Xu Hướng 5/2023 # Giải Phương Trình Mũ Logarit Hay Và Khó Lớp 12 # Top 14 View | Ictu-hanoi.edu.vn

Xu Hướng 5/2023 # Giải Phương Trình Mũ Logarit Hay Và Khó Lớp 12 # Top 14 View

Bạn đang xem bài viết Giải Phương Trình Mũ Logarit Hay Và Khó Lớp 12 được cập nhật mới nhất trên website Ictu-hanoi.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất.

c. (m in (dfrac{5}{2};6))

C. Lời giải

Đáp án câu 1

a

Gợi ý

+ Thay lần lượt giá trị của (m) và và kiểm tra xem phương trình có nghiệm trong (left( { – 1;0} right)) hay không.

+ Tính các giá trị (fleft( 0 right),fleft( { – 1} right)) rồi kiểm tra (fleft( 0 right).fleft( { – 1} right) < 0) thì ta kết luận phương trình có nghiệm trong (left( { – 1;0} right)).

Đáp án chi tiết

– Từ các đáp án đã cho, ta thấy giá trị $m=2$ không thuộc đáp án C nên ta thử $m=2$ có thỏa mãn bài toán hay không sẽ loại được đáp án. 

Thử với $m=2$ ta được phương trình : ({12^x} + {2.3^x} – 2 = 0;) ( f( – 1) = dfrac{{ – 5}}{4};) (f(0) = 1) ( Rightarrow f(0).f( – 1) < 0)

Do đó, phương trình có nghiệm trong khoảng $(-1;0)$, mà đáp án C không chứa $m=2$ nên loại C.

– Lại có giá trị $m=3$ thuộc đáp án C nhưng không thuộc hai đáp án A và D nên nếu kiểm tra $m=3$ ta có thể loại tiếp được đáp án.

Mà hàm số này đồng biến khi $m=3$ nên $f(x)<0,forall xin (-1;0)$, suy ra phương trình $f(x)=0$ sẽ không có nghiệm trong $(-1;0)$, loại B.

– Cuối cùng, ta thấy giá trị $m=1$ thuộc đáp án A và không thuộc đáp án D nên ta sẽ thử $m=1$ để loại đáp án.

Thử với $m=1$ ta được phương trình : ({12^x} + {3.3^x} – 1 = 0;) (f( – 1) = dfrac{{ – 11}}{{12}};,f(0) = 3) ( Rightarrow f(0).f( – 1) < 0)

Do đó phương trình $f(x)=0$ sẽ có nghiệm trong $(-1;0)$ nên loại D và chọn A.

Đáp án cần chọn là: a

Đáp án câu 2

a

Gợi ý

Giải phương trình mũ bằng cách đưa về cùng cơ số là biến đổi về dạng ${a^{fleft( x right)}} = {a^{gleft( x right)}} Leftrightarrow fleft( x right) = gleft( x right)$

Đáp án chi tiết

${4^{2{rm{x}} + 5}} = {2^{2 – x}} Leftrightarrow {2^{4{rm{x}} + 10}} = {2^{2 – x}} Leftrightarrow 4{rm{x}} + 10 = 2 – x Leftrightarrow 5{rm{x}} =  – 8 Leftrightarrow x = dfrac{{ – 8}}{5}$

Đáp án cần chọn là: a

Đáp án câu 3

a

Gợi ý

Giải phương trình mũ bằng phương pháp đưa về cùng cơ số bằng cách đưa (1 = {2^0}.)

Đáp án chi tiết

({2^{2{x^2} – 7x + 5}} = 1 Leftrightarrow {2^{2{x^2} – 7x + 5}} = {2^0} Leftrightarrow 2{x^2} – 7x + 5 = 0 Leftrightarrow left[ begin{array}{l}x = 1\x = dfrac{5}{2}end{array} right..)

Vậy phương trình đã cho có 2 nghiệm

Đáp án cần chọn là: a

Pp Giải Phương Trình Mũ, Logarit

Published on

1. Giáo viên: Nguyễn Thành Long Email: Loinguyen1310@gmail.comDĐ: 01694 013 498 (DÙNG CHO ÔN THI TN – CĐ – ĐH 2011) Gửi tặng: chúng tôi Bỉm sơn. 15.04.2011 1

2. Giáo viên: Nguyễn Thành Long chúng tôi Email: Loinguyen1310@gmail.comDĐ: 01694 013 498 CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH – HỆ MŨ – LÔGARITCHƯƠNG I: PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH – HỆ MŨ CHỦ ĐỀ I: PHƯƠNG TRÌNH MŨBÀI TOÁN 1: SỬ DỤNG PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNGI. Phương pháp:Ta sử dụng phép biến đổi tương đương sau:Dạng 1: Phương trình a f  x   a g  x TH 1: Khi a là một hằng số thỏa mãn 0  a  1 thì a f  x   a g  x   f  x   g  x  a  1 f  x g x  a  0 TH 2: Khi a là một hàm của x thì a a   0  a  1  hoặc    f  x   g  x   a  1  f  x   g  x    0     Dạng 2: Phương trình: 0  a  1, b  0  a f  x  b    f  x   log a b Đặc biệt:Khi b  0, b  0 thì kết luận ngay phương trình vô nghiệmKhi b  1 ta viết b  a 0  a f  x   a 0  f  x   0Khi b  1 mà b có thể biếu diễn thành b  a c  a f  x   a c  f  x   cChú ý:Trước khi biến đổi tương đương thì f  x  và g  x  phải có nghĩaII. Bài tập áp dụng:Loại 1: Cơ số là một hằng sốBài 1: Giải các phương trình sau x 2 3 x 1 1 1 x 1a. 2 .4 x 1 . 1 x  16 x b.   3 c. 2 x 1  2 x  2  36 8 3Giải:a. PT  2 x 1 2 x 2 33 x  24 x  6 x  4  4 x  x  2 2 www.VNMATH.com

3. Giáo viên: Nguyễn Thành Long chúng tôi Email: Loinguyen1310@gmail.comDĐ: 01694 013 498 x 2  3 x 1 1 2b.    3  3 ( x  3 x 1)  31   ( x 2  3x  1)  1 3 x  1 x 2  3x  2  0   x  2 x 1 x 2 2x 8.2 x  2 x xc. 2  2  36  2.2   36   36 4 4 9.2 x  36.4  2x  16  24  x  4Bài 2: Giải các phương trình x 2 x 1  2 7xa. 0,125.4 2 x 3   8   b. 8 x 1  0, 25  2 c. 2 x  2.5 x 2  23 x.53 x  Giải: x  1  1 2 x 3 22Pt  .  22   3  8 2      x 3  5  2(2 x 3) 5 x 5 x 5 2 .2  2 2   2 3  4 x  6  2 2  2 4 x  9  2 2  4 x  9  x x6   2b. Điều kiện x  1 2 x 1 7x  x 1 3 2 2 x 1 xPT  2 x 1 2 2 3  7  2  7 x  9x  2  0   2 x 1 2 x  2  7 x2 3xc. Pt   2.5    2.5 10 x  2  103 x  x  2  3x  x  1 log3 x 1Bài 2: Giải phương trình:  x  2  x      x2  2Giải:Phương trình đã cho tương đương: x2 0 x  2  0 x  2 log3 x  log3 x    1   1  x   1 1   ln  x   0   log3 x ln  x    0 2    2    2    x  2  0 x  2   x  2 x  2 x  2 x  2       log 3 x  0  x  1  x  1          x2   ln  x  1   0    x  1  1  x  3    2   2  2  x  2  x  2 x  2    3 www.VNMATH.com

4. Giáo viên: Nguyễn Thành Long chúng tôi Email: Loinguyen1310@gmail.comDĐ: 01694 013 498Bài 3: Giải các phương trình: 2 x 3 x 1 1   x 1a.  10  3  x 1   10  3  x 3 b.  2 2    x 3 2 x   4  Giải: x  1a. Điều kiện:   x  3 1Vì 10  3  . 10  3 3 x x 1 3  x x 1PT   10  3  x 1    x 1 x  3 10  3   9  x2  x 2  1  x   5 x 3 Vậy nghiệm của phương trình đã cho là x   5 x  0b. Điều kiện:  x  1 2 x  3 2 2 2 2 x  x 1  PT  2 x 1 2 x 3 2 x  x 1  4  2 x 1.2 4   2 x 3  2  2   x 1 2 x x 1         4 2  2  x 3  2 x 1 2 x  x 1  4 x 2  x 3  4 x    x  1  4 x  10 x  6  0  x 3 x9Vậy phương trình có nghiệm là x  9Loại 2: Khi cơ số là một hàm của x sin 2  3 cos xBài 1: Giải phương trình  2  x  x 2    2  x  x2 Giải:Phương trình được biến đổi về dạng: 1  x  2(*)2  x  x 2  0     x 2  x  1  0(1) 2  2  x  x  1 sin x  2  3 cos x  0    sin x  3 cos x  2(2)  1 5Giải (1) ta được x1,2  thoả mãn điều kiện (*) 2 1 3     Giải (2): sin x  cos x  1  sin x  x    1  x    2k  x   2k , k  Z 2 2  3 3 2 6Để nghiệm thoả mãn điều kiện (*) ta phải có: 4 www.VNMATH.com

5. Giáo viên: Nguyễn Thành Long chúng tôi Email: Loinguyen1310@gmail.comDĐ: 01694 013 498  1   1   1   2k  2   1    k   2    k  0, k  Z khi đó ta nhận được x3  6 2  6 2  6 6 1 5 Vậy phương trình có 3 nghiệm phân biệt x1,2  ; x3  . 2 6 3 x 2 5 x  2 x2  x 4Bài 2: Giải phương trình:  x  3   x2  6 x  9 Giải: 3 x 2 5 x  2 2 x2  x 4 2( x 2  x  4)Phương trình được biến đổi về dạng:  x  3   x  3    x  3   x  3 1 x  4   x  4  0  x  3  1   x  3  4   3 x 2  5 x  2  2 x 2  2 x  8   x 2  7 x  10  0 x  5  Vậy phương trình có 2 nghiệm phân biệt x = 4, x = 5.Bài tập tự giải có hướng dẫn:Bài 1: Giải các phương trình sau 2 x 1a. 4.9 x 1  3.2 2 b. 7.3x 1  5 x  2  3x 4  5 x 3 x x   x  x 4 3 3  c.  5 27 4 3     4 37 d. 3  x  1 x 1   x  1 x 1  HD: 2 x 3  3  3a.    1 x   2 2 x 1 x 1 x 1 3b.  3 5    1  x  1 5c. x  10BÀI TOÁN 2: SỬ DỤNG PHƯƠNG PHÁP LÔGARIT HOÁ VÀ ĐƯA VỀ CÙNG CƠ SỐI. Phương pháp:Để chuyển ẩn số khỏi số mũ luỹ thừa người ta có thể logarit theo cùng 1 cơ số cả 2 vế của phương trình, ta cócác dạng:Dạng 1: Phương trình: 0  a  1, b  0  a f  x  b    f  x   log a b Dạng 2: Phương trình: (cơ số khác nhau và số mũ khác nhau) a    b g ( x )  log a a f ( x )  log a b f ( x )  f ( x )  g ( x).log a b f x 5 www.VNMATH.com

6. Giáo viên: Nguyễn Thành Long chúng tôi Email: Loinguyen1310@gmail.comDĐ: 01694 013 498 hoặc log b a f ( x )  logb b g ( x )  f ( x ).log b a  g ( x).Đặc biệt: (cơ số khác nhau và nhưng số mũ bằng nhau) f  x 0 f  x f (x) a aKhi f  x   g  x   a b    1     f  x   0 (vì b f ( x )  0 ) b bChú ý: Phương pháp áp dụng khi phương trình có dạng tích – thương của các hàm mũII. Bài tập áp dụng:Bài 1: Giải các phương trình x 1 2 x 3 2a. (ĐH KTQD – 1998) 5 x.8 x  500. b. 3x  2.4 x  18 2 2 2 x 3c. 2 x  4.5x  2  1 d. 2 x  2Giải:a. Cách 1: Viết lại phương trình dưới dạng: x 1 x 1 x 3 35 x.8 8  500  5x.2 x  53.22  5x 3.2 x 1Lấy logarit cơ số 2 vế, ta được:  x 3 x 3   x 3  x 3log 2  5 .2   0  log 2  5   log 2  2 x   0   x  3 .log 2 5  x x 3 log 2 2  0     x x  3  1   x  3   log 2 5    0   x x   1   log 2 5 1Vậy phương trình có 2 nghiệm phân biệt: x  3; x   log 2 5 3( x 1) 3 x x 3 x x 3 2 x 3 x x 3  1 Cách 2: PT  5 .2  5 .2  5 2 5  2 x    x 3    1 x 3 x  3  0 x  35 x 3  1  1    5.2 x  1  1       x  x   log5 2  2x  5.2  1 2 x 3 x2  2 x  x2  2 2 xx3 b. Ta có 3 .4  18  log3  3 .4   log 3 18   4x  6 3( x  2) x2  2  .log3 2  2  log 3 2   x 2  4   .log 3 2  0 x x x  2  0  x  2   x 2  2 x  3log 3 2   0   2 x2  x  2 x  3log 3 2  0 (VN ) 2 4c. PT  log 2 2 x  log 2 52  x  0 6 www.VNMATH.com

7. Giáo viên: Nguyễn Thành Long chúng tôi Email: Loinguyen1310@gmail.comDĐ: 01694 013 498 x 2  4   x  2  log 2 5  0   x  2  x  2  log 2 5  0 x  2 x  2   x  2  log 2 5  0  x  2  log 2 5d. Lấy logarit cơ số 2 hai vế phương trình ta được: 2 3log 2 2 x  2 x  log 2  x 2  2 x  log 2 3  1  x 2  2 x  1  log 2 3  0 2 ,Ta có   1  1  log 2 3  log 2 3  0suy ra phương trình có nghiệm x = 1  log 2 3.Chú ý:Đối với 1 phương trình cần thiết rút gọn trước khi logarit hoá.Bài 2: Giải các phương trình x 1 1 x x2a. 8  4.34  x b. 4 x  3x  2  3 2  22 x 1 log 0 ,5 (sin 2 x  5 sin x cos x  2 ) 1c. 4  d. 5 x  5 x 1  5 x  2  3x  3x 3  3x 1 9Giải:a. Điều kiện x  2 3x x2 2 3x  1 PT  2  34  x   2  (4  x ) log 2 3   x  4  .   log 2 3   0 x2  x2  x  4 0  1 x  4    log 2 3  0  x   2  log 3 2 x2 b. 1 1 1 x 3 x x x 4 x 2 x 1 2 2PT  4  2  3 3  4 .  3 2. 2 3 3 3 x x 3 4 2 3 2  x  0 x 0 2 2c. Điều kiện sin x  5sin chúng tôi x  2  0 *PT  log 21  sin 2 x  5sin chúng tôi x  2   log 4 32  log 2  sin 2 x  5sin chúng tôi x  2    log 2 3 thỏa mãn (*) cos x  0 sin 2 x  5sin chúng tôi x  2  3  cos x  5sin x  cos x   0   5sin x  cos x  0  x  2  k     x  2  k tan x  1  tan    x    l 5d. PT 7 www.VNMATH.com

8. Giáo viên: Nguyễn Thành Long chúng tôi Email: Loinguyen1310@gmail.comDĐ: 01694 013 498 5 x  5.5 x  25.5x  3x  27.3x  3.3x x 5 31.5 x  31.3x     1  x  0 3Vậy nghiệm của phương trình đã cho là x  0Bài 3: Giải các phương trìnha. x lg x  1000 x 2 b. x log 2  x  4   32 x 2c. 7log 25  5 x  1  x log 5 7 d. 3x.8 x1  36Giải:a. Điều kiện x  0 2 lg chúng tôi x  lg1000  lg x 2   lg x   2 lg x  3  0  lg x  1  0  x  1 / 10  lg x  1 lg x  3  0    lg x  3  0  x  1000b. Điều kiện x  0PT  log 2 x log2  x  4  log 2 32  log 2 x  4  .log 2 x  5   log 2 x  1 .  log 2 x  5  0  x2 log 2 x  1   log 2 x  5 x  1  32c. Điều kiện x  0   2 log5 7 log25 5 x 1  log 5 x log5 7   log 25 2  5 x   1 .log5 7  log 5 chúng tôi 5 x    1 1 log5 x  1  x log5 2  5 x   log 5 x  1  0  log5 2 x  2 log 5 x  3  0    5 4 log5 x  3   x  125  1Vậy phương trình đã cho có nghiệm x  5   x  125d. Điều kiện x  1 x x x 1 3x log 2 3 .8  log 2 36  2  2log 2 3  chúng tôi 2 3   2  2 log 2 3 x 1 x 2 .log 2 3   3  log 2 3 x  2  x  1  2  x  1 log 2 3 x  2 x 2 .log 2 3  1  log 2 3 x  2  2log 2 3  0    x  1  log 3 2 x  2Vậy phương trình có nghiệm là:   x  1  log 3 2Bài 4: Giải các phương trình sau : 2 1 4 2a. 8 x.5 x 1  b. 3x. 91 x  c. 3 x . 2 x  1 d. 2 x .5 x 2  10 8 27 x 8 www.VNMATH.com

9. Giáo viên: Nguyễn Thành Long chúng tôi Email: Loinguyen1310@gmail.comDĐ: 01694 013 498Giải:a. Lấy logarit hai vế với cơ số 8, ta được 2 1 2 18 x.5 x 1   log8 8 x.5x 1  log8 8 8 x log8 8  log8 5 x 2 1 1  log8 8  x  x 2  1 log8 5  1     x  1  x 2  1 log8 5  0   x  1   x  1 x  1 log8 5  0 x 1  0  x  1 1   x  1 log8 5  0     1   x  1 log8 5  0  x  1  x  1   chúng tôi 5  log8 5  1  x  1  log5 8Vậy phương trình có nghiệm: x  1, x  1  log 5 8b. PT  3x .32  2 x .33 x  4  32 x  2  4  2 x  2  log 3 4 4 2 x  log 3 4  2  2 x  log 3 4  log 3 9  log 3 9 1 4 2 x  log  log 3 2 9 3c. Lấy log hai vế của phương trình theo cơ số 2 2Ta được phương trình log 2 3x  log 2 2 x  0  x log 2 3  x 2  0 x  0 x ( log 2 3  x )  0    x   log 2 3 2 2d. PT  log 2 (2 x.5x )  log 2 (2.5)  log 2 2 x  log 2 5 x  log 2 2  log 2 5 x  x 2 log 2 5  1  log 2 5  (log 2 5) x 2  x  1  log 2 5  0 x  1 1  log 2 5 x    log 2 5Bài tập tự giải có hướng dẫn:Bài 1: Giải các phương trình saua. 5 xx1 8 x  100HD: Điều kiện x  0 2 5 x ( x 1).23 x  52( x 1).22( x 1)  5x  x  2  22  x x  2 log 2 5.( x 2  x  2)  2  x    x  1  log 5 2(loai) 2 2b. 2 x 3  3x  2 x 6  3x  2 x 5  2xHD: 9 www.VNMATH.com

11. Giáo viên: Nguyễn Thành Long chúng tôi Email: Loinguyen1310@gmail.comDĐ: 01694 013 498 f a – Đặt t    điều kiện hẹp t  0 bDạng 4: Lượng giác hoá.Chú ý: Ta sử dụng ngôn từ điều kiện hẹp t  0 cho trường hợp đặt t  a f ( x ) vì: – Nếu đặt t  a x thì t  0 là điều kiện đúng. 2 – Nếu đặt t  2 x 1 thì t  0 chỉ là điều kiện hẹp, bởi thực chất điều kiện cho t phải là t  2 . Điều kiệnnày đặc biệt quan trọng cho lớp các bài toán có chứa tham số.II. Bài tập áp dụng:Bài 1: Giải phương trình 1 b. 4sin x  2cos x  2  2 2 2 2 2a. 4cot x  2 sin x  3  0 (1)Giải:a. Điều kiện sin x  0  x  k , k  Z (*) 1Vì 2  1  cot 2 x nên phương trình (1) được biết dưới dạng: sin x 2 cot g 2 x 4cot  2.2x  3  0 (2) cot 2 x 2Đặt t  2 điều kiện t  1 vì cot 2 x  0  2cot x  20  1Khi đó phương trình (2) có dạng: t  1 2t 2  2t  3  0    2cot x  1  cot 2 x  0 t  3 thoả mãn (*)  cot x  0  x   k , k  Z 2 Vậy phương trình có 1 họ nghiệm x   k , k  Z 2 2x 2b. PT  2sin    21sin  2  2 2xĐặt t  2sin x  t  0  ta được 2 2t2  t     2  2  t 3  2  2 t  2  0  t  2 t 2  2t  2  0    t  2   2 24 2 t   2  2 24 2 t   loai   2 1 1 2  Với t  2  2sin x  2 2  sin 2 x   sin x   2  x k 2 2 4 2 11 www.VNMATH.com

14. Giáo viên: Nguyễn Thành Long chúng tôi Email: Loinguyen1310@gmail.comDĐ: 01694 013 498 2  2 x 1 21 2 2 x  2 9 2 2 222 x  1  0  .22 x 2 x  .2 x  x  1  0  2.22 x 2 x  9.2 x  x  4  0  9.2 x 2 4 x2  xĐặt t  2 điều kiện t  0 . Khi đó phương trình tương đương với: t  4 2  x  x  22  x2  x  2 2  1  2  x  12t  9t  4  0   2  t  2  2 x  x  2 1  x  x  1  x  2   2 Vậy phương trình có 2 nghiệm x  -1  x  2 .b. Biến đổi phương trình về dạng:  2 x 2 1   2.3 x 2 1   2 x 2 12.2   3Chia hai vế của phương trình cho 2  2 x 2 1   0 , ta được: x 2 1  2 x 2 1  3 32      2 2 x 2 1 x 2 1 1 3 3 3 3Đặt t    , vì x 2  1  1        t  2 2 2 2Khi đó pt (*) có dạng: x 2 1 2 t  2 3t t 2  0      2  x 2  1  log 3 2  x   log 3 2  1 t  1 l   2  2 2Chú ý:Trong ví dụ trên, vì bài toán không có tham số nên ta sử dụng điều kiện cho ẩn phụ chỉ là t  0 và chúng ta đã 1thấy với t  vô nghiệm. Do vậy nếu bài toán có chứa tham số chúng ta cần xác định điều kiện đúng cho ẩn 2phụ như sau: 12 2 1 1 1 x2  x 1 x x x      2  24  t  4  2 4 4 2Bài 4: Giải các phương trình 1 12a. (ĐHYHN – 2000) 23 x  6.2 x  3 x1  x  1 2 2 x x 3 x1b. (ĐHQGHN – 1998) 125  50  2Giải:a. Viết lại phương trình có dạng:  3 x 23   x 2   2  3 x   6  2  x   1 (1)  2   2  3 2 23  2   3  2Đặt t  2 x  x  23 x  3 x   2 x  x   3.2 x  2 x  x   t  6t 2 2  2    2 2Khi đó phương trình (1) có dạng: t 3  6t  6t  1  t  1  2 x  x  1 2 xĐặt u  2 , u  0 khi đó phương trình (2) có dạng: 14 www.VNMATH.com

15. Giáo viên: Nguyễn Thành Long chúng tôi Email: Loinguyen1310@gmail.comDĐ: 01694 013 498 u u  1 (loai )u  1  u2  u  2  0    u  2  2x  2  x  1 2  u2Vậy phương trình có nghiệm x = 1b. Biến đổi phương trình về dạng:125x  50 x  2.8x 1Chia hai vế của phương trình (1) cho 8 x  0 , ta được: x x 3x 2x 125   50  5 5     2     2 0  2 8   8   2 2 x 5Đặt t    , điều kiện t  0 2Khi đó pt (2) có dạng: x t  1 5t 3  t 2  2  0   t  1  t 2  2t  2   0  2    1 x  0 t  2t  2  0 VN   2 Bài 5: Giải các phương trình 2 1 1  1 x  1 xa.    3.    12 b. 3 x  31 x 4 0 c. 4 x 1  2 x 4  2 x  2  16 3  3Giải:a. Biến đổi phương trình về dạng: 2 1 1 x  1 x      12  03  3 x 1Đặt t    , điều kiện t  0 3 x t  3 1Khi đó pt (1) có dạng: t 2  t  12  0       3  x  1 t  4  loai   3b. Điều kiện: x  0 3Biến đổi phương trình về dạng: 3 x  x  4  0 3Đặt t  3 x , điều kiện t  1 t  1 loai Khi đó pt (1) có dạng: t 2  4t  3  0   t  3  loai  c. Biến đổi phương trình về dạng: 22 x 1  2 x  4  2 x  2  16 2.22 x  6.2 x  8  0 1Đặt t  2 x , điều kiện t  0Khi đó pt (1) có dạng: 15 www.VNMATH.com

16. Giáo viên: Nguyễn Thành Long chúng tôi Email: Loinguyen1310@gmail.comDĐ: 01694 013 498 t  42t 2  6t  8  0    2x  4  x  2 t  1 loai Bài 6: Giải các phương trình 2 2  x 1  x 2a. (ĐHDB – 2006) 9 x  10.3x 1  0b. 32 x 8 x 5 c. 3x  2  32 x  24 d. 7.2    20.2 x 2 x 2 1 2 1  12  0  4.3  27  0Giải: 1 x2  x 10 x2  x 2a. Pt  9 9  .3 9 2  1  0  3x  x    10.3x 2 x 9 0 2 xĐặt t  3x ,t  0 t  1Pt  t 2  10t  9  0   t  9 2 x 2 x x  0Với t = 1  3x  1  3x  30  x 2  x  0    x  1 2 x 2 x x  1Với t = 9  3x  9  3x  32  x 2  x  2  x 2  x  2  0    x  2 2b. 38.32 x  4.35.3x  27  0  6561. 3x    972.3x  27  0 (*)  1 x 2 t  9Đặt t  3  0 . Pt (*)  6561t  972t  27  0   t  1  27  1Với t   3x  32  x  2 9 1Với t   3x  33  x  3 27Vậy phương trình có nghiệm: x  2, x  3 9 2c. 3x  2  32 x  24  9.3x  x  24  0  9.  3x   24.3x  9  0 (*) 3 xĐặt t  3  0 t  3Pt (*)  9t  24t  9  0   2 t   1 ( loai)  3 xVới t  3  3  3  x  1Vậy phương trình có nghiệm: x  1 2 2d. Đặt t  2 x 1 , vì x 2  1  1  2 x 1  21  t  2Khi đó pt có dạng: 16 www.VNMATH.com

17. Giáo viên: Nguyễn Thành Long chúng tôi Email: Loinguyen1310@gmail.comDĐ: 01694 013 498 t  2 27t  20t  12  0   6 2  2 x 1  2  x 2  1  2  x  0 t   loai   7Bài 7: Giải các phương trìnha. 6.2 x  2 x  1 b. 64.9 x – 84.2 x  27.6 x  0c. 34 x  4.32 x  1  27  0 d. 25x  10 x  2 2 x1Giải: 1a. Pt  6. x  2 x  1 . Đặt t  2x , t  0 2 1 t  3 (loai )Pt  6.  t  1  6  t 2  t  t 2  t  6  0   x 1 t t  2  2  2  x  1  4  x 16 2x x    x x x  4 4  3  9 x  2b. PT  64.9 – 84.2  27.6  0  27.    84.    64  0    3 3  4 x x  1    4    3   3c. 34 x – 4.32 x  1  27  0  32 x  12.32 x  27  0 2  đặt t  32 x ; t  0 ta được t 2  12t  27  0  1 t  3 32 x  3 2 x  1 x    2x   2 t  9  3  9  32 2 x  2   x 1 2x x 2xd. 5   2.5   2.2Chia hai vế của phương trình cho 22 x  0 , ta được: 2x x5 5     2 2  2 x 5Đặt t    , điều kiện t  0 2Khi đó pt (*) có dạng: x 2 t  1 5t t 2  0      1 x  0 t  2  l   2 Bài 8: Giải các phương trìnha. 4log9 x  6.2log9 x  2log3 27  0 2 x 2b. (ĐH – D 2003) 2 x  22  x  x  3Giải: log 9 x 2a. Pt   2 2  3  6.2log9 x  2log3 3  0  2  log9 x   6.2 log9 x  23  0Đặt t  2log9 x , t  0 . 17 www.VNMATH.com

18. Giáo viên: Nguyễn Thành Long chúng tôi Email: Loinguyen1310@gmail.comDĐ: 01694 013 498 t  2Pt  t 2  6t  8  0   t  4Với t = 2  2log9 x  2  2log 9 x  21  log 9 x  1  x  9Với t = 4  2log9 x  4  2log9 x  22  log 9 x  2  x  92  81 2 2 2 4b. 2 x  x  22 x  x  3  2 x  x  3 x2  x 2 2 t  1 loai đặt t  2 x  x  t  0  ta được t 2  3t  4  0   t  4 2 x  x  1 2x  4  x2  x  2  0   x  2Bài 9: Giải các phương trìnha. 4log3 x  5.2log3 x  2log3 9  0 b. 3.16 x  2.81x  5.36 xGiải: log 3 x 2a. Pt   2 2  2  5.2log x  2log3 3  0  2 log3 x  5.2log 3 x  22  0Đặt t  2log3 x , t  0 . t  1Pt  t 2  5t  4  0   t  4 log3 xVới t = 1  2  1  2log 3 x  20  log 3 x  0  x  1Với t = 4  2log3 x  4  2log3 x  22  log 3 x  2  x  32  9b. Chia cả hai vế cho 36 x ta được x x x x  16   81  4 9PT  3.    2.    5  3.    2.    5  0  36   36  9 4 x 4Đặt    t (t  0) 9Khi đó phương trình tương đương 1  3t 2  5t  2 t  13.t  2.  5  0  0 t  t  2 t  0 t t  0   3 x 4Với t  1     1  x  0 9 x 2 4 2 1Với t      x 3 9 3 2 1Vậy phương trình có 2 nghiệm phân biệt x  0 hoặc x  2Bài 10: Giải các phương trình 18 www.VNMATH.com

19. Giáo viên: Nguyễn Thành Long chúng tôi Email: Loinguyen1310@gmail.comDĐ: 01694 013 498a. 32( x log 3 2)  2  3x  log3 2b. (ĐHDB – 2007) 23x 1  7.22x  7.2 x  2  0Giải: 2a. Pt  3( x  log3 2)   3x  log3 2  2  0 . Đặt t = 3xlog3 2 , t  0 .   t  1(loai )Pt  t 2  t  2  0   t  2Với t = 2  3x  log3 2  2  x  log 3 2  log 3 2  x  0b. 2t 3  7t 2  7t  2  0 (t  2 x , t  0) 1 (t  1)(2t 2  5t  2)  0  t  1  t  2  t  2 x  0  x  1  x  1 x 2 1Bài 11: Giải phương trình    25  x  9 4Giải: x 2 1 Pt   2   25  x  9 2  x 2   2 2   25  x  9  22( x 2)  25 x  9  2 4 2 x  25 x  9  0 2 4 25 16 32  2x  x 9  0  2  x 9  0 2 2  2x  2Đặt t  2x , t  0 . 16 32 16  32t  9t 2Pt  2   9  0  2  0  9t 2  32t  16  0 t t t t  4  4 4  t   2 x =  x  2  log 2 9  9 9Bài 12: Giải các phương trình x 9 10  4 2 27 27a. x 2  b. 8 x  9.2 x    64 2 4 8x 2xGiải: x  Pt  9.4  2 x2. 10  4 2    x 2x 2 x x 36  2 x 2 .10  2 x  2.  22  2  10.  .2  36 22 2 2Đặt t = 2x, t  0 . 19 www.VNMATH.com

20. Giáo viên: Nguyễn Thành Long chúng tôi Email: Loinguyen1310@gmail.comDĐ: 01694 013 498 t  8  2 x = 8  2 x = 2 3  x = 3Pt  t 2  10t  144  0   t  18(loai ) x 2 10.2 x  2  2 2   36  10.2 x   2 x   36.4   2 x   10.2 x  144  0 4 4b. Phương trình: 8 x  9.2 x  27  27  64 8x 2 x 3  x 3  x 3 x x 2x  1 x  0  2  x   64  2  x  4  4  4.2  3  0   x   2  2  2  3  x  log 2 3Bài 13: Giải các phương trình 32 x x 72x xa. x  2.  0, 3  3 b. x  6. 0, 7   7 100 100Giải: x 32 x  3a. Pt   2.    3 2 x 10   10  x 2x x 2 32 x 3  3  3  3  x   3 x 2 x  2.    3  0     2.    3  0      2.    3  0 10  10   10   10   10      10  x 3Đặt t    , t  0 .  10  2Pt  t  2t  3  0 x   3   t  3    = 3  x = log 3 3  10  10 t  1(loai ) b. Biến đổi phương trình về dạng: 2x x 7  7    6.    7 1 10   10  x  7Đặt t    , điều kiện t  0  10 Khi đó pt (1) có dạng: x 2 t  7 7 t  6t  7  0       7  x  log 7 7 t  1 l   10  10Bài 14: Giải các phương trìnha. 8 x  18 x  2.27 xb. (ĐH – A 2006) 3.8x  4.12 x  18 x  2.27 x  0Giải:a. Chia hai vế pt cho 27x , ta được : 20 www.VNMATH.com

22. Giáo viên: Nguyễn Thành Long chúng tôi Email: Loinguyen1310@gmail.comDĐ: 01694 013 498 1Vậy x  là nghiệm của phương trình. 4b. Điều kiện x  0Cách 1: Chú ý công thức: a logb c  c logb a với a, b, c  0 và b  1 log2 6Áp dụng công thức trên, ta chuyển phương trình 6.9log 2 x  6 x 2  13.x về phương trình:6.9log2 x  6 x 2  13.6log2 xĐặt t  log 2 x  x  2t  x 2  4tKhi đó ta có phương trình: 6.9t  6.4t  13.6tCách 2: Ta có: 6.9log2 x  6 x 2  13 x log 2 6  6.9log2 x  6 x log2 4  13 x log 2 6  6.9log 2 x  64log 2 x  136log 2 x… Tự giảiBài tập tự giải có hướng dẫn:Bài 1: Giải các phương trình sau 2 2a. 2 x  x  22  x  x  3 b. 9 x  6 x  2.4 x 2 2c. 4 x  x 5  12.2 x 1 x 5  8  0 d. 32 x 5  36.3x 1  9  0 2 2e. 32 x  2 x 1  28.3x  x  9  0 f. (ĐHH – D 2001) 12.3x  3.15x  5 x1  20HD: 2 x 4 t  4  x  1a. Đặt 2 x  t (t  0) ta được t  3 t  1 (loai )   x  2 t   2x x 3 3b. Chia cả hai vế phương trình cho 4 x ta được       2  0  x  0 2 2  x  x2  5  1 x  3 x  x2 5 t  2c. Đặt 2  t (t  0)     9  t4 x  x  5  2 2 x    4d. x  1  x  2 e. x  2  x  1Bài 2: Giải các phương trình sau sin x sin xa. (ĐHL – 1998)  74 3    74 3  4Đs: x  k  k    x xb. (ĐHNN – 1998) 2  3     74 3 2 3     4 2 3 Đs: x  0  x  2 x xc.  6- 35    6  35   12 x x x d. 7  5 2    ( 2  5) 3  2 2    3 1 2  1 2  0HD: Đặt t  (1  2) x ; t  0 22 www.VNMATH.com

23. Giáo viên: Nguyễn Thành Long chúng tôi Email: Loinguyen1310@gmail.comDĐ: 01694 013 498 t 3  ( 2  5)t 2  3t  1  2  0  (t  1)(t 2  ( 2  4)t  2  1)  0 t  1 x  0   x  2 t  3  2 2     t  1  2 x  1 x xe.    2 3   4 2 3 x 1 t  2  3 x  2HD: Đặt t   2  3   t  0   t   4    t t  2   3  x  2Bài 3: Giải các phương trình saua. (ĐHTCKT – 1999) 4 x 1  2 x 1  2 x  2  12Đs: x  0  k   2 2b. (ĐHAN – D 1999) 9sin x  9cos x  10 x  k 2c. (ĐHHĐ – A 2001) 5.3 2 x 1 7.3x-1  1  6.3x  9 x 1  0 3 1Đs: x  log 3  x  log 3 5 5d 32 x 1  3x  2  1  6.3x  32( x 1)  11 Đs: x  log 3  2     3Bài 3: Giải các phương trình saua. (ĐHHP – 2000) 25x  15x  2.9 xĐs: x  0 2 2b. (ĐHTL – 2000) 22 x 1  9.2 x  x  22 x2  0Đs: x  1  x  2 x x x 2c. (ĐHHH – 1999) 4.3  9.2  5.6Đs: x  4 2 2 2d. 32 x 6 x9  4.15x 3 x5  3.52 x 6 x 9Đs: x  1  x  4BÀI TOÁN 4: SỬ DỤNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ – DẠNG 2I. Phương pháp:Phương pháp dùng ẩn phụ dạng 2 là việc sử dụng 1 ẩn phụ chuyển phương trình ban đầu thành 1 phương trìnhvới 1 ẩn phụ nhưng các hệ số vẫn còn chứa x.Phương pháp này thường sử dụng đối với những phương trình khi lựa chọn ẩn phụ cho 1 biểu thức thì các biểuthức còn lại không biểu diễn được triệt để qua ẩn phụ đó hoặc nếu biểu diễn được thì công thức biểu diễn lạiquá phức tạp. 23 www.VNMATH.com

24. Giáo viên: Nguyễn Thành Long chúng tôi Email: Loinguyen1310@gmail.comDĐ: 01694 013 498Khi đó thường ta được 1 phương trình bậc 2 theo ẩn phụ (hoặc vẫn theo ẩn x) có biệt số  là một số chínhphương.II. Bài tập áp dụng:  Bài 1: Giải phương trình 32 x  2 x  9 .3x  9.2 x  0Giải:Đặt t  3x , điều kiện t  0 . Khi đó phương trình tương đương với: 2 2 t  9t 2   2 x  9  t  9.2 x  0;    2 x  9   4.9.2 x   2 x  9    x t  2Khi đó:+ Với t  9  3x  9  x  2 x x x  3 x+ Với t  2  3  2     1  x  0  2 x  2Vậy phương trình có 2 nghiệm  x  0 2 2  Bài 2: Giải phương trình 9 x  x 2  3 3x  2 x 2  2  0Giải: 2 2Đặt t  3x điều kiện t  1 vì x 2  0  3x  30  1  Khi đó phương trình tương đương với: t 2  x 2  3 t  2 x 2  2  0 2 2 t  2        x 2  3  4 2 x 2  2  x 2  1    2 t  1  xKhi đó: 2+ Với t  2  3x  2  x 2  log 3 2  x   log 3 2 2+ Với t  1  x 2  3x  1  x 2 ta có nhận xét: 2VT  1 VT  1 3x  1    x0VP  1 VP  1 1  x 2  1 Vậy phương trình có 3 nghiệm x   log3 2; x  0Bài 3: Giải phương trình: 9 x   x  12  .3x  11  x  0Giải: 2PT   3x    x  12  3x  11  x  0Đặt t  3x  t  0  3 x  1 x  0 x  x (a + b + c = 0) 3  11  x   f ( x )  3  x  11  0(*) 24 www.VNMATH.com

25. Giáo viên: Nguyễn Thành Long chúng tôi Email: Loinguyen1310@gmail.comDĐ: 01694 013 498Xét phương trình (*) ta có f ( x )  3 x ln 3  1  0, x    (*) có nghiệm duy nhất x = 2 f ( 2)  0 Vậy, tập nghiệm của phương trình: S = {0 ; 2}Bài 4: Giải phương trình: 3.25x  2   3 x  10  5x  2  x  3Giải:PT 3.25x  2   3 x  10  5x  2  x  3 5 x 2  3.5 x 2  1  x  3.5 x 2  1  3  3.5 x 2  1  0 3.5x  2  1  0 1  3.5  1 5  x  3  0   x 2 x2 x2 5  x  3  0  2   1 1PT 1  5x  2   x  2  log 5  2  log 5 3 3 3 x 2PT  2   5   x  3Vế trái là hàm đồng biến vế phải là hàm nghịch biến mà (2) có nghiệm x = 2 nên là nghiệm duy nhất.Vậy Pt có nghiệm là: x  2  log 5 3 hoặc x = 2Bài 5: Giải phương trình: 42 x  23 x 1  2 x 3  16  0 1Giải :Đặt t  2 x , điều kiện t  0Khi đó pt (1) tương đương với:t 4  2t 3  8t  16  0  42  2t.4  t 4  2t 3  0Đặt u = 4, ta được: u 2  2t.u  t 4  2t 3  0 u  t  t  t  1  4  t 2   t 2  2t  4  0 u  t  t  t  1 2   4  t  2t  t  1  5  t  1  5  2 x  5  1  x  log 2 5  1   Bài 6: Giải phương trình: 9 x  2  x  2  .3x  2 x  5  0 1Giải:Đặt t  3x , điều kiện t  0Khi đó pt (1) tương đương với: t  1 l t 2  2  x  2 t  2x  5  0    3x  5  2 x  2  t  5  2 xTa đoán được nghiệm x = 1Vế trái (2) là một hàm số đồng biến còn vế phải (2) là một hàm nghịch biếnVậy x = 1 là nghiệm duy nhất của pt (2)Bài 7: Giải phương trình: 32 x  3x  5  5 1 25 www.VNMATH.com

Bài Tập Trắc Nghiệm Phương Trình Mũ Và Logarit File Word

bài tập trắc nghiệm phương trình mũ và logarit file word

Bùi Đức Quân

2020-11-27T01:54:01-05:00

2020-11-27T01:54:01-05:00

https://thionline.com.vn/tai-lieu/tai-lieu-toan/bai-tap-trac-nghiem-phuong-trinh-mu-va-logarit-file-word-744.html

Website Luyện thi online miễn phí,hệ thống luyện thi trắc nghiệm trực tuyến miễn phí,trắc nghiệm online, Luyện thi thử thptqg miễn phí

Thứ sáu – 27/11/2020 01:47

 

 

 

bài tập trắc nghiệm phương trình, bất phương trình mũ và logarit violet, Chuyên đề phương trình mũ và logarit trắc nghiệm, Bài tập trắc nghiệm phương trình mũ logarit File word, Bài tập trắc nghiệm về phương trình lôgarit,

Phương trình mũ và logarit

bài tập trắc nghiệm phương trình, bất phương trình mũ và logarit violet, Chuyên đề phương trình mũ và logarit trắc nghiệm, Bài tập trắc nghiệm phương trình mũ logarit File word, Bài tập trắc nghiệm về phương trình lôgarit, Bài tập trắc nghiệm lũy thừa, mũ – logarit, Hệ phương trình mũ và logarit trắc nghiệm, Bài tập trắc nghiệm phương trình mũ có lời giải, Bài tập trắc nghiệm hàm số mũ và logarit, Bài tập trắc nghiệm phương trình mũ logarit File word, Bài tập trắc nghiệm phương trình mũ và logarit violet, Bài tập trắc nghiệm phương trình mũ có bản violet, Trắc nghiệm mũ và logarit file word violet, Bài tập phương trình mũ và logarit violet, Trắc nghiệm mũ và logarit violet có đáp án, Bài tập trắc nghiệm mũ và logarit violet, Bài tập trắc nghiệm phương trình logarit violet

bài tập trắc nghiệm phương trình mũ và logarit file word 

 Bài tập trắc nghiệm lũy thừa, mũ – logarit, Hệ phương trình mũ và logarit trắc nghiệm, Bài tập trắc nghiệm phương trình mũ có lời giải, Bài tập trắc nghiệm hàm số mũ và logarit, Bài tập trắc nghiệm phương trình mũ logarit File word, Bài tập trắc nghiệm phương trình mũ và logarit violet, Bài tập trắc nghiệm phương trình mũ có bản violet, Trắc nghiệm mũ và logarit file word violet, Bài tập phương trình mũ và logarit violet, Trắc nghiệm mũ và logarit violet có đáp án, Bài tập trắc nghiệm mũ và logarit violet, Bài tập trắc nghiệm phương trình logarit violet

Chi tiết bài tập trắc nghiệm phương trình mũ và logarit file word 

Chi tiết bài tập trắc nghiệm phương trình mũ và logarit file word Đặng Việt Đông

Phương Trình Mũ, Bất Phương Trình Mũ Và Bài Tập Áp Dụng

Các em đã ôn tập về luỹ thừa trong bài hướng dẫn trước, trong phần này chúng ta sẽ ôn lại kiến thức về phương trình mũ và bất phương trình mũ. Nếu các em chưa nhớ các tính chất của hàm số mũ, các em có thể xem lại Tại Đây

+ Là dạng phương trình a x = b; (*), với a, b cho trước và 0<a≠1

– Nếu b≤ 0: Phương trình (*) vô nghiệm

II. Phương pháp giải Phương trình mũ và Bất phương trình mũ

1. Phương pháp đưa về cùng cơ số

– Ta sử dụng phép biến đổi tương đương sau:

– Logorit hoá và đưa về cùng cơ số:

⇔ x= -2 hoặc x = -3

⇔ x = 1

2. Phương pháp dùng ẩn phụ

* Loại 1: Các số hạng trong PT, BPT có thể biểu diễn qua af(x) nên đặt t = af(x).

– Hay gặp một số dạng sau:

+ Dạng 3: trùng phương ẩn t.

– Hay gặp một số dạng sau: ⇒ Chia 2 vế cho a2f(x) đưa về loại 1 dạng 1 ⇒ Chia 2 vế cho a3f(x) đưa về loại 1 dạng 2

Với dạng này ta sẽ chia cả 2 vế của Pt cho hoặc với n là số tự nhiên lớn nhất có trong Pt Sau khi chia ta sẽ đưa được Pt về loại 1.

Loại 3: Trong phương trình có chứa 2 cơ số nghịch đảo

⇒ Chia 2 vế của Pt cho cf(x) và đưa về dạng 1.

3. Phương pháp logarit hóa

+ Đôi khi ta không thể giải một PT, BPT mũ bằng cách đưa về cùng một cơ số hay dùng ấn phụ được, khi đó ta thể lấy logarit hai vế theo cùng một sơ số thích hợp nào đó PT, BPT mũ cơ bản ( phương pháp này gọi là logarit hóa)

+ Dấu hiệu nhận biết: PT loại này thường có dạng (tức là trong phương trình có chứa nhiều cơ số khác nhau và số mũ cũng khác nhau) khi đó ta có thể lấy logarit 2 vế theo cơ số a (hoặc b, hoặc c).

1. Bất phương trình mũ cơ bản

– Nếu 0 <a < 1 thì nghiệm của bất PT là x < log a b

2. Giải bất phương trình bằng phương pháp đưa về cùng một cơ số

3. Giải bất phương trình mũ bằng phương pháp đặt ẩn phụ

C. BÀI TẬP PHƯƠNG TRÌNH, BẤT PT MŨ

⇔ x 2 – 4x = 0 ⇔ x(x- 4) = 0 ⇔ x = 0 hoặc x = 4

(cách nhẩm nghiệm: Do các hệ số của Pt bậc 2 trên có a – b + c =0 nên có 1 nghiệm x = -1 nghiệm còn lại x = -c/a = -2)

(cách nhẩm nghiệm: Do các hệ số của Pt bậc 2 trên có a + b + c =0 nên có 1 nghiệm x = 1 nghiệm còn lại x = c/a = 2)

với t = 1 ⇔ 3 x = 1 ⇔ x=0

với t = 3 ⇔ 3 x = 3 ⇔ x=1

b) 9 x – 3.6 x + 2.4 x = 0 chia 2 vế của phương trình cho 4 x ta được phương trình sau

với t = 1 ⇔ (3/2) x = 1 ⇔ x=0

với t = 1 ⇔ 5 x = 1 ⇔ x=0

với t = 5 ⇔ 5 x = 5 ⇔ x=1

t 2 – 2t – 15 = 0 ⇔ t = 5 (nhận) hoặc t = -3 (loại)

với t = 5 ⇔ 5 x = 1 ⇔ x=0

* Giải phương trình mũ bằng phương pháp logarit hoá

a) 3 x = 2 ta logarit cơ số 3 hay vế

hoặc có thể làm như sau, lấy logarit cơ số 2 của 2 vế ta được

⇔ x+ chúng tôi 23 = 0 ⇔ x(1+ log 2 3) = 0 ⇔ x = 0

⇔ x < -2 + log 0,3 7

⇔ x-1 ≥ x 2-3 ⇔ -x 2 + x + 2 ≥ 0 ⇔ -1≤x≤2

Cập nhật thông tin chi tiết về Giải Phương Trình Mũ Logarit Hay Và Khó Lớp 12 trên website Ictu-hanoi.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!