Bạn đang xem bài viết Giải Hệ Phương Trình Bằng Phương Pháp Thế Và Bài Tập Vận Dụng được cập nhật mới nhất trên website Ictu-hanoi.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất.
Trong bài viết này, chúng ta sẽ cùng tìm hiểu cách giải hệ phương trình bằng phương pháp thế như thế nào? qua đó vận dụng giải các bài tập minh họa vận dụng phương pháp này để các em rèn luyện kỹ năng giải toán.
I. Phương trình bậc nhất hai ẩn, hệ phương trình bậc nhất hai ẩn
1. Phương trình bậc nhất 2 ẩn
– Phương trình bậc nhất hai ẩn: ax + by = c với a, b, c ∈ R (a2 + b2 ≠ 0)
– Tập nghiệm của phương trình bậc nhất hai ẩn: Phương trình bậc nhất hai ẩn ax + by = c luôn luôn có vô số nghiệm. Tập nghiệm của nó được biểu diễn bởi đường thẳng (d): ax + by = c
Nếu a ≠ 0, b = 0 thì phương trình trở thành ax = c hay x = c/a và đường thẳng (d) song song hoặc trùng với trục tung
Nếu a = 0, b ≠ 0 thì phương trình trở thành by = c hay y = c/b và đường thẳng (d) song song hoặc trùng với trục hoành
2. Hệ hai phương trình bậc nhất hai ẩn
+ Hệ phương trình bậc nhất 2 ẩn: <img title="small left{egin{matrix} ax+by=c a'x + b'y=c' end{matrix}
+ Minh họa tập nghiệm của hệ hai phương trình bậc nhất hai ẩn
– Gọi (d): ax + by = c, (d’): a’x + b’y = c’, khi đó ta có:
(d)
(d) cắt (d’) thì hệ có nghiệm duy nhất
(d) ≡ (d’) thì hệ có vô số nghiệm
+ Hệ phương trình tương đương: Hệ hai phương trình tương đương với nhau nếu chúng có cùng tập nghiệm
II. Cách giải hệ phương trình bậc nhất 2 ẩn bằng phương pháp thế
a) Quy tắc thế
Quy tắc thế dùng để biến đổi một hệ phương trình thành hệ phương trình tương đương. Quy tắc thế bao gồm hai bước sau:
+ Bước 1: Từ một phương trình của hệ đã cho (coi là phương trình thức nhất), ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình thức hai để được một phương trình mới (chỉ còn một ẩn).
+ Bước 2: Dùng phương trình mới ấy để thay thế cho phương trình thức hai trong hệ (phương trình thức nhất cũng thường được thay thế bởi hệ thức biểu diễn một ẩn theo ẩn kia có được ở bước 1).
b) Cách giải hệ phương trình bằng phương pháp thế
+ Bước 1: Dùng quy tắc thế để biến đổi phương trình đã cho để được một hệ phương trình mới, trong đó có một phương trình một ẩn.
+ Bước 2: Giải phương trình một ẩn vừa có, rồi suy ra nghiệm của hệ đã cho.
* Ví dụ: Giải hệ phương trình sau bằng phương pháp thế
a) <img title="small left{egin{matrix} 2x+y=4 2x-y=0 end{matrix}
b) <img title="small left{egin{matrix} 2x+3y=1 x-y=3 end{matrix}
* Lời giải:
a) <img title="small left{egin{matrix} 2x+y=4 2x-y=0 end{matrix} ight. Leftrightarrow left{egin{matrix} 2x+y=4 y=2x end{matrix}
<img title="small Leftrightarrow left{egin{matrix} 2x+2x=4 y=2x end{matrix} ight. Leftrightarrow left{egin{matrix} 4x=4 y=2x end{matrix} ight. Leftrightarrow left{egin{matrix} x=1 y=2 end{matrix}
b) <img title="small left{egin{matrix} 2x+3y=1 x-y=3 end{matrix} ight.Leftrightarrow left{egin{matrix} 2(3+y)+3y=1 x=3+y end{matrix}
<img title="small Leftrightarrow left{egin{matrix} 5y=-5 x=3+y end{matrix} ight.Leftrightarrow left{egin{matrix} y=-1 x=2 end{matrix}
III. Bài tập giải hệ phương trình bậc nhất hai ẩn bằng phương pháp thế
* Bài 12 trang 15 sgk toán 9 tập 2: Giải các hệ phương trình sau bằng phương pháp thế
a) <img title="small left{egin{matrix} x-y=3 3x-4y=2 end{matrix}
c) <img title="small left{egin{matrix} x+3y=-2 5x-4y=11 end{matrix}
* Lời giải:
a) <img title="small left{egin{matrix} x-y=3 3x-4y=2 end{matrix} ight.Leftrightarrow left{egin{matrix} x=3+y 3(3+y)-4y=2 end{matrix}
<img title="small Leftrightarrow left{egin{matrix} x=3+y 9-y=2 end{matrix} ight.Leftrightarrow left{egin{matrix} x=10 y=7 end{matrix}
⇒ Kết luận: hệ PT có nghiệm duy nhất (10;7)
b) <img title="small g_white fn_cm small left{egin{matrix} 7x-3y=5 4x+y=2 end{matrix}
<img title="small Leftrightarrow left{egin{matrix} 7x-3(2-4x)=5 y=2-4x end{matrix} ight.Leftrightarrow left{egin{matrix} 7x-6+12x=5 y=2-4x end{matrix}
<img title="small Leftrightarrow left{egin{matrix} 19x=11 y=2-4x end{matrix} ight.Leftrightarrow left{egin{matrix} x=frac{11}{19} y=frac{-6}{19} end{matrix}
⇒ Kết luận: hệ PT có nghiệm duy nhất (11/19;-6/19)
c) <img title="small left{egin{matrix} x+3y=-2 5x-4y=11 end{matrix} ight.Leftrightarrow left{egin{matrix} x=-2-3y 5(-2-3y)-4y=11 end{matrix}
<img title="small Leftrightarrow left{egin{matrix} x=-2-3y -10-15y-4y=11 end{matrix} ight.Leftrightarrow left{egin{matrix} x=-2-3y 19y=-21 end{matrix} ight.Leftrightarrow left{egin{matrix} x=frac{25}{19} y=-frac{21}{19} end{matrix}
⇒ Kết luận: hệ PT có nghiệm duy nhất (25/19;-21/19)
* Bài 13 trang 15 sgk toán 9 tập 2: Giải hệ PT sau bằng phương pháp thế
a) <img title="small left{egin{matrix} 3x-2y=11 4x-5y=3 end{matrix}
* Lời giải:
a) <img title="small left{egin{matrix} 3x-2y=11 4x-5y=3 end{matrix} ight.Leftrightarrow left{egin{matrix} x=frac{11}{3}+frac{2}{3}y 4(frac{11}{3}+frac{2}{3}y)-5y=3 end{matrix}
<img title="small Leftrightarrow left{egin{matrix} x=(11+2y)/3 frac{4}{3}(11+2y)-5y=3 end{matrix} ight.Leftrightarrow left{egin{matrix} x=(11+2y)/3 frac{44}{3}+frac{8}{3}y-5y=3 end{matrix}
<img title="small Leftrightarrow left{egin{matrix} x=frac{1}{3}(11+2y) -frac{7}{3}y=-frac{35}{3} end{matrix} ight.Leftrightarrowleft{egin{matrix} x=7 y=5 end{matrix}
⇒ Kết luận: hệ PT có nghiệm duy nhất (7;5)
b) <img title="small g_white fn_cm small g_white fn_cm small left{egin{matrix} x/2-y/3=1 5x-8y=3 end{matrix} ight.Leftrightarrow left{egin{matrix} x=frac{2}{3}y+2 5(frac{2}{3}y+2)-8y=3 end{matrix}
<img title="small g_white fn_cm small Leftrightarrow left{egin{matrix} x=frac{2}{3}y+2 frac{10}{3}y+10-8y=3 end{matrix} ight.Leftrightarrow left{egin{matrix} x=frac{2}{3}y+2 -frac{14}{3}y=-7 end{matrix} ight.Leftrightarrow left{egin{matrix} x=3 y=3/2 end{matrix}
⇒ Kết luận: hệ PT có nghiệm duy nhất (3;3/2)
Chương Iii. §3. Giải Hệ Phương Trình Bằng Phương Pháp Thế
Chương III. §3. Giải hệ phương trình bằng phương pháp thế
Mục tiêu – HS hiểu được cách biến đổi hệ phương trình bằng phương pháp thế – HS nắm vững cách giải hệ phương trình bằng phương pháp thế . – HS biết xử lí các trường hợp đặc biệt (hệ vô nghiệm hoặc vô số nghiệm )II. Chuẩn bị Giáo viên: SGK , máy chiếu .2. Học sinh : SGK, bảng nhóm , bút dạ ….
HS1. Kiểm tra (x;y) = (2; – 1) có là nghiệm của hệ phương trình sau không?HS2:Đoán nhận số nghiệm của hệ phương trình sau và minh hoạ bằng đồ thị.Kiểm tra bài cũ:Tiết 33: GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾVí dụ: Xét hệ phương trình B1:Từ PT(1) biểu diễn x theo yB2: Ta có hệ PT(II) tương đương hệ PT(I). Giải hệ PT(II).Khi đó nghiệm của hệ PT(II) chính là nghiệm của hệ PT(I)Từ PT (2′) ta có : y = – 5 Vậy hệ PT(I) đã cho có nghiệm là (- 13;-5)Thế x từ PT (1′) vào PT (2). GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾThay y = – 5 Vào PT(1′) ta có : x = – 13GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ1. Quy tắc thếQuy tắc thế dùng để biến đổi một hệ phương trình thành hệ phương trình tương đương thông qua hai bước :Bước 1: Từ một phương trình của HPT ban đầu ta biểu diễn một ẩn theo ẩn kia ta được phương trình (*) .Bước 2: Thay phương trình (*) vào phương trình còn lại ta được phương trình (**) . Thay các phương trình của HPT (I) bởi các phương trình (*) và (**) ta được HPT mới tương đương HPT ban đầu.2.Vận dụng Ví dụ 2Giải hệ phương trình GiảiVậy hệ (II) có nghiệm duy nhất là (2 ; 1)Trong hệ phương trình nếu ẩn nào của phương trình có hệ số bằng 1 hoặc -1 ta nên biểu diễn ẩn đó theo ẩn còn lại
GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ Giải hệ phương trình sau bằng phương pháp thế (biểu diễn y theo x từ phương trình thứ hai của hệ )GiảiVậy hệ phương trình (II) có nghiệm duy nhất là (7 ;5 )?1GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾTa cóĐặc điểm PT một ẩn Số ngiệm của hệ HPT đã cho có một nghiệm duy nhất HPT đã cho vô nghiệmHPT đã cho có vô số nghiệmĐặc điểmVí dụGIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ3y = 31 nghiệm duy nhất 0y = 9Vô nghiệm0x = 0 vô số nghiệm
GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ1. Quy tắc thế 2. Áp dụngChú ý : * Số nghiệm của phương trình một ẩn trong hệ phương trình mới chính là số nghiệm của hệ đã cho. Ví dụ 3Giải hệ phương trình Giải ?2Minh hoạ hình họcVậy HPT(III) vô số nghiệmDo d1 trùng với d2 nên hệ có vô số nghiệmGIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾd1d2?3Cho hệ phương trình Bằng minh hoạ hình học và bằng phương pháp thế ,chứng tỏ rằng hệ (IV) vô nghiệm.Nhóm 1Minh hoạ hình họcNhóm 2Giải phương trình bằng phương pháp thế GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ1)Dùng quy tắc thế biến đổi hệ đã cho thành hệ mới ,trong đó có một phương trình một ẩn.2)Giải phương trình một ẩn vừa có ,rồi suy ra nghiệm của hệ đã cho.*Tóm tắc cách giải hệ phương trình bằng phương pháp thế :GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾHƯỚNG DẪN VỀ NHÀ Học thuộc quy tắc thế , xem lại cách giải hệ phương trình bằng phương pháp thế .– Bài tập : 12 đến 15 SGK trang15CẢM ƠN CÁC THẦY CÔ GIÁO CÙNG CÁC EM ĐÃ NHIỆT TÌNH THAM GIA TIẾT HỌC
Phương Trình Và Hệ Phương Trình Bậc Nhất Ba Ẩn – Bài Tập Vận Dụng
Загрузка…
Lý thuyết về phương trình và hệ phương trình bậc nhất ba ẩn – Bài tập vận dụng
Phương trình bậc nhất ba ẩn
Загрузка…
Phương trình bậc nhất ba ẩn có dạng tổng quát là:
ax + by + cz = d
Trong đó:
x, y, z là 3 ẩn
a, b, c, d là các hệ số và a, b, c, d không đồng thời bằng 0.
Ví dụ:
2x + y + z = 0
x – y = 6
3y = 5
Hệ phương trình bậc nhất ba ẩn
Hệ phương trình bậc nhất ba ẩn có dạng tổng quát là:
1, b1, c1, a2, b2, c2, a3, b3, c3 , d1, d2, d3 là các hệ số.
Trong đó x, y, z là ba ẩn; a, b, c, a, b, c, b, c, dlà các hệ số.
Mỗi bộ ba số ( x0, y0, z0 ) nghiệm đúng cả ba phương trình được gọi là một nghiệm của hệ phương trình (4).
Phương pháp giải hệ phương trình bậc nhất ba ẩn
Giaỉ hệ phương trình (4) là tìm tất cả các bộ ba số (x, y, z) đồng thời nghiệm đúng cả 3 phương trình của hệ.
Nguyên tắc chung để giải các hệ phương trình nhiều ẩn là khử bớt ẩn để quy về giải hệ phương trình có ít ẩn số hơn.
Để khử bớt ẩn, ta cũng có thể dùng các phương pháp cộng đại số hay phương pháp thế giống như đối với hệ phương trình bậc nhất hai ẩn.
Ví dụ 1: Giải hệ phương trình sau:
Bài giải
Vậy hệ phương trình đã cho có nghiệm là: ( -2, 1, 2)
Ví dụ 2: Giải hệ phương trình
Ta có thể đưa hệ phương trình về dạng tam giác bằng cách khử ẩn số (khử ẩn x ở pt(2) rồi khử ẩn x và y ở pt(3), …). Dùng phương pháp cộng đại số giống như hệ hai phương trình bậc nhất hai ẩn.
Bài giải:
Trừ từng vế của pt(1) và pt(2) ta được hệ pt:
Trừ từng vế của pt(1) và pt(3) ta được hệ pt:
Vậy hệ phương trình đã cho có nghiệm là:
Nhận xét: Để giải một hệ phương trình bậc nhất ba ẩn ta thường biến đổi hpt đã cho về dạng tam giác bằng phương pháp khử dần ẩn số (phương pháp Gau-Xơ )
Ví dụ 3: Giải hệ phương trình (II) bằng máy tính bỏ túi
Hướng dẫn giải:
Ví dụ 4: Giải hệ phương trình sau bằng phương pháp Gau-Xơ và bằng máy tính bỏ túi.
Nhân hai vế của pt (a) cho 2 rồi cộng với pt (b) theo từng vế; nhân hai vế của pt (a) cho (-2) rồi cộng với pt (c) theo từng vế ta được:
Nhân hai vế của pt (b’) cho 7 và nhân hai vế của pt (c’) cho 5 rồi cộng lại theo từng vế tương ứng ta được:
Vậy nghiệm của hpt (III) là:
Ví dụ 5. Dùng máy tính bỏ túi giải các hệ phương trình sau:
Gợi ý :
Ví dụ 6. Bài tập thực tiễn
Một cửa hàng bán áo sơ mi, quần âu nam và váy nữ. Ngày thứ nhất bán được 12 áo, 21 quần và 18 váy, doanh thu 5.349.000 đồng. Ngày thứ hai bán được 16 áo, 24 quần và 12 váy, doanh thu là 5.600.000 đồng. Ngày thứ ba bán được 24 áo, 15 quần và 12 váy, doanh thu 5.259.000 đồng. Hỏi giá bán mỗi áo, mỗi quần và mỗi váy là bao nhiêu?
Bài giải:
Ví dụ 7: Gỉai hpt sau:
Vậy nghiệm của hpt đã cho bằng (x, y, z) = (2, -2, 1).
Загрузка…
Cách Giải Hệ Phương Trình Bậc Nhất 2 Ẩn Với Phương Pháp Thế Và Phương Pháp Cộng Đại Số
Trong bài viết này, chúng ta cùng tìm hiểu 2 cách giải trên đối với phương trình bậc nhất 2 ẩn. Giải các bài tập về hệ phương trình bậc nhất 2 ẩn với từng phương pháp cộng đại số và phương pháp thế, đồng thời tìm hiểu các dạng toán về phương trình bậc nhất 2 ẩn, từ đó để thấy ưu điểm của mỗi phương pháp và vận dụng linh hoạt trong mỗi bài toán cụ thể.
I. Tóm tắt lý thuyết về phương trình bậc nhất 2 ẩn
1. Phương trình bậc nhất 2 ẩn
– Phương trình bậc nhất hai ẩn: ax + by = c với a, b, c ∈ R (a 2 + b 2 ≠ 0)
– Tập nghiệm của phương trình bậc nhất hai ẩn: Phương trình bậc nhất hai ẩn ax + by = c luôn luôn có vô số nghiệm. Tập nghiệm của nó được biểu diễn bởi đường thẳng (d): ax + by = c
Nếu a ≠ 0, b = 0 thì phương trình trở thành ax = c hay x = c/a và đường thẳng (d) song song hoặc trùng với trục tung
Nếu a = 0, b ≠ 0 thì phương trình trở thành by = c hay y = c/b và đường thẳng (d) song song hoặc trùng với trục hoành
2. Hệ hai phương trình bậc nhất hai ẩn
+ Minh họa tập nghiệm của hệ hai phương trình bậc nhất hai ẩn
– Gọi (d): ax + by = c, (d’): a’x + b’y = c’, khi đó ta có:
(d)
(d) cắt (d’) thì hệ có nghiệm duy nhất
(d) ≡ (d’) thì hệ có vô số nghiệm
+ Hệ phương trình tương đương: Hệ hai phương trình tương đương với nhau nếu chúng có cùng tập nghiệm
II. Cách giải hệ phương trình bậc nhất 2 ẩn
1. Giải hệ phương trình bậc nhất 2 ẩn bằng phương pháp cộng đại số
– Quy tắc cộng đại số dùng để biến đổi một hệ phương trình thành hệ phương trình tương đương gồm hai bước:
– Bước 1: Cộng hay trừ từng vế hai phương trình của hệ phương trình đã cho để được một phương trình mới.
– Bước 2: Dùng phương trình mới ấy thay thế cho một trong hai phương trình của hệ (và giữ nguyên phương trình kia).
– Bước 1: Nhân các vế của hai phương trình với số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình của hệ bằng nhau hoặc đối nhau.
– Bước 2: Sử dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).
– Bước 3: Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho.
Ví dụ: Giải các hệ PT bậc nhất 2 ẩn sau bằng PP cộng đại số:
2. Giải hệ phương trình bậc nhất 2 ẩn bằng phương pháp thế
– Quy tắc thế dùng để biến đổi một hệ phương trình thành hệ phương trình tương đương. Quy tắc thế bao gồm hai bước sau:
– Bước 1: Từ một phương trình của hệ đã cho (coi là phương trình thức nhất), ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình thức hai để được một phương trình mới (chỉ còn một ẩn).
– Bước 2: Dùng phương trình mới ấy để thay thế cho phương trình thức hai trong hệ (phương trình thức nhất cũng thường được thay thế bởi hệ thức biểu diễn một ẩn theo ẩn kia có được ở bước 1).
– Bước 1: Dùng quy tắc thế để biến đổi phương trình đã cho để được một hệ phương trình mới, trong đó có một phương trình một ẩn.
– Bước 2: Giải phương trình một ẩn vừa có, rồi suy ra nghiệm của hệ đã cho.
Ví dụ: Giải hệ phương trình sau bằng phương pháp thế
III. Một số dạng toán phương trình bậc nhất 2 ẩn
⇒ Kết luận: hệ PT có nghiệm duy nhất (10;7)
⇒ Kết luận: hệ PT có nghiệm duy nhất (11/19;-6/19)
⇒ Kết luận: hệ PT có nghiệm duy nhất (25/19;-21/19)
⇒ Kết luận: hệ PT có nghiệm duy nhất (7;5)
⇒ Kết luận: hệ PT có nghiệm duy nhất (3; 3/ 2)
Lưu ý: Lấy PT(1)+PT(2)
⇒ Kết luận: hệ PT có nghiệm duy nhất (2;-3)
Lưu ý: Lấy PT(1)-PT(2)
⇒ Kết luận: hệ PT có nghiệm duy nhất (2;-3)
⇒ Kết luận: hệ PT có nghiệm duy nhất (2;-3)
⇒ Kết luận: hệ PT có nghiệm duy nhất (-1;0)
⇒ Kết luận: hệ PT có nghiệm duy nhất (5;3)
* Nhận xét: Khi không có bất kỳ hệ số nào của x, y là 1 hay -1 thì phương pháp cộng đại số giúp các em đỡ nhầm lẫn hơn trong phép tính. * Phương pháp:
– Bước 1: Đặt điều kiện để hệ có nghĩa
– Bước 2: Đặt ẩn phụ và điều kiện của ẩn phụ
– Bước 3: Giải hệ theo các ẩn phụ đã đặt (sử dụng pp thế hoặc pp cộng đại số)
– Bước 4: Trở lại ẩn ban đầu để tìm nghiệm của hệ
Ví dụ: Giải hệ phương trình sau
a) Điều kiện: x, y ≠ 0 (mẫu số khác 0).
⇒ thỏa điều kiện, nên hệ có nghiệm duy nhất (1;1)
b) Điều kiện: x ≠ -1 và y ≠ 3 (mẫu số khác 0)
⇒ thỏa điều kiện, nên hệ có nghiệm duy nhất (-5/4;6)
– Tọa độ giao điểm chính là nghiệm của hệ được tạo bởi 2 phương trình đường thẳng đã cho.
Ví dụ: Tìm tọa độ giao điểm của 2 đường thẳng sau:
– Giải hệ bằng 1 trong 2 phương pháp cộng đại số hoặc thế:
⇒ Tọa độ giao điểm I của d 1 và d 2 là (2;1).
⇒ Tọa độ giao điểm I của d 1 và d 2 là (4;-2).
+ Từ một phương trình của hệ, rút y theo x (sử dụng phương pháp thế) rồi thay vào phương trình còn lại để được phương trình dạng ax +b = 0, rồi thực hiện các bước biện luận như sau:
– Nếu a ≠ 0, thì x = b/a; thay vào biểu thức để tìm y; hệ có nghiệm duy nhất.
– Nếu a = 0, ta có, 0.x = b:
_ Nếu b = 0 thì hệ có vô số nghiệm
_ Nếu b ≠ 0 thì hệ vô nghiệm
– Từ PT(1) ta có: y = mx – 2m, thế vào PT(2) ta được:
x – m(mx-2m) = m + 1
⇔ (1 – m)(1 + m)x = (1 – m)(1+m)+ m(1 – m)
⇔ (1 – m)(1 + m)x = (1 – m)(1+m)+ m(1 – m)
⇔ (1 – m)(1 + m)x = (1 – m)(1+2m) (3)
* Nếu m = -1, thay vào (3) ta được: 0.x = -2 ⇒ hệ vô nghiệm
* Nếu m = 1, thay vào (3) ta được: 0.x = 0 ⇒ hệ có vô số nghiệm, tập nghiệm (x;x-2)
– Nếu m = -1, hệ vô nghiệm
– Nếu m = 1, hệ có vô số nghiệm, tập nghiệm (x;x-2)
– Giải hệ phương trình tìm x, y theo m
– Với điều kiện về nghiệm số của đề bài tìm m
tìm giá trị a ∈ Z, để hệ có nghiệm (x;y) với x,y ∈ Z
– Từ PT(2) ta có: x = a 2 + 4a – ay, thế vào PT(1) được
(a+1)(a 2 + 4a – ay) – ay = 5
– Nếu a = 0 hoặc a = -2 thì (*) vô nghiệm
– Trước hết tìm a ∈ Z để x ∈ Z
Với a = -1 ⇒ y = 5
⇒ Vậy với a = -1 hệ có nghiệm nguyên là (2;5)
Cập nhật thông tin chi tiết về Giải Hệ Phương Trình Bằng Phương Pháp Thế Và Bài Tập Vận Dụng trên website Ictu-hanoi.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!