Xu Hướng 5/2023 # Chuyên Đề Vecto Trong Không Gian Quan Hệ Vuông Góc # Top 14 View | Ictu-hanoi.edu.vn

Xu Hướng 5/2023 # Chuyên Đề Vecto Trong Không Gian Quan Hệ Vuông Góc # Top 14 View

Bạn đang xem bài viết Chuyên Đề Vecto Trong Không Gian Quan Hệ Vuông Góc được cập nhật mới nhất trên website Ictu-hanoi.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất.

Nhóm thuvientoan.net xin gửi đến các bạn đọc tài liệu Chuyên đề vecto trong không gian quan hệ vuông góc.

Tài liệu gồm có 99 trang, tóm tắt các kiến thức SGK cần nắm và hướng dẫn giải các dạng toán chuyên đề vectơ trong không gian, quan hệ vuông góc thuộc chương trình Hình học 11 chương 3.

Khái quát nội dung tài liệu chuyên đề vectơ trong không gian, quan hệ vuông góc: §1. VECTƠ TRONG KHÔNG GIAN VÀ SỰ ĐỒNG PHẲNG CỦA CÁC VECTƠ. A. KIẾN THỨC CẦN NẮM I. Các định nghĩa. 1. Vectơ, giá và độ dài của vectơ. 2. Hai vectơ bằng nhau, vectơ_không. II. Phép cộng và phép trừ vectơ. 1. Định nghĩa. 2. Tính chất. 3. Các quy tắc cần nhớ khi tính toán. a. Quy tắc ba điểm. b. Quy tắc hình bình hành. c. Tính chất trung điểm, trọng tâm của tam giác. d. Quy tắc hình hộp. III. Phép nhân vectơ với một số. IV. Điều kiện đồng phẳng của ba vectơ. 1. Khái niệm về sự đồng phẳng của ba vectơ trong không gian. 2. Định nghĩa. 3. Điều kiện để ba vectơ đồng phẳng. 4. Phân tích(biểu thị) một vectơ theo ba vectơ không đồng phẳng. B. CÁC DẠNG BÀI TẬP Dạng 1. Xác định các yếu tố của vectơ. Dạng 2. Chứng minh các đẳng thức vectơ. Dạng 3. Chứng minh ba vectơ a, b, c đồng phẳng. C. BÀI TẬP TRẮC NGHIỆM

§2. HAI ĐƯỜNG THẲNG VUÔNG GÓC. A. KIẾN THỨC CẦN NẮM I. Tích vô hướng của hai vectơ trong không gian. 1. Góc giữa hai vectơ trong không gian. 2. Tích vô hướng của hai vectơ trong không gian. II. Vectơ chỉ phương của đường thẳng. III. Góc giữa hai đường thẳng. IV. Hai đường thẳng vuông góc. B. CÁC DẠNG BÀI TẬP Dạng 1: Tính góc giữa hai đường thẳng. Dạng 2. Chứng minh hai đường thẳng vuông góc. C. BÀI TẬP TRẮC NGHIỆM §3. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG. A. KIẾN THỨC CẦN NẮM I. Định nghĩa. II. Điều kiện để đường thẳng vuônmg góc với mặt phẳng. III. Tính chất. IV. Liên hệ giữa quan hệ song song và quan hệ vuông góc của đường thẳng và mặt phẳng. V. Phép chiếu vuông góc và định lí ba đường vuông góc. 1. Phép chiếu vuông góc. 2. Định lí ba đường vuông góc. 3. Góc giữa đường thẳng và mặt phẳng. B. CÁC DẠNG BÀI TẬP Dạng 1. Chứng minh đường thẳng vuông góc với mặt phẳng. Dạng 2. Chứng minh hai đường thẳng vuông góc. Dạng 3. Tìm thiết diện tạo bởi mặt phẳng qua một điểm và vuông góc với một đường thẳng cho trước. Dạng 4. Xác định góc giữa đường thẳng d và mặt phẳng α. C. BÀI TẬP TRẮC NGHIỆM

§4. HAI MẶT PHẲNG VUÔNG GÓC. A. KIẾN THỨC CẤN NẮM I. Góc giữa hai mặt phẳng. 1. Định nghĩa. 2. Cách xác định góc giữa hai mặt phẳng cắt nhau. 3. Diện tích hình chiếu của một đa giác. II. Hai mặt phẳng vuông góc. III. Hình lăng trụ đứng, hình hộp chữ nhật, hình lập phương. IV. Hình chóp đều và hình chóp cụt đều. B. CÁC DẠNG BÀI TẬP Dạng 1. Xác định góc giữa hai mặt phẳng. Dạng 2. Chứng minh hai mặt phẳng vuông góc. Dạng 3. Chứng minh đường thẳng vuông góc với mặt phẳng. Dạng 4. Thiết diện tạo bởi mặt phẳng vuông góc với mặt phẳng cho trước. C. BÀI TẬP TRẮC NGHIỆM

§5. KHOẢNG CÁCH. A. KIẾN THỨC CẦN NẮM I. Khoảng cách từ một điểm đền một đường thẳng, đến một mặt phẳng. 1. Khoảng cách từ một điểm M đến một đường thẳng ∆. 2. Khoảng cách từ một điểm M đến một mặt phẳng (P). II. Khoảng cách giữa hai đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song. 1. Khoảng cách giữa đường thẳng và mặt phẳng song song. 2. Khoảng cách giữa hai mặt phẳng song song. III. Đường vuông góc chung và khoảng cách giữa hai đường thẳng chéo nhau. B. CÁC DẠNG BÀI TẬP Dạng 1. Khoảng cách từ một điểm đến một mặt phẳng. Dạng 2: Xác định khoảng cách giữa hai đường thẳng chéo nhau. C. BÀI TẬP TRẮC NGHIỆM

….

Like fanpage của chúng tôi để cập nhật những tài liệu mới nhất: https://bit.ly/3g8i4Dt.

THEO THUVIENTOAN.NET

Chuyên Đề 8: Hình Học Giải Tích Trong Không Gian Oxyz

Hướng dẫn giải CDBT từ các ĐTQG Toán học – 231  Chuyên đề 8: HÌNH HỌC GIẢI TÍCH TRONG KHÔNG GIAN OXYZ  Vấn đề 1: MẶT PHẲNG VÀ ĐƯỜNG THẲNG A. PHƯƠNG PHÁP GIẢI TỌA ĐỘ 1. 1 2 3 1 2 3 u (u ; u ; u ) u u i u j u k     2. 1 1 2 2 3 3 a b (a b ; a b ; a b )     3.    1 1 2 2 3 3 a.b a b a b a b 4. 3 1 1 22 3 2 3 3 1 1 2 a a a aa a a,b ; ; b b b b b b             5.   2 2 2 1 2 3 a a a a 6. 1 1 2 2 3 3 a b a b a b a b        7.  a.b Cos(a,b) a . b 8. 1 2 3 1 2 3 a cùng phương b a,b 0 a : a : a b : b : b      9.    a,b,c đồng phẳng a,b .c 0 10. Diện tích tam giác:     ABC 1 S AB,AC 2 11. Thể tích tứ diện ABCD:    ABCD 1 V AB,AC AD 6 12. Thể tích hình hộp ABCD.A'B'C'D':         ABCD.A B C DV AB,AD AA MẶT PHẲNG  Vectơ pháp tuyến của mặt phẳng là vectơ khác vectơ 0 và có giá vuông góc mặt phẳng.  Phương trình tổng quát: (): Ax + By + Cz + D = 0 (   2 2 2A B C 0 )  0 0 0 đi qua M(x ; y ; z ) ( ) : co ù vectơ pháp tuyến : n (A;B;C)            0 0 0 ( ) : A(x x ) B(y y ) C(z z ) = 0 Hướng dẫn giải CDBT từ các ĐTQG Toán học – 232  Mặt phẳng chắn: () cắt Ox, Oy, Oz lần lượt A(a; 0; 0), B(0; b; 0), C(0; 0; c), (a, b, c khác 0)     x y z ( ) : 1 a b c  Mặt phẳng đặc biệt: (Oxy): z = 0, (Oxz): y = 0, (Oyz): x = 0 ĐƯỜNG THẲNG  Véctơ chỉ phương của đường thẳng là vectơ khác vectơ 0 và có giá cùng phương với đường thẳng.  0 0 0 1 2 3 đi qua M (x ; y ; z ) d : có vectơ chỉ phương a (a ; a ; a )    0 0 0 1 2 3 1 2 3 x x y y z z Phương trình tham số : với (a ; a ; a 0) a a a        Đường thẳng đặc biệt: y 0 x 0 x 0 Ox : ; Oy : ; Oz z 0 z 0 y 0              B. ĐỀ THI Bài 1: ĐẠI HỌC KHỐI D NĂM 2011 Trong không gian với hệ tọa độ Oxyz , cho điểm A(1; 2; 3) và đường thẳng d: x 1 y z 3 2 1 2      . Viết phương trình đường thẳng  đi qua điểm A, vuông góc với đường thẳng d và cắt trục Ox. Giải  Gọi M là giao điểm của  với trục Ox  M(m; 0; 0)  AM = (m –1; –2; –3)  Véctơ chỉ phương của d là a = (2; 1; –2).    d  AM  d  AM.a 0  2(m – 1) + 1(–2) –2(–3) = 0  m = –1.  Đường thẳng  đi qua M và nhận AM = (–2; –2; –3) làm vectơ chỉ phương nên có phương trình: x 1 y 2 z 3 2 2 3      . Cách 2.   đi qua A và cắt trục Ox nên  nằm trên mặt phẳng (P) đi qua A và chứa trục Ox.   đi qua A và vuông góc với d nên  nằm trên mặt phẳng (Q) đi qua A và vuông góc với d.  Ta có: +) Vectơ pháp tuyến của (P) là (P) n OA,i    .  d A   O x P Q M Hướng dẫn giải CDBT từ các ĐTQG Toán học – 233 +) Vectơ pháp tuyến của (Q) là (Q) d n a .   = (P)(Q)  véctơ chỉ phương của  là: (P) (Q) a n ,n     . Cách 3.  Mặt phẳng (Q) đi qua A và vuông góc với d  (Q): 2x + y – 2z + 2 = 0.  Gọi M là giao điểm của Ox và (Q)  M(–1; 0; 0).  Véctơ chỉ phương của  là: AM . Bài 2: ĐẠI HỌC KHỐI B NĂM 2011 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng : x 2 y 1 z 5 1 3 2       và hai điểm A(–2; 1; 1), B(–3; –1; 2). Tìm tọa độ điểm M thuộc đường thẳng  sao cho tam giác MAB có diện tích bằng 3 5 . Giải  Đường thẳng  đi qua E(–2; 1; –5) và có vectơ chỉ phương  a 1; 3; 2  nên có phương trình tham số là: x 2 t y 1 3t z 5 2t           (t  R).  M     M 2 t; 1 3t; 5 2t       AB 1; 2 ; 1   ,  AM t; 3t; 6 2t   ,  AB,AM t 12; t 6; t        .  SMAB = 3 5  1 AB,AM 3 5 2          2 2 2 t 12 t 6 t 6 5      3t 2 + 36t = 0  t = 0 hoặc t = –12. Vậy M(–2; 1; –5) hoặc M(–14; –35; 19). Bài 3: ĐẠI HỌC KHỐI D NĂM 2009 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng :      x 2 y 2 z 1 1 1 và mặt phẳng (P): x + 2y – 3z + 4 = 0. Viết phương trình đường thẳng d nằm trong (P) sao cho d cắt và vuông góc với đường thẳng . Giải Tọa độ giao điểm I của  với (P) thỏa mãn hệ:   x 2 y 2 z I 3; 1; l1 1 1 x 2y 3z 4 0            Vectơ pháp tuyến của (P):  n 1; 2; 3  ; vectơ chỉ phương của :  u 1; 1; 1  Hướng dẫn giải CDBT từ các ĐTQG Toán học – 234 Đường thẳng d cần tìm qua I và có một vectơ chỉ phương:        P P1 2n 1; 2; 3 , n 3; 2; 1   Phương trình d:          x 3 t y 1 2t z 1 t (t  ) Bài 4 :CAO ĐẲNG KHỐI A, B, D NĂM 2009 Trong không gian với hệ tọa độ Oxyz, cho các mặt phẳng (P1): x + 2y + 3z + 4 = 0 và (P2): 3x + 2y – z + 1 = 0. Viết phương trình mặt phẳng (P) đi qua điểm A(1; 1; 1), vuông góc với hai mặt phẳng (P1) và (P2) Giải Vectơ pháp tuyến của hai mặt phẳng (P1) và (P2):        P P1 2n 1; 2; 3 , n 3; 2; 1   (P) vuông góc với hai mặt phẳng (P1) và (P2)  (P) có một vectơ pháp tuyến:          P P P1 2n n ,n 8; 10; 4 2 4; 5; 2           Mặt khác (P) qua A(1; 1; 1) nên phương trình mặt phẳng (P): 4(x – 1) – 5(y – 1) + 2(z – 1) = 0 Hay (P): 4x – 5y + 2z – 1 = 0 Bài 5: CAO ĐẲNG KHỐI A, B, D NĂM 2009 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(1; 1; 0), B (0; 2; 1) và trọng tâm G(0; 2; 1). Viết phương trình đường thẳng  đi qua điểm C và vuông góc với mặt phẳng (ABC). Giải Ta có:  G là trọng tâm tam giác ABC  C(1; 3; 4)     AB 1; 1; 1 ; AC 2; 2; 4     Đường thẳng  vuông góc với mặt phẳng (ABC) nên có một vectơ chỉ phương     a AB,AC = 6(1; 1; 0) Mặt khác đường thẳng  đi qua điểm C nên Phương trình :             x 1 t y 3 t t z 4 Hướng dẫn giải CDBT từ các ĐTQG Toán học – 235 Bài 6: ĐẠI HỌC KHỐI B NĂM 2008 Trong không gian với hệ tọa độ Oxyz, cho 3 điểm A(0; 1; 2), B(2; –2; 1), C(–2; 0; 1) 1. Viết phương trình mặt phẳng đi qua ba điểm A, B, C. 2. Tìm tọa độ của điểm M thuộc mặt phẳng 2x + 2y + z – 3 = 0 sao cho: MA = MB = MC. Giải 1. đi qua A(0; 1; 2) (ABC) : có vectơ pháp tuyến là AB,AC 2(1; 2; 4)         Phương trình mp(ABC): 1(x – 0) + 2(y – 1) – 4(z – 2) = 0  x + 2y – 4z + 6 = 0 2. Cách 1: Ta có: AB.AC 0 nên điểm M nằm trên đường thẳng d vuông góc với mp(ABC) tại trung điểm I(0; 1; 1) của BC.         qua I(0; 1; 1) x y 1 z 1 d : d : 1 2 4có vectơ chỉ phương :a (1;2; 4) Tọa độ M là nghiệm của hệ                  x 22x 2y z 3 0 y 3x y 1 z 1 z 71 1 4 Vậy M(2; 3; 7). Cách 2: Gọi M(x; y; z) Ta có       MA MB MA MC M ( )                                2 2 2 2 2 2 2 2 2 2 2 2 (x 0) (y 1) (z 2) (x 2) (y 2) (z 1) (x 0) (y 1) (z 2) (x 2) (y 0) (z 1) 2x 2y z 3 0  x 2 y 3 M(2; 3; 7) z 7         . Hướng dẫn giải CDBT từ các ĐTQG Toán học – 236 Bài 7:CAO ĐẲNG KHỐI A, B, D NĂM 2008 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 1; 3) và đường thẳng d có phương trình:     x y z 1 1 1 2 1. Viết phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng d. 2. Tìm tọa độ điểm M thuộc đường thẳng d sao cho tam giác MOA cân tại đỉnh O Giải 1.      (P) d qua A(1; 1; 3) (P) : co ù vectơ pháp tuyến n a (1; 1;2) Phương trình mặt phẳng (P): 1(x – 1) – (y – 1) + 2(z – 3) = 0  x – y + 2z – 6 = 0 2. Gọi M(t; t; 2t + 1)  d  Tam giác OMA cân tại O  MO 2 = OA 2  t 2 + t 2 + (2t + 1) 2 = 1 + 1 + 9  6t 2 + 4t – 10 = 0      5 t 1 t 3  Với t = 1 tọa độ điểm M(1; 1; 3).  Với   5 t 3 tọa độ điểm 5 5 7 M ; ; 3 3 3        . Bài 8 :ĐẠI HỌC KHỐI D NĂM 2007 Trong không gian với hệ trục toạ độ Oxyz, cho hai điểm A(1; 4; 2), B(–1; 2; 4) và đường thẳng       x 1 y 2 z : 1 1 2 1. Viết phương trình đường thẳng d đi qua trọng tâm G của tam giác OAB và vuông góc với mặt phẳng (OAB). 2. Tìm tọa độ điểm M thuộc đường thẳng  sao cho MA 2 + MB 2 nhỏ nhất. Giải 1. Tọa độ trọng tâm: G(0; 2; 4). Ta có:   OA (1; 4; 2),OB ( 1; 2; 2) Vectơ chỉ phương của d là:     u (12; 6; 6) 6 2; 1; 1 Phương trình đường thẳng d:      x y 2 z 2 2 1 1 2/ Vì M    M(1 t; 2 + t; 2t)  MA 2 + MB 2 = (t 2 + (6  t) 2 + (2  2t) 2 ) + ((2 + t) 2 + (4  t) 2 + (4  2t) 2 ) = 12t 2  48t + 76 = 12(t 2) 2 + 28 MA 2 + MB 2 nhỏ nhất  t = 2. Khi đó M(1; 0; 4) Hướng dẫn giải CDBT từ các ĐTQG Toán học – 237 Bài 9: ĐẠI HỌC KHỐI B NĂM 2006 Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(0; 1; 2) và hai đường thẳng:      1 x y 1 z 1 d : 2 1 1 ;             2 x 1 t d : y 1 2t t z 2 t 1. Viết phương trình mặt phẳng (P) qua A, đồng thời song song d1 và d2. 2. Tìm tọa độ các điểm M thuộc d1, N thuộc d2 sao cho A, M, N thẳng hàng Giải 1. Vectơ chỉ phương của d1 và d2 lần lượt là: 1u (2; 1; 1)  và 2u (1; 2; 1)   vectơ pháp tuyến của (P) là 1 2 n u ,u ( 1; 3; 5)       Vì (P) qua A(0; 1; 2)  (P) : x + 3y + 5z  13 = 0. Do B(0; 1; 1)  d1, C(1; 1; 2)  d2 nhưng B, C  (P), nên d1, d2 Vậy phương trình mặt phẳng cần tìm là (P): x + 3y + 5z  13 = 0 2. Vì M  d1, N  d2 nên M(2m; 1+ m; 1 m), N(1 + n; 12n; 2 + n)  AM (2m; m; 3 m); AN (1 n; 2 2n; n)       .  AM,AN ( mn 2m 6n 6; 3mn m 3n 3; 5mn 5m).              A,M,N thẳng hàng     AM,AN 0  m = 0, n = 1  M(0; 1; 1), N(0; 1; 1). Bài 10: ĐỀ DỰ BỊ 1 - ĐẠI HỌC KHỐI B NĂM 2006 Trong không gian với hệ tọa độ Oxyz hai đường thẳng 1:            x 1 t y 1 t t z 2 2:      x 3 y 1 z 1 2 1 1. Viết phương trình mặt phẳng chứa đường thẳng 1 và song song với đường thẳng 2. 2. Xác định điểm A  1, B  2 sao cho đoạn AB có độ dài nhỏ nhất. Giải 1. 1 qua M1(1; 1; 2) có vectơ chỉ phương  1a 1; 1; 0  2 qua M2 (3; 1; 0) có vectơ chỉ phương  2a 1; 2; 1   mp (P) chứa 1 và song song với 2 nên (p) có vectơ pháp tuyến:  1 2n a ,a 1; 1; 1      Hướng dẫn giải CDBT từ các ĐTQG Toán học – 238 Phương trình: (P): (x – 1) – (y + 1) + (z – 2 ) = 0 (vì M1(1; 1; 2)  (P))  x + y – z + 2 = 0 2/ AB ngắn nhất  AB là đoạn vuông góc chung  Phương trình tham số 1 :  1 x 1 t A A 1 t; 1 t; 2y 1 t z 2              Phương trình tham số 2:  2 x 3 t B B 3 t ; 1 2t ; ty 1 2t z t                       AB 2 t t;2 2t t;t 2 Do      1 2 AB AB nên             1 2 AB.a 0 2t 3t 0 t t 0 3t 6t 0AB.a 0  A(1; 1; 2); B(3; 1; 0) . Bài 11: Trong không gian với hệ tọa độ Oxyz cho điểm A(4; 2; 4) và đường thẳng d           x 3 2t y 1 t z 1 4t . Viết phương trình đường thẳng  đi qua điểm A, cắt và vuông góc với d. Giải Lấy M(3 + 2t; 1  t; 1+ 4t)  (d)  AM = (1 + 2t; 3  t; 5 + 4t) Ta có AM  (d)  AM . d a = 0 với d a = (2; 1; 4)  2 + 4t  3 + t  20 + 16t = 0  21t = 21  t = 1 Vậy đường thẳng cần tìm là đường thẳng AM qua A có vevtơ chỉ phương là: AM = (3; 2; 1) nên phương trình ():       x 4 y 2 z 4 3 2 1 .  Vấn đề 2: HÌNH CHIẾU VÀ ĐỐI XỨNG A. PHƯƠNG PHÁP GIẢI HÌNH CHIẾU Phương pháp  Cách 1: (d) cho bởi phương trình tham số: Bài toán 1: Tìm hình chiếu H của điểm A trên đường thẳng (d). Hướng dẫn giải CDBT từ các ĐTQG Toán học – 239  H  (d) suy ra dạng tọa độ của điểm H phụ thuộc vào tham số t.  Tìm tham số t nhờ điều kiện  d AH a  Cách 2: (d) cho bởi phương trình chính tắc. Gọi H(x, y, z)   d AH a (*)  H  (d): Biến đổi tỉ lệ thức này để dùng điều kiện (*), từ đó tìm được x, y, z  Cách 3: (d) cho bởi phương trình tổng quát:  Tìm phương trình mặt phẳng () đi qua A và vuông góc với đường thẳng (d)  Giao điểm của (d) và () chính là hình chiếu H của A trên (d). Bài toán 2: Tìm hình chiếu H của điểm A trên mặt phẳng (). Phương pháp  Cách 1: Gọi H(x; y; z)  H  () (*)  AH cùng phương n : Biến đổi tỉ lệ thức này để dùng điều kiện (*), từ đó tìm được x, y, z.  Cách 2:  Tìm phương trình đường thẳng (d) đi qua A và vuông góc với mặt phẳng ().  Giao điểm của (d) và () chính là hình chiếu H của A trên mặt phẳng (). Bài toán 3: Tìm hình chiếu () của đường thẳng d xuống mặt phẳng (). Phương pháp  Tìm phương trình mặt phẳng () chứa đường thẳng d và vuông góc với mặt phẳng ().  Hình chiếu () của d xuống mặt phẳng  chính là giao tuyến của () và (). ĐỐI XỨNG Bài toán 1: Tìm điểm A' đối xứng với điểm A qua đường thẳng d. Phương pháp  Tìm hình chiếu H của A trên d.  H là trung điểm AA'. H   A (d) (d) A H    d () Hướng dẫn giải CDBT từ các ĐTQG Toán học – 240 Bài toán 2: Tìm điểm A' đối xứng với điểm A qua mặt phẳng (). Phương pháp  Tìm hình chiếu H của A trên ().  H là trung điểm AA'. Bài toán 3: Tìm phương trình đường thẳng d đối xứng với đường thẳng (D) qua đường thẳng (). Phương pháp  Trường hợp 1: () và (D) cắt nhau.  Tìm giao điểm M của (D) và ().  Tìm một điểm A trên (D) khác với điểm M.  Tìm điểm A' đối xứng với A qua ().  d chính là đường thẳng đi qua 2 điểm A' và M.  Trường hợp 2: () và (D) song song:  Tìm một điểm A trên (D)  Tìm điểm A' đối xứng với A qua ()  d chính là đường thẳng qua A' và song song với (). Bài toán 4: Tìm phương trình đường thẳng d đối xứng với đường thẳng (D) qua mặt phẳng (). Phương pháp  Trường hợp 1: (D) cắt ()  Tìm giao điểm M của (D) và ().  Tìm một điểm A trên (D) khác với điểm M.  Tìm điểm A' đối xứng với A qua mặt phẳng ().  d chính là đường thẳng đi qua hai điểm A' và M.  Trường hợp 2: (D) song song với ().  Tìm một điểm A trên (D)  Tìm điểm A' đối xứng với A qua mặt phẳng ().  d chính là đường thẳng qua A' và song song với (D). (D) () A A’ d M (D) A A’ () d (D) A  M A’ d (D) A d A’ Hướng dẫn giải CDBT từ các ĐTQG Toán học – 241 B. ĐỀ THI Bài 1: ĐẠI HỌC KHỐI B NĂM 2009 Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P): x – 2y + 2z – 5 = 0 và hai điểm A(3; 0;1), B(1; 1; 3). Trong các đường thẳng đi qua A và song song với (P), hãy viết phương trình đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất. Giải Gọi  là đường thẳng cần tìm;  nằm trong mặt phẳng (Q) qua A và song song với (P) Phương trình (Q): x – 2y + 2z + 1 = 0 K, H là hình chiếu của B trên , (Q). Ta có BK  BH nên AH là đường thẳng cần tìm Tọa độ H = (x; y; z) thỏa mãn: x 1 y 1 z 3 1 2 2 x 2y 2z 1 0             1 11 7 H ; ; 9 9 9       26 11 2 AH ; ; 9 9 9        . Vậy, phương trình :      x 3 y z 1 26 11 2 Bài 2: ĐẠI HỌC KHỐI D NĂM 2006 Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;2;3) và hai đường thẳng:             1 2 x 2 y 2 z 3 x 1 y 1 z 1 d : ; d : 2 1 1 1 2 1 . 1/ Tìm tọa độ điểm A' đối xứng với điểm A qua đường thẳng d1. 2/ Viết phương trình đường thẳng đi qua A, vuông góc với d1 và cắt d2. Giải 1/ Mặt phẳng () đi qua A(1; 2; 3) và vuông góc với d1 có phương trình là: 2(x  1)  (y  2) + (z  3) = 0  2x  y + z  3 = 0. Tọa độ giao điểm H của d1 và () là nghiệm của hệ: x 0x 2 y 2 z 3 y 1 H(0; 1; 2)2 1 1 2x y z 3 0 z 2                    Vì A' đối xứng với A qua d1 nên H là trung điểm của AA' A'(1; 4; 1) 2/ Viết phương trình đường thẳng : Vì A' đối xứng với A qua d1 và cắt d2, nên  đi qua giao điểm B của d2 và (). Tọa độ giao điểm B của d2 và () là nghiệm của hệ B H K A Q Hướng dẫn giải CDBT từ các ĐTQG Toán học – 242 x 2x 1 y 1 z 1 y 1 B(2; 1; 2)1 2 1 2x y z 3 0 z 2                      Vectơ chỉ phương của  là: u AB (1; 3; 5)    Phương trình của  là:        x 1 y 2 z 3 1 3 5 Bài 3: ĐỀ DỰ BỊ 1 - ĐẠI HỌC KHỐI A NĂM 2006 Trong không gian với hệ trục tọa độ Oxyz cho hình lăng trụ đứng ABC.A'B'C' có A(0; 0; 0), B(2; 0; 0), C(0; 2; 0), A'(0; 0; 2) 1/ Chứng minh A'C vuông góc với BC'. Viết phương trình mặt phẳng (ABC') 2/ Viết phương trình hình chiếu vuông góc của đường thẳng B'C' trên mặt phẳng (ABC') Giải 1/ A(0; 0; 0), B(2; 0; 0), C(0; 2; 0), A'(0; 0; 2)  C'(0; 2; 2) Ta có:     A C (0;2; 2), BC ( 2;2;2) Suy ra         A chúng tôi 0 4 4 0 A C BC Ta có:        A C BC A C (ABC ) A C AB Suy ra (ABC') qua A(0; 0; 0) và có vectơ pháp tuyến là A C (0; 2; 2)   nên có phương trình là: (ABC') 0(x – 0) + 2(y – 0) – 2(z – 0) = 0  y – z = 0 2/ Ta có: B C BC ( 2; 2; 0)     Gọi () là mặt phẳng chứa B'C' và vuông góc với (ABC')  vectơ pháp tuyến của () là: n B C ,A C 4(1; 1; 1)        Phương trình (): 1(x – 0) + 1(y – 2) + 1(z – 2) = 0  x + y + z – 4 = 0 Hình chiếu d của B'C' lên (ABC') là giao tuyến của () với (ABC')  Phương trình d:        x y z 4 0 y z 0 Bài 4: ĐỀ DỰ BỊ 1 Trong không gian với hệ tọa độ Oxyz cho hình hộp chữ nhật ABCD A1B1C1D1 có A trùng với gốc tọa độ O, B(1; 0; 0), D(0; 1; 0), A1(0; 0; 2 ). a/ Viết phương trình mp(P) đi qua 3 điểm A1, B, C và viết phương trình hình chiếu vuông góc của đường thẳng B1D1 lên mặt phẳng (P). b/ Gọi (Q) là mặt phẳng qua A và vuông góc với A1C. Tính diện tích thiết diện của hình chóp A1ABCD với mặt phẳng (Q). Hướng dẫn giải CDBT từ các ĐTQG Toán học – 243 Giải Ta có: A(0; 0; 0); B1 (1; 0; 2 ); C1 (1; 1; 2 ); D1 (0; 1; 2 ) a/    1 1A B 1; 0; 2 , A C 1; 1; 2         P 1 1n A B; A C 2; 0; 1  (P) qua A1 và nhận Pn làm vectơ pháp tuyến (P):           2 x 0 0 y 0 1 z 2 0    2.x z 2 0 Ta có  1 1B D 1; 1; 0   Mặt phẳng () qua B1 (1; 0; 2 ) nhận  P 1 1n n , B D 1; 1; 2       làm vectơ pháp tuyến. Nên () có phương trình: (): 1(x – 1) – 1(y – 0) + 2 (z  2 ) = 0  x + y   2z 1 0 D1B1 có hình chiếu lên (P) chính là giao tuyến của (P) và () Phương trình hình chiếu là:          x y 2z 1 0 2x z 2 0 b/ Phương trình mặt phẳng (Q) qua A và vuông góc với A1C: (Q): x + y  2 z = 0 (1)  Phương trình A1C :          

Bài 4. Một Số Hệ Thức Về Cạnh Và Góc Trong Tam Giác Vuông

Trong tam giác vuông có hai cạnh góc vuông là a, b; góc đối diện với cạnh a là α ; góc đối diện với cạnh b là β và cạnh huyền là c. Hãy tìm khẳng định đúng:

(A) a = csinα ;

(B) a = ccosα ;

(C) a = ctgα ;

(D) a = ccotgα.

Gợi ý làm bài

(A) a = csinα

Câu 4.2 trang 116 Sách Bài Tập (SBT) Toán 9 Tập 1 Trong tam giác vuông có hai cạnh góc vuông là a, b; góc đối diện với cạnh a là α ; góc đối diện với cạnh b là β và cạnh huyền là c. Hãy tìm khẳng định đúng:

(A)a = csinβ ;

(B) a = ccosβ ;

(C) a = ctgβ ;

(D) a = ccotgβ

Gợi ý làm bài

(B) a = ccosβ

Câu 4.3 trang 116 Sách Bài Tập (SBT) Toán 9 Tập 1 Trong tam giác vuông có hai cạnh góc vuông là a, b; góc đối diện với cạnh a là α ; góc đối diện với cạnh b là β và cạnh huyền là c. Hãy tìm khẳng định đúng:

(A)a = bsinα ;

(B) a = bcosα ;

(C) a = btgα ;

(D) a = bcotgα.

Gợi ý làm bài

(C) a = btgα

Câu 4.4 trang 116 Sách Bài Tập (SBT) Toán 9 Tập 1 Trong tam giác vuông có hai cạnh góc vuông là a, b; góc đối diện với cạnh a là α ; góc đối diện với cạnh b là β và cạnh huyền là c. Hãy tìm khẳng định đúng:

(A)a = bsinβ ;

(B) a = bcosβ ;

(C) a = btgβ ;

(D) a = bcotgβ.

Gợi ý làm bài

(D) a = bcotgβ

AH = asinα và diện tích hình thang là:

(S = {{AD + BC} over 2}.AH = {{ab} over 2}sin alpha .)

a) AB = AC = b thì AH = bsinα, BH = bcosα nên diện tích tam giác ABC là

(eqalign{ & S = {1 over 2}AH.BC = chúng tôi cr & = {b^2}sin alpha cos alpha . cr} )

b) BC = a thì (AH = {a over 2}tgalpha )

nên (S = {a over 2}.AH = {{{a^2}} over 4}tgalpha ).

(eqalign{ & BH = hcot gwidehat {ABH} = hcot g42^circ , cr & CH = hcot gwidehat {ACH} = hcot g35^circ cr} )

(để ý rằng H thuộc đoạn BC vì 35º, 42 º đều là góc nhọn). Do đó

7 = BC = BH + CH = h (cotg42 º + cotg35 º), suy ra

(eqalign{ & h = {7 over {cot g42 + cot g35}} cr & = {7 over {tg48 + tg55}} approx 2,757. cr} )

Câu 4.8 trang 117 Sách Bài Tập (SBT) Toán 9 Tập 1 Cho tam giác nhọn MNP. Gọi D là chân đường cao của tam giác đó kẻ từ M. Chứng minh rằng:

a) ({S_{MNP}} = {1 over 2}MP.NP.sin P);

b) (DP = {{MN.sin N} over {tgP}});

c) ∆DNE đồng dạng với ∆MNP, trong đó E là chân đường cao của tam giác MNP kẻ từ P.

a) Ta có MD = MP sin P, suy ra:

({S_{MNP}} = {1 over 2}NP.MD = {1 over 2}NP.MPsin P.)

b) Ta có MD = MN sin N và MD = DP tg P nên từ đó suy ra DP ( = {{MNsin N} over {tgP}})

c) Hai tam giác vuông DMN và EPN đồng dạng vì có góc nhọn N chung nên ({{DN} over {MN}} = {{EN} over {PN}}.)

Hai tam giác DNE và MNP đồng dạng vì có góc N chung và ({{DN} over {MN}} = {{EN} over {PN}}.)

Giải Toán 9 Bài 4. Một Số Hệ Thức Về Cạnh Và Góc Trong Tam Giác Vuông

$4. MỘT SỐ HỆ THỨC VỀ CẠNH VÀ GÓC TRONG TAM GIÁC VUÔNG A. Tóm tắt kiến thức Các hệ thức Trong một tam giác vuông, mỗi cạnh góc vuông bằng : Cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề ; Cạnh góc TJông kia nhân với tang góc đối hoặc nhân với côtang góc kề. b = asinB = acosC b = ctgB = ccotgC c = asinC = acosB c = btgC = bcotgB Giải tam giác vuông Trong một tam giác vuông, nếu cho trước hai yếu tố (trong đó có ít nhất một yếu tố về cạnh và không kể góc vuông) thì ta sẽ tìm được các yếu tố còn lại. B. Ví dụ giải toán A Ví dụ 1. Giải tam giác ABC vuông tại A biết B = 57° và AC = 3,5. Nhận xét. ơ trên ta đã tính BC bằng cách lấy AC (đã cho) chia cho sin B (góc B đã cho). Kết quả sẽ chính xác hơn là tính BC qua các kết quả trung gian. Ví dụ nếu tính BC theo định lí Py-ta-go, BC2 = AB2 + AC2 thì phải dùng số đo của AB " 2,3, đó là một số gần đúng, kết quả có thể kém chính xác hơn. Ví dụ 2. Tam giác ABC có AB = 4 ; AC = 3. Tính diện tích tam giác này trong hai trường hợp : a) Â = 60° ; b) Â = 120°. Giải. Vẽ CH ± AB. Trong cả hai trường hợp ta đều có CAH = 60°. Bài 26 Bài 27 Hình a Hình c Ta có CH = chúng tôi 60° = chúng tôi 60° ~ 2,6. Diện tích AABC là : s = ị chúng tôi " ị .4.2,6 = 5,2 (đvdt). 2 2 Nhận xét. Trong trường hợp tổng quát, ta chứng minh được rằng : Diện tích của một tam giác bằng nửa tích của hai cạnh nhân với sin của góc nhọn tạo bởi các đường thẳng chứa hai cạnh ấy. 'ABC = - chúng tôi A (nếu góc A nhọn). = - chúng tôi sin(l 80° - A) (nếu góc A tù). c. Hướng dẫn giải các bài tập trong sách giáo khoa HD. Chiều cao của tháp là chúng tôi 34° -58 (m) (h.a) B = 90° - 30° = 60°. AB = chúng tôi c = chúng tôi 30° " 5,774 (cm) ; AC 1 (ì BC = " 11,547 (cm). cosC cos30° (h.b) B = 90° - 45° = 45°. AB 10 sinC sin 45° (h.c) C = 90° - 35° = 55°. AB = chúng tôi B = chúng tôi 35° " 16,383 (cm); AC = chúng tôi B = chúng tôi 35° " 11,472 (cm). AC 18 tgB = -9^ = 77 " 0,8571 AB 21 BC = B "41°; C "49°. AC 18 27,437 (cm). sinB sin41° Nếu tính theo định lí Py-ta-go thì Bài 28. Bài 29. Bài 30. Bài 31. BC - V2Ĩ +18 " 27,659 (cm). Hình d Kết quả này chính xác hơn vì khi tính toán, ta dùng ngay các số liệu đã cho mà không dùng kết quả trung gian. 4 HD. cos a = 250 320 a "38 37'. Vẽ BK 1 AC, ta được KBC = 60° và KBA = 60° - 38° = 22°. Xét AKBC vuông tại K có : BK = chúng tôi c = 1 chúng tôi 30° = 5,5 (cm). Xét AKBA vuông tại K có : .-"'C 11 BK 5,5 AB = 5,932 (cm). cos 22° cos 22° Xét AABN vuông tại N có AN = AB.sin38° " 5,932.sin38° " 3,652 (cm). Xét AANC vuông tại N có AC = AN _ ~ 75304 (cm). sinC sin 30° Xét AABC vuông tại B có : AB = chúng tôi c = chúng tôi 54° " 6,472 (cm). Vẽ AH ± CD. Xét AACH có : B AH = chúng tôi c = chúng tôi 74° " 7,690 (cm). Xét AAHD vuông tại H có : AH 7,690 sin D = AD ~ 9,6 Nhận xét. Để tính được số đo của góc D, ta đã vẽ AH -L CD. Mục đích của việc vẽ đường phụ này là để tạo ra một tam giác vuông biết độ dài hai cạnh và có góc D là một góc nhọn của nó. Từ đó tính được một tỉ số lượng giác của góc D rồi suy ra số đo của góc D. Bài 32. Gọi AB là đoạn đường mà con thuyền đi được trong 5 phút, BH là chiều rộng của khúc sông, -ỉ- h là 12 Xét AABH vuông tại H, biết cạnh huyền AB và một góc nhọn thì có thể tính được BH. Quãng đường thuyền đi trong 5 phút AB = 2.-^- = ị (km). 12 6 157 m. Chiều rộng khúc sông là : BH = chúng tôi A - - sin 70° " 0,1566 (km) 6 D. Bài tập luyện thêm Giải tam giác ABC vuông tại A biết: BC = 6,3 ; C = 40° ; AB = 4,5 ; AC = 5,3. Tam giác ABC có B = 70° ; C = 50°, đường cao AH = 3,0. Tính diện tích tam giác ABC. Cho hình bình hành ABCD có AB = 5,2 ; BC = 3,5 và B = 75°. ' Tính diện tích hình bình hành. Tam giác ABC có BC = 8,4 ; B = 65° ; C = 40°. Tính chu vi tam giác ABC. Lời giải - Hướng dẫn - Đáp sô' a) B =50°; AB " 4,0 ; AC " 4,8. b)tgc= ±1 "tg40° BH " 1,1 ; CH " 2,5, do đó BC " 3,6 3. 4. (Xem hình bên) Vẽ đường cao CH, ta có CH = chúng tôi B = 3,5.sin 75° " 3,4. Diện tích hình bình hành là : s" 5,23,4 = 17,7 (đvdt). Â = 180°-(65°+ 40°) = 75°. Vẽ các đứờng cao AH và BK. Ta có BK = chúng tôi c = 8,4.sin 40° " 5,4. AB=-^-^L,5.6. sin A sin 75° AH = chúng tôi B " 5,6.sin 65° " 5,1. AC = '1 S3 7,9. sinC sin 40° Chu vi tam giác ABC là : 8,4 + 5,6 + 7,9 = 21,9. Nhận xét : Việc vẽ thêm các đường cao AH và BK tạo điều kiện vận dụng các hệ thức về cạnh và góc trong tam giác vuông để tính các cạnh của tam giác.

Cập nhật thông tin chi tiết về Chuyên Đề Vecto Trong Không Gian Quan Hệ Vuông Góc trên website Ictu-hanoi.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!