (2) nên nên xét trên Chỉ ra f(t) nghịch biến. Có Nghiệm Bài 9. (A – 2010) Giải hệ phương trình Lời giải. (1) với . ĐB trên . Vậy Thế vào pt (2) ta được Với . CM hàm g(x) nghịch biến. Ta có nghiệm duy nhất Bài 10.(Thi thử ĐT 2011) Tìm các giá trị của m để hệ phương trình sau có nghiệm Lời giải. - Điều kiện. (1) - Hàm số nghịch biến trên đoạn nên Thế vào pt (2) ta được Hệ có nghiệm Pt (3) có nghiệm Xét . Pt (3) có nghiệm Bài 11 (Thử ĐT 2012) Giải hệ : . TH1 : Xét thay vào hệ thây không thỏa mãn. TH2 : Xét , chia 2 vế của (1) cho ta được Xét hàm số nên hàm số đồng biến. Từ Thay vào (2) ta có PT . Vậy hệ có nghiệm Bài 15. Giải hệ phương trình Phân tích. Nếu thay vào phương trình thứ nhất thì ta sẽ được hđt Lời giải. Thay vào phương trình thứ nhất ta được (1) Xét hàm số có suy ra đồng biến trên . (1) thế vào pt thứ hai ta được . Vậy tập nghiệm của hệ là S = Bài 16. Giải hệ phương trình Lời giải. Trừ vế hai pt ta được với . đồng biến trên . Bởi vậy thế vào pt thứ nhất ta được Với . do và Suy ra đồng biến trên . Bởi vậy Vậy hệ phương trình có nghiệm duy nhất x = y = 0 Bài 17. Chứng minh hệ có đúng 2 nghiệm Lời giải. ĐK: . Do nên Trừ vế hai pt ta được Hay với . đồng biến trên . Bởi vậy thế vào pt thứ nhất ta được Với . Ta có Suy ra đồng biến trên . liên tục trên và có nên có nghiệm duy nhất và Từ BBT của ta suy ra pt có đúng 2 nghiệm . Vậy hệ phương trình đã cho có đúng 2 nghiệm dương. Bài 18 Giải hệ phương trình Lời giải. ĐK: (1) với ĐB trên và NB trên TH 1. hoặc thì Thế vào pt (2) ta được (không thỏa mãn) TH 2. hoặc ngược lại thì TH 3. thì hệ có nghiệm . Vậy hệ có nghiệm duy nhất Phương pháp sử dụng bất đẳng thức. Cơ sở phương pháp : Sử dụng BĐT để chứng minh hoặc ngược lại, dấu bằng xảy ra khi Một số BĐT quen thuộc. Bài 1 Giải hệ : HD : Từ (1) VTVP, dầu bằng khi thay vào PT (2) ta có : Ta có : Bài 2 (Thi thử ĐT 2013) Giải hệ : (2) . 0,25 (2) . 0,25 Xét hàm số Vì vậy trên hàm số f(t) đồng biến 0,25 TH 1. Kết hợp với . TH 2. hệ trở thành vô nghiệm Vậy hệ đã cho vô nghiệm. 0,25

Chuyên Đề Hệ Phương Trình Bậc Nhất Hai Ẩn Số

VẤN ĐỀ 3: HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN SỐ A. MỤC TIÊU: Học sinh nắm được - Khái niệm hệ phương trình bậc nhất hai ẩn: và Cách giải - Một số dạng toán về hệ phương trình bậc nhất hai ẩn B. NỘI DUNG: I: CÁCH GIẢI HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN Dạng 1: Giải hệ phương trình có bản và đưa về dạng cơ bản 1.- Vận dụng quy tắc thế và quy tắc cộng đại số để giải các hệ phương trình sau: Giải hệ phương trình bằng phương pháp thế Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y) = (2;1) Giải hệ phương trình bằng phương pháp cộng đại số Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y) = (2;1) 2.- Bài tập: Bài 1: Giải các hệ phương trình 1) 2) 3) 4) 5) 6) 7) Bài 2: Giải các hệ phương trình sau: 1) 2) 3) 4) 5) 6) Dạng 2. Giải các hệ phương trình sau bằng cách đặt ẩn số phụ Bài tập: 1) 2) 3) 4) 5) 6) 7) 8) Dạng 3. Giải và biện luận hệ phương trình Phương pháp giải: Từ một phương trình của hệ tìm y theo x rồi thế vào phương trình thứ hai để được phương trình bậc nhất đối với x Giả sử phương trình bậc nhất đối với x có dạng: ax = b (1) Biện luận phương trình (1) ta sẽ có sự biện luận của hệ i) Nếu a=0: (1) trở thành 0x = b - Nếu b = 0 thì hệ có vô số nghiệm - Nếu b0 thì hệ vô nghiệm ii) Nếu a 0 thì (1) x = , Thay vào biểu thức của x ta tìm y, lúc đó hệ phương trình có nghiệm duy nhất. Ví dụ: Giải và biện luận hệ phương trình: Từ (1) y = mx – 2m, thay vào (2) ta được: 4x – m(mx – 2m) = m + 6 (m2 – 4)x = (2m + 3)(m – 2) (3) i) Nếu m2 – 4 0 hay m2 thì x = Khi đó y = - . Hệ có nghiệm duy nhất: (;-) ii) Nếu m = 2 thì (3) thỏa mãn với mọi x, khi đó y = mx -2m = 2x – 4 Hệ có vô số nghiệm (x, 2x-4) với mọi x R iii) Nếu m = -2 thì (3) trở thành 0x = 4 . Hệ vô nghiệm Vậy: - Nếu m2 thì hệ có nghiệm duy nhất: (x,y) = (;-) - Nếu m = 2 thì hệ có vô số nghiệm (x, 2x-4) với mọi x R - Nếu m = -2 thì hệ vô nghiệm Bài tập: Giải và biện luận các hệ phương trình sau: 1) 2) 3) 4) 5) 6) DẠNG 4: XÁC ĐỊNH GIÁ TRỊ CỦA THAM SỐ ĐỂ HỆ CÓ NGHIỆM THỎA MÃN ĐIỀU KIỆN CHO TRƯỚC Phương pháp giải: Giải hệ phương trình theo tham số Viết x, y của hệ về dạng: n + với n, k nguyên Tìm m nguyên để f(m) là ước của k Ví dụ1: Định m nguyên để hệ có nghiệm duy nhất là nghiệm nguyên: HD Giải: để hệ có nghiệm duy nhất thì m2 – 4 0 hay m Vậy với m hệ phương trình có nghiệm duy nhất Để x, y là những số nguyên thì m + 2 Ư(3) = Bài Tập: Bài 1: Định m nguyên để hệ có nghiệm duy nhất là nghiệm nguyên: Bài 2: Định m, n để hệ phương trình sau có nghiệm là (2; -1) HD: Thay x = 2 ; y = -1 vào hệ ta được hệ phương trình với ẩn m, n Định a, b biết phương trình ax2 -2bx + 3 = 0 có hai nghiệm là x = 1 và x = -2 HD: thay x = 1 và x = -2 vào phương trình ta được hệ phương trình với ẩn a, b Xác định a, b để đa thức f(x) = 2ax2 + bx – 3 chia hết cho 4x – 1 và x + 3 HD: f(x) = 2ax2 + bx – 3 chia hết cho 4x – 1 và x + 3 nên. Biết nếu f(x) chia hết cho ax + b thì f(-) = 0 Giải hệ phương trình ta được a = 2; b = 11 Cho biểu thức f(x) = ax2 + bx + 4. Xác định các hệ số a và b biết rằng f(2) = 6 , f(-1) = 0 HD: Bài 3: Xác định a, b để đường thẳng y = ax + b đi qua hai điểm A(2 ; 1) ; B(1 ; 2) HD: Đường thẳng y = ax + b đi qua hai điểm A(2 ; 1) ; B(1 ; 2) ta có hệ phương trình Xác định a, b để đường thẳng y = ax + b đi qua hai điểm a) M(1 ; 3) ; N(3 ; 2) b) P(1; 2) ; Q(2; 0) Bài 4: Định m để 3 đường thẳng 3x + 2y = 4; 2x – y = m và x + 2y = 3 đồng quy DH giải: - Tọa độ giao điểm M (x ; y) của hai đường thẳng 3x + 2y = 4 và x + 2y = 3 là nghiệm của hệ phương trình: . Vậy M(0,2 ; 1,25) Để ba đường thẳng trên đồng quy thì điểm M thuộc đường thẳng 2x – y = m, tức là: 2.0,2- 1,25 = m m = -0,85 Vậy khi m = -0,85 thì ba đường thẳng trên đồng quy Định m để 3 đường thẳng sau đồng quy a) 2x – y = m ; x - y = 2m ; mx – (m – 1)y = 2m – 1 b) mx + y = m2 + 1 ; (m +2)x – (3m + 5)y = m – 5 ; (2 – m)x – 2y = -m2 + 2m – 2 Bài 5: Định m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn hệ thức cho trước Cho hệ phương trình: Với giá trị nào của m để hệ có nghiệm (x ; y) thỏa mãn hệ thức: 2x + y + = 3 HD Giải: - Điều kiện để hệ phương trình có nghiệm duy nhất: m 2 - Giải hệ phương trình theo m - Thay x = ; y = vào hệ thức đã cho ta được: 2. + + = 3 3m2 – 26m + 23 = 0 m1 = 1 ; m2 = (cả hai giá trị của m đều thỏa mãn điều kiện) Vậy m = 1 ; m = BÀI TẬP TỔNG HỢP Bài 1: Cho hệ phương trình (m là tham số) Giải hệ phương trình khi m = Giải và biện luận hệ phương trình theo m Với giá trị nào của m thì hệ có nghiệm (x;y) với x, y là các số nguyên dương Bài 2: Cho hệ phương trình : Giải và biện luận hệ phương trình theo m Với giá trị nguyên nào của m để hai đường thẳng của hệ cắt nhau tại một điểm nằm trong góc phần tư thứ IV của hệ tọa độ Oxy Định m để hệ có nghiệm duy nhất (x ; y) sao cho P = x2 + y2 đạt giá trị nhỏ nhất. Bài 3: Cho hệ phương trình Giải hệ phương trình khi m = 5 Tìm m nguyên sao cho hệ có nghiệm (x; y) với x < 1, y < 1 Với giá trị nào của m thì ba đường thẳng 3x + 2y = 4; 2x – y = m; x + 2y = 3 đồng quy Bài 4: Cho hệ phương trình: Giải hệ phương trình khi m = 1 Với giá trị nào của m để hệ có nghiệm (-1 ; 3) Với giá trị nào của m thì hệ có nghiệm duy nhất, vô nghiệm Bài 5: Cho hệ phương trình: Giải hệ phương trình khi m = 3 Với giá trị nào của m để hệ có nghiệm (-1 ; 3) Chứng tỏ rằng hệ phương trình luôn luôn có nghiệm duy nhất với mọi m Với giá trị nào của m để hệ có nghiệm (x ; y) thỏa mãn hệ thức: x - 3y = - 3 Bài 6: Cho hệ phương trình: a) Giải hệ phương trình khi . b) Tìm giá trị của m để hệ phương trình đã cho có nghiệm (x; y) thỏa mãn hệ thức . Bài 7: Cho hệ phương trình Giải hệ phương trình khi m = 5 Chứng tỏ rằng hệ phương trình luôn luôn có nghiệm duy nhất với mọi m Định m để hệ có nghiệm (x ; y) = ( 1,4 ; 6,6) Tìm giá trị nguyên của m để hai đường thẳng của hệ cắt nhau tại một điểm nằm trong góc phần tư thứ IV trên mặt phẳng tọa độ Oxy Với trị nguyên nào của m để hệ có nghiệm (x ; y) thỏa mãn x + y = 7

Giải Hệ Phương Trình Bằng Phương Pháp Thế Và Phương Pháp Cộng Đại Số

Cập nhật lúc: 15:22 26-09-2018 Mục tin: LỚP 9

Tài liệu giới thiệu về hai phương pháp chính dùng để giải hệ hai phương trình bậc nhất hai ẩn. Đó là phương pháp thế và phương pháp cộng đại số.

GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ A. TRỌNG TÂM KIẾN THỨC 1. Quy tắc thế

Quy tắc thế dùng để biến đổi một hệ phương trình thành hệ phương trình tương đương. Quy tắc thế bao gồm hai bước sau:

Bước 1. Từ một phương trình của hệ đã cho (coi là phương trình thức nhất), ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình thức hai để được một phương trình mới (chỉ còn một ẩn).

Bước 2. Dùng phương trình mới ấy để thay thế cho phương trình thức hai trong hệ (phương trình thức nhất cũng thường được thay thế bởi hệ thức biểu diễn một ẩn theo ẩn kia có được ở bước 1).

2. Tóm tắt cách giải hệ phương trình bằng phương pháp thế

+ Dùng quy tắc thế để biến đổi phương trình đã cho để được một hệ phương trình mới, trong đó có một phương trình một ẩn.

+ Giải phương trình một ẩn vừa có, rồi suy ra nghiệm của hệ đã cho.

GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐ A. TRỌNG TÂM KIẾN THỨC 1. Quy tắc cộng đại số

Quy tắc cộng đại số dùng để biến đổi một hệ phương trình thành hệ phương trình tương đương. Quy tắc cộng đại số gồm hai bước sau:

Bước 1: Coognj hay trừ tằng về hai phương trình của hệ phương trình đã cho để được một phương trình mới.

Bước 2: Dùng phương trình mới ấy thay thế cho một trong hai phương trình của hệ (và giữ nguyên phương trình kia)

2. Tóm tắt cách giải hệ phương trình bằng phương pháp cộng đại số

+ Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình của hệ bằng nhau hoặc đối nhau.

+ Áp dụng quy tắc cộng đại số để được hệ phương trình mưới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng (0) (tức là phương trình một ẩn).

+ Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho.

Chuyên Đề Hệ Phương Trình Đối Xứng Loại (Kiểu) I

Trang 1 CHUYÊN ðỀ HỆ PHƯƠNG TRÌNH ðỐI XỨNG LOẠI (KIỂU) I TÓM TẮT GIÁO KHOA VÀ PHƯƠNG PHÁP GIẢI TOÁN I. Hệ ñối xứng loại (kiểu) I có dạng tổng quát: f(x, y) = 0 g(x, y) = 0    , trong ñó f(x, y) = f(y, x) g(x, y) = g(y, x)   Phương pháp giải chung: i) Bước 1: ðặt ñiều kiện (nếu có). ii) Bước 2: ðặt S = x + y, P = xy với ñiều kiện của S, P và 2S 4P≥ . iii) Bước 3: Thay x, y bởi S, P vào hệ phương trình. Giải hệ tìm S, P rồi dùng Vi–et ñảo tìm x, y. Chú ý: i) Cần nhớ: x2 + y2 = S2 – 2P, x3 + y3 = S3 – 3SP. ii) ðôi khi ta phải ñặt ẩn phụ u = u(x), v = v(x) và S = u + v, P = uv. iii) Có những hệ phương trình trở thành ñối xứng loại I sau khi ñặt ẩn phụ. Ví dụ 1. Giải hệ phương trình 2 2 3 3 x y xy 30 x y 35  + =  + = . GIẢI ðặt S x y, P xy= + = , ñiều kiện 2S 4P≥ . Hệ phương trình trở thành: 2 2 30 PSP 30 S 90S(S 3P) 35 S S 35 S  = =  ⇔    − =   − =     S 5 x y 5 x 2 x 3 P 6 xy 6 y 3 y 2    = + = = =      ⇔ ⇔ ⇔ ∨       = = = =       . Ví dụ 2. Giải hệ phương trình 3 3 xy(x y) 2 x y 2  − = −  − = . GIẢI ðặt t y, S x t, P xt= − = + = , ñiều kiện 2S 4P.≥ Hệ phương trình trở thành: 3 3 3 xt(x t) 2 SP 2 x t 2 S 3SP 2  + = =  ⇔   + = − =   S 2 x 1 x 1 P 1 t 1 y 1   = = =    ⇔ ⇔ ⇔     = = = −     . Ví dụ 3. Giải hệ phương trình 2 2 2 2 1 1 x y 4 x y 1 1 x y 4 x y  + + + =  + + + = . GIẢI ThS. ðoàn Vương Nguyên Trang 2 ðiều kiện x 0, y 0≠ ≠ . Hệ phương trình tương ñương với: 2 2 1 1 x y 4 x y 1 1 x y 8 x y        + + + =                 + + + =          ðặt 2 1 1 1 1 S x y ,P x y ,S 4P x y x y             = + + + = + + ≥                      ta có: 2 1 1 x y 4 S 4 S 4 x y P 4 1 1S 2P 8 x y 4 x y        + + + =     = =         ⇔ ⇔      =− =      + + =         1 x 2 x 1x 1 y 1 y 2 y  + =  = ⇔ ⇔    = + = . Ví dụ 4. Giải hệ phương trình 2 2x y 2xy 8 2 (1) x y 4 (2)  + + =   + = . GIẢI ðiều kiện x, y 0≥ . ðặt t xy 0= ≥ , ta có: 2xy t= và (2) x y 16 2t⇒ + = − . Thế vào (1), ta ñược: 2t 32t 128 8 t t 4− + = − ⇔ = Suy ra: xy 16 x 4 x y 8 y 4  = =  ⇔   + = =   . II. ðiều kiện tham số ñể hệ ñối xứng loại (kiểu) I có nghiệm Phương pháp giải chung: i) Bước 1: ðặt ñiều kiện (nếu có). ii) Bước 2: ðặt S = x + y, P = xy với ñiều kiện của S, P và 2S 4P≥ (*). iii) Bước 3: Thay x, y bởi S, P vào hệ phương trình. Giải hệ tìm S, P theo m rồi từ ñiều kiện (*) tìm m. Chú ý: Khi ta ñặt ẩn phụ u = u(x), v = v(x) và S = u + v, P = uv thì nhớ tìm chính xác ñiều kiện u, v. Ví dụ 1 (trích ñề thi ðH khối D – 2004). Tìm ñiều kiện m ñể hệ phương trình sau có nghiệm thực: x y 1 x x y y 1 3m  + =   + = − . GIẢI ThS. ðoàn Vương Nguyên Trang 3 ðiều kiện x, y 0≥ ta có: 3 3 x y 1 x y 1 x x y y 1 3m ( x) ( y) 1 3m   + = + =  ⇔   + = − + = −    ðặt S x y 0,P xy 0= + ≥ = ≥ , 2S 4P.≥ Hệ phương trình trở thành: 2 S 1 S 1 P mS 3SP 1 3m  = =  ⇔    =− = −  . Từ ñiều kiện 2S 0,P 0,S 4P≥ ≥ ≥ ta có 10 m 4 ≤ ≤ . Ví dụ 2. Tìm ñiều kiện m ñể hệ phương trình 2 2 x y xy m x y xy 3m 9  + + =  + = − có nghiệm thực. GIẢI 2 2 x y xy m (x y) xy m xy(x y) 3m 9x y xy 3m 9  + + = + + =  ⇔    + = −+ = −  . ðặt S = x + y, P = xy, 2S 4P.≥ Hệ phương trình trở thành: S P m SP 3m 9  + =  = − . Suy ra S và P là nghiệm của phương trình 2t mt 3m 9 0− + − = S 3 S m 3 P m 3 P 3  = = −  ⇒ ∨   = − =   . Từ ñiều kiện ta suy ra hệ có nghiệm 2 2 3 4(m 3) 21 m m 3 2 3 (m 3) 12 4  ≥ − ⇔ ⇔ ≤ ∨ ≥ + − ≥ . Ví dụ 3. Tìm ñiều kiện m ñể hệ phương trình x 4 y 1 4 x y 3m  − + − =   + = có nghiệm. GIẢI ðặt u x 4 0, v y 1 0= − ≥ = − ≥ hệ trở thành: 2 2 u v 4u v 4 21 3mu v 3m 5 uv 2  + = + =  ⇔  − + = − =   . Suy ra u, v là nghiệm (không âm) của 2 21 3mt 4t 0 2 − − + = (*). Hệ có nghiệm ⇔ (*) có 2 nghiệm không âm / 3m 130 0 132S 0 m 7 21 3m 3 0P 0 2  −∆ ≥  ≥ ⇔ ≥ ⇔ ⇔ ≤ ≤    −  ≥≥    . ThS. ðoàn Vương Nguyên Trang 4 Ví dụ 4. Tìm ñiều kiện m ñể hệ phương trình 2 2x y 4x 4y 10 xy(x 4)(y 4) m  + + + =  + + = có nghiệm thực. GIẢI 2 22 2 2 2 (x 4x) (y 4y) 10x y 4x 4y 10 xy(x 4)(y 4) m (x 4x)(y 4y) m   + + + = + + + = ⇔   + + = + + =   . ðặt 2 2u (x 2) 0, v (y 2) 0= + ≥ = + ≥ . Hệ phương trình trở thành: u v 10 S 10 uv 4(u v) m 16 P m 24  + = =  ⇔   − + = − = +   (S = u + v, P = uv). ðiều kiện 2S 4P S 0 24 m 1 P 0  ≥ ≥ ⇔ − ≤ ≤  ≥ . BÀI TẬP Giải các hệ phương trình sau 1. 2 2 x y xy 5 x y xy 7  + + =  + + = . ðáp số: x 1 x 2 y 2 y 1  = =  ∨   = =   . 2. 2 2x xy y 3 2x xy 2y 3  + + =  + + = − . ðáp số: x 1 x 3 x 3 y 1 y 3 y 3    = − = = −   ∨ ∨     = − = − =      . 3. 3 3 x y 2xy 2 x y 8  + + =  + = . ðáp số: x 2 x 0 y 0 y 2  = =  ∨   = =   . 4. 3 3x y 7 xy(x y) 2  − =  − = . ðáp số: x 1 x 2 y 2 y 1  = − =  ∨   = − =   . 5. 2 2 x y 2xy 5 x y xy 7  − + =  + + = . ðáp số: 1 37 1 37 x xx 2 x 1 4 4 y 1 y 2 1 37 1 37 y y 4 4   − + = =  = = −      ∨ ∨ ∨       = = − − − − +     = =     . 6. 2 2 2 2 1 (x y)(1 ) 5 xy 1 (x y )(1 ) 49 x y  + + =  + + = . ðáp số: x 1 x 17 3 5 7 3 5 x x 2 2 7 3 5 7 3 5 y yy 1 y 1 2 2    = − = −   − +   = =   ∨ ∨ ∨   − +   = =   = − = −          . ThS. ðoàn Vương Nguyên Trang 5 7. x y y x 30 x x y y 35  + =   + = . ðáp số: x 4 x 9 y 9 y 4  = =  ∨   = =   . 8. x y 7 1 y x xy x xy y xy 78  + = +  + = y 9 y 4  = =  ∨   = =   . 9. ( ) 2 23 3 3 3 2(x y) 3 x y xy x y 6  + = +  + = . ðáp số: x 8 x 64 y 64 y 8  = =  ∨   = =   . 10. Cho x, y, z là nghiệm của hệ phương trình 2 2 2x y z 8 xy yz zx 4  + + =  + + = . Chứng minh 8 8x, y, z 3 3 − ≤ ≤ . HƯỚNG DẪN GIẢI Hệ phương trình 2 2 2 2 2x y 8 z (x y) 2xy 8 z xy z(x y) 4 xy z(x y) 4   + = −  + − = − ⇔ ⇔   + + = + + =   2 2(x y) 2[4 z(x y)] 8 z xy z(x y) 4  + − − + = −⇔   + + = 2 2(x y) 2z(x y) (z 16) 0 xy z(x y) 4  + + + + − =⇔   + + = 2 2 x y 4 z x y 4 z xy (z 2) xy (z 2)  + = − + = − −  ⇔ ∨   = − = +   . Do x, y, z là nghiệm của hệ nên: 2 2 2 2 2 (4 z) 4(z 2) 8 8 (x y) 4xy z ( 4 z) 4(z 2) 3 3  − ≥ − + ≥ ⇔ ⇔ − ≤ ≤ − − ≥ + . ðổi vai trò x, y, z ta ñược 8 8x, y, z 3 3 − ≤ ≤ . 11. x y 1 1 1 16 16 2 x y 1        + =          + = . ðáp số: 1 x 2 1 y 2  =   = . 12. sin (x y) 2 2 2 1 2(x y ) 1 π + =  + = HƯỚNG DẪN GIẢI Cách 1: sin (x y) 2 2 2 22 2 sin (x y) 0 x y (1)2 1 2(x y ) 1 2(x y ) 1 (2)2(x y ) 1 π +  π + = + ∈ =    ⇔ ⇔     + = + =+ =    Z 2 2 2 2 1 2 2 x x1 2 2 2(2) x y 2 x y 2 12 2 2y y 2 2 2    ≤ − ≤ ≤  ⇔ + = ⇒ ⇒ ⇒ − ≤ + ≤    ≤ − ≤ ≤    . x y 0 (1) x y 1  + = ⇒  + = ± thế vào (2) ñể giải. ThS. ðoàn Vương Nguyên Trang 6 Cách 2: ðặt S = x + y, P = xy. Hệ trở thành: sinS 22 S2 1 4P 2S 12(S 2P) 1 π  ∈ =  ⇔    = −− =  Z . Từ ñiều kiện 2S 4P≥ ta suy ra kết quả tương tự. Hệ có 4 nghiệm phân biệt 1 1 1 1 x x x x 2 2 2 2 1 1 1 1 y y y y 2 2 2 2          = = − = = −      ∨ ∨ ∨          = = − = − =          . Tìm ñiều kiện của m ñể các hệ phương trình thỏa yêu cầu 1. Tìm m ñể hệ phương trình 2 2x xy y m 6 2x xy 2y m  + + = +  + + = có nghiệm thực duy nhất. HƯỚNG DẪN GIẢI Hệ có nghiệm duy nhất suy ra x = y, hệ trở thành: 2 2 2 2 2 3x m 6 3x 6 m m 3 m 21x 4x m x 4x 3x 6    = +  − = = −  ⇔ ⇒    =+ = + = −     . + m = – 3: 2 2 2x xy y 3 (x y) xy 3 2(x y) xy 3 2(x y) xy 3   + + =  + − = ⇔   + + = − + + = −   x y 0 x y 2 x 3 x 3 x 1 xy 3 xy 1 y 1y 3 y 3     + = + = − = = − = −     ⇔ ∨ ⇔ ∨ ∨         = − = = −= − =         (loại). + m = 21: 2 2 2x xy y 27 (x y) xy 27 2x xy 2y 21 2(x y) xy 21   + + =  + − = ⇔   + + = + + =   x y 8 x y 6 x 3 xy 37 xy 9 y 3   + = − + = =    ⇔ ∨ ⇔     = = =     (nhận). Vậy m = 21. 2. Tìm m ñể hệ phương trình: 2 2 x xy y m 1 x y xy m  + + = +  + = HƯỚNG DẪN GIẢI 2 2 x xy y m 1 (x y) xy m 1 xy(x y) mx y xy m  + + = + + + = +  ⇔    + =+ =  x y 1 x y m xy m xy 1  + = + =  ⇔ ∨   = =   . Hệ có nghiệm thực dương 2 m 0 1 0 m m 2 1 4m m 4 4  ≥ ∨ ≥ . Vậy 10 m m 2 4 < ≤ ∨ ≥ . ThS. ðoàn Vương Nguyên Trang 7 3. Tìm m ñể hệ phương trình x y m x y xy m  + =   + − = có nghiệm thực. HƯỚNG DẪN GIẢI ( ) 22 x y mx y mx y m m m x y xy m xyx y 3 xy m 3  + =  + = + =  ⇔ ⇔   −  + − = =+ − =      . Suy ra x, y là nghiệm (không âm) của phương trình 2 2 m mt mt 0 3 − − + = (*). Hệ có nghiệm ⇔ (*) có 2 nghiệm không âm / 2 2 0 m 4m 0 m 0 S 0 m 0 1 m 4 P 0 m m 0  ∆ ≥ − ≤  =  ⇔ ≥ ⇔ ≥ ⇔    ≤ ≤  ≥ − ≥    . Vậy m 0 1 m 4= ∨ ≤ ≤ . 4. Tìm m ñể hệ phương trình 2 2 2 x y 2(1 m) (x y) 4  + = +  + = có ñúng 2 nghiệm thực phân biệt. HƯỚNG DẪN GIẢI 2 2 2 2 2 x y 2(1 m) (x y) 2xy 2(1 m) (x y) 4 (x y) 4   + = +  + − = + ⇔   + = + =   xy 1 m xy 1 m x y 2 x y 2  = − = −  ⇔ ∨   + = + = −   . Hệ có ñúng 2 nghiệm thực phân biệt khi ( ) 2 2 4(1 m) m 0± = − ⇔ = . 5. Cho x, y là nghiệm của hệ phương trình 2 2 2 x y 2m 1 x y m 2m 3  + = −  + = + − . Tìm m ñể P = xy nhỏ nhất. HƯỚNG DẪN GIẢI ðặt S x y, P xy= + = , ñiều kiện 2S 4P.≥ 2 2 2 2 2 x y 2m 1 S 2m 1 x y m 2m 3 S 2P m 2m 3  + = − = −  ⇔   + = + − − = + −   2 2 2 S 2m 1S 2m 1 3(2m 1) 2P m 2m 3 P m 3m 2 2  = − = − ⇔ ⇔   − − = + − = − +   Từ ñiều kiện suy ra 2 2 4 2 4 2(2m 1) 6m 12m 8 m . 2 2 − + − ≥ − + ⇔ ≤ ≤ Xét hàm số 23 4 2 4 2f(m) m 3m 2, m 2 2 2 − + = − + ≤ ≤ . Ta có 4 2 11 6 2 4 2 4 2min f(m) f , m ; 2 4 2 2    − − − +  = = ∀ ∈        Vậy 11 6 2 4 2min P m 4 2 − − = ⇔ = .

Cập nhật thông tin chi tiết về Chuyên Đề Một Số Phương Pháp Giải Hệ Phương Trình trên website Ictu-hanoi.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!