Xu Hướng 9/2022 ❤️ Giải Bài 88, 89, 90, 91 Trang 90, 91 Bài 7 Hình Bình Hành ❣️ Top View | Ictu-hanoi.edu.vn

Xu Hướng 9/2022 ❤️ Giải Bài 88, 89, 90, 91 Trang 90, 91 Bài 7 Hình Bình Hành ❣️ Top View

Xem 2,970

Bạn đang xem bài viết Giải Bài 88, 89, 90, 91 Trang 90, 91 Bài 7 Hình Bình Hành được cập nhật mới nhất ngày 30/09/2022 trên website Ictu-hanoi.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Cho đến thời điểm hiện tại, bài viết này đã đạt được 2,970 lượt xem.

Giải Toán 8 Bài 12: Hình Vuông

Bài 29 Trang 10 Sbt Toán 8 Tập 2

Giải Sbt Toán 8 Bài 1: Mở Đầu Về Phương Trình

Bài 4, 5, 6 Trang 5, 6 Bài 1 Mở Đầu Về Phương Trình

Giải Bài Tập Sbt Toán 8 Bài 1: Mở Đầu Về Phương Trình

Giải bài 88, 89, 90, 91 trang 90, 91 Sách bài tập Toán 8 tập 1 CHƯƠNG I. TỨ GIÁC. Hướng dẫn Giải bài tập trang 90, 91 bài 7 hình bình hành Sách bài tập (SBT) Toán 8 tập 1. Câu 88: Cho tam giác ABC. Ở phía ngoài tam giác, vẽ các tam giác vuông cân tại A là ABD, ACE. Vẽ hình bình hành ADIE…

Câu 88 trang 90 Sách bài tập (SBT) Toán 8 tập 1 Cho tam giác ABC. Ở phía ngoài tam giác, vẽ các tam giác vuông cân tại A là ABD, ACE. Vẽ hình bình hành ADIE. Chứng minh rằng: a. IA = BC; b. IA ⊥ BC.

Giải:

a. (widehat {BAC} + widehat {BAD} + widehat {DAE} + widehat {EAC} = {360^0})

(widehat {BAD} = {90^0},widehat {EAC} = {90^0}(gt))

Suy ra: (widehat {BAC} + widehat {DAE} = {180^0}) (1)

AE

⇒ (widehat {ADI} + widehat {DAE} = {180^0}) (hai góc trong cùng phía) (2)

Từ (1) và (2) suy ra:

Xét ∆ ABC và ∆ DAI :

AB = AD (gt)

(widehat {BAC} = widehat {ADI}) (chứng minh trên)

AC = DI (vì cùng bằng AE)

Do đó: ∆ ABC = ∆ DAI (c.g.c) ⇒ IA = BC

b. ∆ ABC = ∆ DAI ( chứng minh trên) ( Rightarrow {widehat A_1} = {widehat B_1}) (3)

Gọi giao điểm IA và BC là H.

Ta có: ({widehat A_1} + widehat {BAD} + {widehat A_2} = {180^0}) (kề bù)

mà (widehat {BAD} = {90^0}(gt) Rightarrow {widehat A_1} + {widehat A_2} = {90^0}) (4)

Từ (3) và (4) suy ra: ({widehat B_1} = {widehat A_2} = {90^0})

Trong ∆ AHB ta có: (widehat {AHB} + widehat {{B_1}} + {widehat A_2} = {180^0})

Suy ra (widehat {AHB} = {90^0} Rightarrow AH bot BC) hay IA ⊥ BC

Câu 89 trang 91 Sách bài tập (SBT) Toán 8 tập 1 Dựng hình bình hành ABCD, biết: a. AB = 2cm, AD = 3cm, (widehat A = {110^0}) b. AC = 4cm, BD = 5cm, (widehat {BOC} = {50^0}) (O là giao điểm của hai đường chéo).

Giải:

Dựng ∆ ABD có AB = 2cm, (widehat A = {110^0}), AD = 3cm

– Dựng tia Bx

– Dựng tia Dy

Ta có hình bình hành ABCD cần dựng

Chứng minh: AB

Ta lại có AB = 2cm, (widehat A = {110^0}) , AD = 3cm. Bài toán có một nghiệm hình.

b.

– Dựng ∆ OBC có OC = 2cm, OB = 2,5cm , (widehat O = {50^0})

– Trên tia đối tia OC lấy điểm A sao cho OA = OC = 2cm

– Trên tia đối tia OB lấy điểm D sao cho AD = OB = 2,5cm

Nối AB, BC, CD, AD ta có hình bình hành ABCD cần dựng

Chứng minh: Tứ giác ABCD có OA = OC, OB = OD nên nó là hình bình hành vì có hai đường chéo cắt nhau tại trung điểm mỗi đường.

Có AC = 4cm, BD = 5cm, (widehat {BOC} = {50^0})

Bài toán có một nghiệm hình.

– Nếu hình bình hành nhận BC làm đường chéo, điểm A cách điểm C ba ô vuông , điểm B cách ({M_2}) là ba ô vuông và C, ({M_2})cũng nằm trên nửa mặt phẳng bờ AB ta có hình bình hành (AB{M_2}C)

– Nếu hình bình hành nhận AB làm đường chéo thì điểm ({M_3}) cách điểm B ba ô vuông, ({M_3})và A nằm trên cũng một nửa mặt phẳng bờ BC ta có hình bình hành (ACB{M_3}) .

Câu 91 trang 91 Sách bài tập (SBT) Toán 8 tập 1 Cho tam giác ABC. Dựng đường thẳng song song với BC, cắt cạnh AB ở E, cắt cạnh AC ở F sao cho BE = AF.

Giải:

– Dựng đường phân giác AD

– Qua D dựng đường thẳng song song AB cắt AC tại F.

– Qua F dựng đường thẳng song song với BC cắt AB tại E.

Ta có điểm E, F cần dựng.

Chứng minh: DF

( Rightarrow {widehat A_1} = {widehat D_1}) (so le trong)

({widehat A_1} = {widehat A_2}) (gt)

Suy ra: ({widehat D_1} = {widehat A_2})

⇒ ∆ AFD cân tại F

⇒ AF = DF (1)

DF

EF

Tứ giác BDFE là hình bình hành ⇒ BE = DF (2)

Từ (1) và (2) suy ra: AF = BE

Giải Bài 85, 86, 87 Trang 90 : Bài 7 Hình Bình Hành

Giải Sbt Toán 8 Bài 7: Hình Bình Hành

Giải Bài Tập Sbt Toán 8 Bài 7: Hình Bình Hành

Giải Sbt Toán 8 Hình Thang.

Giải Bài Tập Sbt Toán 8 Bài 1: Đa Giác

Cập nhật thông tin chi tiết về Giải Bài 88, 89, 90, 91 Trang 90, 91 Bài 7 Hình Bình Hành trên website Ictu-hanoi.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!

Yêu thích 2446 / Xu hướng 2536 / Tổng 2626 thumb
🌟 Home
🌟 Top