Xu Hướng 11/2022 # Luyện Tập Phần Giải Bài Toán Bằng Cách Lập Phương Trình (Tiếp) Sách Giáo Khoa Toán Lớp 8 / 2023 # Top 16 View | Ictu-hanoi.edu.vn

Xu Hướng 11/2022 # Luyện Tập Phần Giải Bài Toán Bằng Cách Lập Phương Trình (Tiếp) Sách Giáo Khoa Toán Lớp 8 / 2023 # Top 16 View

Bạn đang xem bài viết Luyện Tập Phần Giải Bài Toán Bằng Cách Lập Phương Trình (Tiếp) Sách Giáo Khoa Toán Lớp 8 / 2023 được cập nhật mới nhất trên website Ictu-hanoi.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất.

Bài 40 trang 31 sách giáo khoa Toán lớp 8 tập II.

Năm nay, tuổi mẹ gấp 3 lần tuổi Phương, Phương tính rằng 13 năm nữa thì tuổi mẹ chỉ còn gấp 2 lần tuổi Phương thôi. Hỏi năm nay Phương bao nhiêu tuổi?

Bài 41 trang 31 sách giáo khoa Toán lớp 8 tập II.

Một số tự nhiên có hai chữ số. Chữ số hàng đơn vị gấp hai lần chữ số hàng chục. Nếu thêm chữ số 1 xem vào giữa hai chữ số ấy thì được một số mới lớn hơn số ban đầu là 370. Tìm số ban đầu.

Bài 42 trang 31 sách giáo khoa Toán lớp 8 tập II.

Tìm số tự nhiên có hai chữ số, biết rằng nếu viết thêm một chữ số 2 vào bên trái và một chữ số 2 vào bên phải số đó thì ta được một số lớn gấp 153 lần số ban đầu.

Bài 43 trang 31 sách giáo khoa Toán lớp 8 tập II.

Tìm phân số có đồng thời các tính chất sau:

a) Tử số của phân số là số tự nhiên có một chữ số;

b) Hiệu giữa tử số và mẫu số bằng 4;

c) Nếu giữ nguyên tử số và viết thêm vào bên phải của mẫu số một chữ số đúng bằng tử số, thì ta được một phân số bằng phân số .

Bài 44 trang 31 sách giáo khoa Toán lớp 8 tập II.

Trong đó có hai ô còn trống (thay bằng dấu *). Hãy điền số thích hợp vào ô trống, nếu điểm trung bình của lớp là 6,06.

Bài 45 trang 31 sách giáo khoa Toán lớp 8 tập II.

Một xí nghiệp kí hợp đồng dệt một số tấm thảm len trong 20 ngày. Do cải tiến kỹ thuật, năng suất dệt của xí nghiệp đã tăng 20%. Bởi vậy, chỉ trong 18 ngày, không những xí nghiệp đã hoàn thành số thảm cần dệt mà còn dệt thêm được 24 tấm nữa.Tính số tấm thảm len mà xí nghiệp phải dệt theo hợp đồng.

Bài 46 trang 31 sách giáo khoa Toán lớp 8 tập II.

Một người lái ô tô dự định đi từ A đến B với vận tốc 48 km/h. Nhưng sau khi đi được một giờ với vận tốc ấy, ô tô bị tàu hỏa chắn đường trong 10 phút. Do đó, để kịp đến B đúng thời gian đã định, người đó phải tăng vận tốc thêm 6 km/h. Tính quãng đường AB

Bài 47 trang 32 sách giáo khoa Toán tập II.

Bà An gửi vào quỹ tiết kiệm x nghìn đồng với lãi suất mỗi tháng là a% (a là một số cho trước) và lãi tháng này được tính gộp vào vốn cho tháng sau.

a)Hãy viết biểu thức biểu thị:

+Số tiền lãi sau tháng thứ nhất;

+Số tiền (cả gốc lẫn lãi) có được sau tháng thứ nhất;

+Tổng số tiền lãi có được sau tháng thứ hai.

b)Nếu lãi suất là 1,2% (tức là a = 1,2) và sau 2 tháng tổng số tiền lãi là 48,288 nghìn đồng, thì lúc đầu bà An đã gửi bao nhiêu tiền tiết kiệm?

Bài 48 trang 32 sách giáo khoa Toán tập II.

Năm ngoái, tổng số dân của hai tỉnh A và B là 4 triệu. Năm nay, dân số của tỉnh A tăng thêm 1,1%, còn dân số của tỉnh B tăng thêm 1,2%. Tuy vậy, số dân của tỉnh A năm nay vẫn nhiều hơn tỉnh B là 807200 người. Tính số dân năm ngoái của mỗi tỉnh

Bài 49 trang 32 sách giáo khoa Toán tập II.

Đố: Lan có một miếng bìa hình tam giác ABC vuông tại A, cạnh AB = 3cm. Lan tính rằng nếu cắt từ miếng bìa đó ra một hình chữ nhật ấy có diện tích bằng một nửa diện tích của miếng bìa ban đầu. Tính độ dài cạnh AC của tam giác ABC.

HƯỚNG DẪN – BÀI GIẢI – ĐÁP SỐ:

Bài 40 trang 31 sách giáo khoa Toán lớp 8 tập II.

Tuổi mẹ năm nay là 3x ( tuổi)

Sau 13 năm nữa thì tuổi Phương là : x +13 (tuổi) và tuổi mẹ là : 3x + 13 (tuổi)

Theo đề bài ta có phương trình:

Vậy năm nay Phương 13 tuổi.

Bài 41 trang 31 sách giáo khoa Toán lớp 8 tập II.

Gọi x là chữ số hàng chục ( x nguyên dương , 0 < x ≤ 9 )

Chữ số hàng đơn vị à 2x.

Số đã cho là : 10x +2 x =12 x

Khi xen chữ số 1 vào giữa hai chữ số x và 2x thì x thành chữ số hàng trăm, 2 x vẫn là chữ số hàng đơn vị. Số mới sẽ là”

Vậy số cần tìm là 48.

Bài 42 trang 31 sách giáo khoa Toán lớp 8 tập II.

Gọi x là số tự nhiên có hai chữ số.

Khi viết chữ số 2 vào bên trái và chữ số 2 vào bên phải ta đươc một số có bốn chữ số . Số nhận được là:

2.1000 + x.10 + = 2002 + 10x

Số nhận được lớn gấp 153 lần số ban đầu nên ta có phương trình:

Vậy số cần tìm là 14.

Bài 43 trang 31 sách giáo khoa Toán lớp 8 tập II.

Gọi x là mẫu số ( x có một chữ số , x € N)

Viết thêm bên phải của mẫu số một chữ số đúng bằng tử số thì được mẫu bằng:

Phân số mới bằng phân số . Ta có phương trình:

Vậy không tìm được phân số nào thỏa mãn điều kiện của ẩn)

Bài 44 trang 31 sách giáo khoa Toán lớp 8 tập II.

Gọi x là số học sinh của lớp x ( x nguyên dương)

Số điểm 4 của lớp là:

x – ( 2 + 10 +12 + 7 + 6 + 4 +1 ) = x -42

Điểm trung bình của lớp là 6,06 nên ta có phương trình:

Vậy số học sinh của lớp là 50 và số điểm 4 là 8.

Bài 45 trang 31 sách giáo khoa Toán lớp 8 tập II.

Lập bảng sau:

Vì năng suất dệt của xí nghiệp tăng 20% nên trong 1 ngày xí nghiệp dệt 120% so với hợp đồng.

Vậy xí nghiệp phải dệt theo hợp đồng là 300 tấm thảm.

Bài 46 trang 31 sách giáo khoa Toán lớp 8 tập II.

Đs: Quãng đường AB dài 120 km

Bài 47 trang 32 sách giáo khoa Toán tập II.

a) Số tiền lãi sau tháng thứ nhất là:

Số tiền( cả gốc lẫn lãi ) có đựơc sau tháng thứ nhất là:

Tổng số tiền lãi có được sau tháng thứ hai là:

b) Với a = 1,2 ta có phương trình:

tương đương:

tương đương:

Vậy bà An đã gửi 2 triệu đồng tiền tiết kiệm.

Bài 48 trang 32 sách giáo khoa Toán tập II.

Gọi số dân tỉnh A năm ngoái là x (người) , x < 4 < 4 00 0 000 ( x nguyên dương).

Lập bảng liên hệ giữa số dân và năm:

Số dân tỉnh A năm nay nhiều hơn số dân tỉnh B là 807 200 người nên ta có phương trình:

1,011x – 1,012(4000 000 – x ) = 807 200

Vậy số dân tỉnh A năm ngoái là 2,4 triệu và số dân tỉnh CB năm ngoái là 1,6 triệu.

Bài 49 trang 32 sách giáo khoa Toán tập II.

Hướng dẫn: Áp dụng định lí Ta – lét để giải bài toán.

Sách Giải Bài Tập Toán Lớp 8 Bài 7: Giải Bài Toán Bằng Cách Lập Phương Trình (Tiếp) / 2023

Sách giải toán 8 Bài 7: Giải bài toán bằng cách lập phương trình (tiếp) – Luyện tập (trang 31-32) giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 8 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Trả lời câu hỏi Toán 8 Tập 2 Bài 7 trang 28: Trong Ví dụ trên, hay thử chọn ẩn số theo cách khác: Gọi s (km) là quãng đường từ Hà Nội đến điểm gặp nhau của hai xe. Điền vào bảng sau rồi lập phương trình với ẩn số s:

Lời giải

Ô tô xuất phát sau xe máy 2/5 giờ nên

Trả lời câu hỏi Toán 8 Tập 2 Bài 7 trang 28: Giải phương trình nhận được rồi suy ra đáp số của bài toán. So sánh hai cách chọn ẩn, em thấy cách nào cho lời giải gọn hơn ?

⇔ 9s = 7(90 – s) + 126

⇔ 9s = 756 – 7s

⇔ 16s = 756

⇔ s = 47,25(km)

Thời gian để hai xe gặp nhau từ lúc xe máy khởi hành là:

Bài 7: Giải bài toán bằng cách lập phương trình (tiếp)

Bài 37 (trang 30 SGK Toán 8 tập 2): Lúc 6 giờ sáng, một xe máy khởi hành từ A để đến B. Sau đó 1 giờ, một ô tô cũng xuất phát từ A đến B với vận tốc trung bình lớn hơn vận tốc trung bình của xe máy 20km/h. Cả hai xe đến B đồng thời vào lúc 9 giờ 30 phút sáng cùng ngày. Tính độ dài quãng đường AB và vận tốc trung bình của xe máy.

Lời giải:

* Phân tích bài toán:

Chọn x là vận tốc trung bình của xe máy.

(Các bạn có thể chọn x là quãng đường AB và làm tương tự).

Thời gian xe máy đi từ A đến B: 9h30 – 6h = 3,5 (h).

Quãng đường AB (tính theo xe máy) là: 3,5.x (km).

Vận tốc trung bình của ô tô lớn hơn vận tốc trung bình của xe máy 20km/h

⇒ Vận tốc trung bình của ô tô là: x + 20 (km/h)

Ô tô xuất phát sau xe máy 1h

⇒ thời gian ô tô đi từ A đến B là: 3,5 – 1 = 2,5 (h).

Quãng đường AB (tính theo ô tô) là: 2,5(x + 20) (km)

Ta có phương trình: 3,5x = 2,5(x + 20) ⇔ 3,5x = 2,5x + 50 ⇔ x = 50 (thỏa mãn).

⇒ Quãng đường AB: 3,5.50 = 175 (km).

Vậy quãng đường AB dài 175km và vận tốc trung bình của xe máy là 50km/h.

Bài 7: Giải bài toán bằng cách lập phương trình (tiếp)

Bài 38 (trang 30 SGK Toán 8 tập 2): Điểm kiểm tra Toán của một tổ học tập được cho trong bảng sau:

Biết điểm trung bình của cả tổ là 6,6. Hãy điền các giá trị thích hợp vào hai ô còn trống (được đánh dấu *).

Lời giải:

Gọi x là số học sinh (tần số) được điểm 5 (0 < x < 10; nguyên).

Tần số hay số học sinh được điểm 9 là:

10 – (1 + 2 + 3 + x) = 4 – x

Điểm trung bình của cả tổ bằng 6,6 điểm nên:

Bài 7: Giải bài toán bằng cách lập phương trình (tiếp)

Bài 39 (trang 30 SGK Toán 8 tập 2): Lan mua hai loại hàng và phải trả tổng cộng 120 nghìn đồng, trong đó đã tính cả 10 nghìn đồng là thuế giá trị gia tăng (viết tắt là thuế VAT). Biết rằng thuế VAT đối với loại hàng thứ nhất là 10%; thuế VAT đối với loại hàng thứ 2 là 8%. Hỏi nếu không kể thuế VAT thì Lan phải trả mỗi loại hàng bao nhiêu tiền?

Ghi chú: Thuế VAT là thuế mà người mua hàng phải trả, người bán hàng thu và nộp cho Nhà nước. Gỉa sử thuế VAT đối với mặt hàng A được quy định là 10%. Khi đó nếu giá bán của A là a đồng thì kể cả thuế VAT, người mua mặt hàng này phải trả tổng cộng là a + 10% a đồng.

Lời giải:

* Phân tích:

Vì trong 120 nghìn Lan trả có 10 nghìn thuế VAT nên giá gốc của hai sản phẩm không tính VAT là 110 nghìn đồng.

Thuế VAT của cả hai mặt hàng là 10 nghìn nên có phương trình:

0,1x + 0,08(110 – x) = 10.

* Giải

Gọi giá gốc của mặt hàng thứ nhất là x (0 < x < 120 nghìn đồng).

Vì trong 120 nghìn đồng Lan trả đã có 10 nghìn đồng thuế VAT nên tổng giá gốc của cả hai mặt hàng chỉ bằng: 120 – 10 = 110 (nghìn đồng).

⇒ Giá gốc của mặt hàng thứ hai là: 110 – x (nghìn đồng).

Thuế VAT của mặt hàng thứ nhất bằng: 10%.x = 0,1x.

Thuế VAT của mặt hàng thứ hai bằng: 8%.(110 – x) = 0,08.(110 – x).

Thuế VAT của cả hai mặt hàng bằng: 0,1x + 0,08(110 – x) (nghìn đồng).

Theo đề bài, tổng thuế VAT của cả hai mặt hàng là 10 nghìn đồng nên ta có phương trình:

0,1x + 0,08(110 – x) = 10

⇔ 0,1x + 8,8 – 0,08x = 10

⇔ 0,02x = 1,2

⇔ x = 60 (thỏa mãn điều kiện).

Vậy không kể VAT thì giá của mặt hàng thứ nhất là 60 nghìn đồng, giá của mặt hàng thứ hai là 110 – 60 = 50 nghìn đồng.

Bài 7: Giải bài toán bằng cách lập phương trình (tiếp) Luyện tập (trang 31-32 sgk Toán 8 Tập 2)

Bài 40 (trang 31 SGK Toán 8 tập 2)Năm nay, tuổi mẹ gấp 3 lần tuổi Phương. Phương tính rằng 13 năm nữa thì tuổi mẹ chỉ còn gấp 2 lần tuổi Phương thôi. Hỏi năm nay Phương bao nhiêu tuổi?

Lời giải:

* Phân tích:

Sử dụng dữ kiện 13 năm sau tuổi mẹ chỉ gấp hai lần tuổi Phương nên ta có phương trình:

3x + 13 = 2(x + 13)

* Giải:

Tuổi của mẹ năm nay là: 3x

Tuổi Phương 13 năm sau: x + 13

Tuổi của mẹ 13 năm sau: 3x + 13

13 năm nữa tuổi mẹ chỉ gấp 2 lần tuổi Phương nên ta có phương trình:

3x + 13 = 2(x + 13)

⇔ 3x + 13 = 2x + 26

⇔ x = 13 (thỏa mãn điều kiện xác định)

Vậy năm nay Phương 13 tuổi.

Bài 7: Giải bài toán bằng cách lập phương trình (tiếp) Luyện tập (trang 31-32 sgk Toán 8 Tập 2)

Bài 41 (trang 31 SGK Toán 8 tập 2): Một số tự nhiên có hai chữ số. Chữ số hàng đơn vị gấp hai lần chữ số hàng chục. Nếu thêm chữ số 1 xen vào giữa hai chữ số ấy thì được một số mới lớn hơn số ban đầu 370. Tìm số ban đầu.

Lời giải:

Vì chữ số hàng đơn vị gấp 2 lần chữ số hàng chục nên ta có y = 2x.

Số mới lớn hơn số ban đầu 370 nên ta có phương trình:

100x + 10 + 2x = 10x + 2x + 370.

* Giải:

⇒ Chữ số hàng đơn vị là 2x

Sau khi viết thêm chữ số 1 vào giữa hai chữ số ta được số mới là:

Theo đề bài ta có B = A + 370 nên ta có phương trình

102x + 10 = 12x + 370

⇔ 102x – 12x = 370 – 10

⇔ 90x = 360

⇔ x = 4 (thỏa mãn)

Vậy số cần tìm là 48.

*Lưu ý : Vì chỉ có 4 số có hai chữ số thỏa mãn điều kiện chữ số hàng đơn vị gấp đôi chữ số hàng chục là : 12 ; 24 ; 36 ; 48 nên ta có thể đi thử trực tiếp mà không cần giải bằng cách lập phương trình.

Bài 7: Giải bài toán bằng cách lập phương trình (tiếp) Luyện tập (trang 31-32 sgk Toán 8 Tập 2)

Bài 42 (trang 31 SGK Toán 8 tập 2): Tìm số tự nhiên có hai chữ số, biết rằng nếu viết thêm một chữ số 2 vào bên trái và một chữ số 2 vào bên phải số đó thì ta được một số lớn hơn gấp 153 lần số ban đầu.

Lời giải:

Theo đề bài, số mới gấp 153 lần số ban đầu nên ta có phương trình :

Vậy số cần tìm là 14.

Bài 7: Giải bài toán bằng cách lập phương trình (tiếp) Luyện tập (trang 31-32 sgk Toán 8 Tập 2)

Bài 43 (trang 31 SGK Toán 8 tập 2): Tìm phân số có đồng thời các tính chất sau:

a) Tử số của phân số là số tự nhiên có một chữ số;

b) Hiệu giữa tử số và mẫu số bằng 4;

c) Nếu giữ nguyên tử số và viết thêm vào bên phải của mẫu số một chữ số đúng bằng tử số, thì ta được một phân số bằng phân số 1/5.

Lời giải:

Gọi tử số của phân số cần tìm là x (0 < x < 10, x ∈ N).

+ Tử số là số tự nhiên có một chữ số nên ta có điều kiện 0 < x < 10.

+ Hiệu giữa tử số và mẫu số bằng 4 nên mẫu số bằng x – 4.

Phân số mới bằng 1/5 nên ta có phương trình :

Vậy không có phân số thỏa mãn yêu cầu đề bài.

Bài 7: Giải bài toán bằng cách lập phương trình (tiếp) Luyện tập (trang 31-32 sgk Toán 8 Tập 2)

trong đó có 2 ô còn trống (thay bằng dấu *). Hãy điền số thích hợp vào ô trống, nếu điểm trung bình của lớp là 6,06.

Lời giải:

Số học sinh của lớp:

2 + x + 10 + 12 + 7 + 6 + 4 + 1 = 42 + x

Vì điểm trung bình bằng 6,06 nên:

⇔ 6 + 4x + 50 + 72 + 49 + 48 + 36 + 10 = 6,06(42 + x)

⇔ 271 + 4x = 254,52 + 6,06x ⇔ 16,48 = 2,06x

⇔ x = 8 (thỏa mãn điều kiện đặt ra)

Vậy ta có kết quả điền vào như sau:

Bài 7: Giải bài toán bằng cách lập phương trình (tiếp) Luyện tập (trang 31-32 sgk Toán 8 Tập 2)

Bài 45 (trang 31 SGK Toán 8 tập 2): Một xí nghiệp kí hợp đồng dệt một số tấm thảm len trong 20 ngày. Do cải tiến kĩ thuật, năng suất dệt của xí nghiệp đã tăng 20%. Bởi vậy, chỉ trong 18 ngày, không những xí nghiệp đã hoàn thành số thảm cần dệt mà còn dệt thêm được 24 tấm nữa. Tính số tấm thảm len mà xí nghiệp phải dệt theo hợp đồng.

Lời giải:

Cách 1:

* Phân tích:

Ta có: Số sản phẩm dệt được = năng suất . số ngày dệt.

Thực tế dệt được nhiều hơn dự tính 24 tấm nên ta có phương trình:

18.1,2x = 20x + 24

* Giải:

⇒ Số thảm len dệt được theo dự tính là: 20x (thảm).

Sau khi cải tiến, năng suất của xí nghiệp đã tăng 20% nên năng suất trên thực tế là: x + 20%.x = x + 0,2x = 1,2x (sản phẩm/ngày).

Sau 18 ngày, xí nghiệp dệt được: 18.1,2x = 21,6.x (thảm).

Vì sau 18 ngày, xí nghiệp không những hoàn thành số thảm cần dệt mà còn dệt thêm được 24 tấm nên ta có phương trình:

21,6.x = 20x + 24

⇔ 21,6x – 20x = 24

⇔ 1,6x = 24

⇔ x = 15 (thỏa mãn)

Vậy số thảm mà xí nghiệp phải dệt ban đầu là: 20.15 = 300 (thảm).

Bài 7: Giải bài toán bằng cách lập phương trình (tiếp) Luyện tập (trang 31-32 sgk Toán 8 Tập 2)

Bài 46 (trang 31-32 SGK Toán 8 tập 2): Một người lái ô tô dự định đi từ A đến B với vận tốc 48km/h. Nhưng sau khi đi được 1 giờ với vận tốc ấy, ô tô bị tàu hỏa chắn đường trong 10 phút. Do đó, để kịp đến B đúng thời gian đã định, người đó phải tăng vận tốc thêm 6km/h. Tính quãng đường AB.

Lời giải:

* Phân tích:

Ta luôn có: Quãng đường = vận tốc . thời gian

Gọi C là địa điểm ô tô gặp tàu hỏa.

Quãng đường AC ô tô vẫn đi với vận tốc 48km/h trong 1h nên AC = 48km.

Xét trên quãng đường BC, ô tô dự tính vẫn đi với vận tốc 48km/h nhưng gặp tàu hỏa nên trong thực tế ô tô đi với vận tốc 48 + 6 = 54 (km/h).

Vì ô tô đến B đúng thời gian đã định nên thời gian thực tế ô tô đi từ B đến C ít hơn thời gian dự định là 10 phút = 1/6 giờ (là thời gian chờ tàu hỏa).

* Giải:

Gọi C là địa điểm ô tô gặp tàu hỏa.

Quãng đường AC ô tô đi với vận tốc 48km/h và đi trong 1 giờ

⇒ AC = 48.1 = 48 (km).

Vận tốc dự tính đi trên BC là: 48 km/h

Thực tế ô tô đi quãng đường BC với vận tốc bằng 48 + 6 = 54 (km/h).

Thời gian chênh nhau giữa dự tính và thực tế chính là thời gian ô tô đợi tàu hỏa là 10 phút = 1/6 (giờ).

Vậy quãng đường AB = AC + BC = 48 + 72 = 120 (km).

Bài 7: Giải bài toán bằng cách lập phương trình (tiếp) Luyện tập (trang 31-32 sgk Toán 8 Tập 2)

Bài 47 (trang 32 SGK Toán 8 tập 2): Bà An gửi vào quỹ tiết kiệm x nghìn đồng với lãi suất mỗi tháng là a% (a là một số cho trước) và lãi tháng này được tính gộp vào vốn cho tháng sau.

a) Hãy viết biểu thức biểu thị:

+ Số tiền lãi sau tháng thứ nhất;

+ Số tiền (cả gốc lẫn lãi) có được sau tháng thứ nhất;

+ Tổng số tiền lãi có được sau tháng thứ hai.

b) Nếu lãi suất là 1,2% (tức là a = 1,2) và sau 2 tháng tổng số tiền lãi là 48,288 nghìn đồng, thì lúc đầu bà An đã gửi bao nhiêu tiền tiết kiệm?

Lời giải:

a) Bà An gửi vào quỹ tiết kiệm: x đồng

Lãi suất là a% tháng nên số tiền lãi sau tháng thứ nhất bằng: a%.x

Số tiền có được sau tháng thứ nhất: x + a%.x = (1 + a%)x

Số tiền lãi sau tháng thứ hai: (1 + a%)x.a%

Tổng số tiền lãi sau hai tháng bằng: a%.x + (1 + a%).x.a% (đồng) (1)

b) Vì sau hai tháng bà An lãi 48288 đồng với lãi suất 1,2% (tức là a = 1,2) nên thay vào (1) ta có phương trình:

1,2%.x + (1 + 1,2%).x.1,2% = 48288

⇔ 0,012x + 1,012.x.0,012 = 48288

⇔ 0,024144.x = 48288

⇔ x = 2 000 000 (đồng).

Vậy bà An đã gửi tiết kiệm 2 000 000 đồng.

Bài 7: Giải bài toán bằng cách lập phương trình (tiếp) Luyện tập (trang 31-32 sgk Toán 8 Tập 2)

Bài 48 (trang 32 SGK Toán 8 tập 2): Năm ngoái, tổng số dân của hai tỉnh A và B là 4 triệu. Năm nay, dân số của tỉnh A tăng thêm 1,1%, còn dân số của tỉnh B tăng thêm 1,2%. Tuy vậy số dân của tỉnh A năm nay vẫn nhiều hơn tỉnh B là 807200 người. Tính số dân năm ngoái của mỗi tỉnh.

Lời giải:

* Phân tích:

Dân số tỉnh A năm nay nhiều hơn dân số tỉnh B là 807200 người = 0,8072 (triệu người) nên ta có phương trình:

1,011.x – 1,012.(4 – x) = 0,8072.

* Giải:

Gọi x là số dân năm ngoái của tỉnh A (0 < x < 4; triệu người)

Số dân năm ngoái của tỉnh B: 4 – x (triệu người).

Số dân của tỉnh A năm nay: x + 1,1% x = 1,011.x

Số dân của tỉnh B năm nay: (4 – x) + 1,2% (4 – x) = 1,012(4 – x)

Vì số dân tỉnh A năm nay hơn tỉnh B là 807200 người = 0,8072 triệu người nên ta có phương trình:

1,011.x – 1,012(4 – x) = 0,8072

⇔ 1,011x – 4,048 + 1,012x = 0,8072

⇔ 2,023. x = 4,8552

⇔ x = 2,4 (thỏa mãn).

Vậy dân số của tỉnh A là 2,4 triệu người, dân số tỉnh B là 4 – 2,4 = 1,6 triệu người

Bài 7: Giải bài toán bằng cách lập phương trình (tiếp) Luyện tập (trang 31-32 sgk Toán 8 Tập 2)

Bài 49 (trang 32 SGK Toán 8 tập 2): Đố: Lan có một miếng bìa hình tam giác ABC vuông tại A, cạnh AB = 3cm. Lan tính rằng nếu cắt từu miếng bìa đó ra một hình chữ nhật có chiều dài 2cm như hình 5 thì hình chữ nhật ấy có diện tích bằng một nửa diện tích của miếng bìa ban đầu. Tính độ dài cạnh AC của tam giác ABC.

Lời giải:

Gọi hình chữ nhật là MNPA thì MC = x – 2 (cm)

Vì MN

Vậy AC = 4cm.

Luyện Tập Phần Phương Trình Chứa Ẩn Ở Mẫu Sách Giáo Khoa Toán Lớp 8 / 2023

Bài 29 trang 22 sách giáo khoa Toán lớp 8 tập II.

Bạn Hà cho rằng Sơn giải sai vì đã nhân hai vế với biểu thức x – 5 có chứa ẩn. Hà giải bằng cách rút gọn vế trái như sau:

Hãy cho biết ý kiến của em về hai lời giải trên.

Bài 30 trang 23 sách giáo khoa Toán lớp 8 tập II.

Giải các phương trình:

Bài 31 trang 23 sách giáo khoa Toán lớp 8 tập II.

Giải các phương trình:

Bài 32 trang 23 sách giáo khoa Toán lớp 8 tập II.

Giải các phương trình:

Bài 33 trang 23 sách giáo khoa Toán lớp 8 tập II.

Tìm các giá trị của a sao cho mỗi biểu thức sau có giá trị bằng 2:

HƯỚNG DẪN – BÀI GIẢI – ĐÁP SỐ:

Bài 29 trang 22 sách giáo khoa Toán lớp 8 tập II.

cả hai bạn Sơn và hà đều cần chú ý tìm điều kiện xác định của x.

Vậy x = 5 không thỏa mãn điều kiện.

Do đó phương trình vô nghiệm.

Bài 30 trang 23 sách giáo khoa Toán lớp 8 tập II.

x = 2 không thỏa ĐKXĐ.

Vậy phương trình vô nghiệm.

Khử mẫu ta được:

x = 1 không thỏa ĐKXĐ.

Vậy phương trình vô nghiệm.

Bài 31 trang 23 sách giáo khoa Toán lớp 8 tập II.

Sử dụng hằng đẳng thức :

phân tích mẫu thức thành thừa số để việc quy đồng mẫu thức nhanh, gọn hơn.

Vậy ĐKXĐ: x ≠ 1

Khử mẫu ta được:

x = 1 không thỏa ĐKXĐ.

ĐKXĐ: x ≠ 1, x ≠ 2, x ≠ 3

Khử mẫu ta được:

x = 3 không thỏa mãn ĐKXĐ.

Vậy phương trình vô nghiệm.

Do đó: 8 + x 2 ≠ 0 khi x + 2 ≠ 0 ⇔ x ≠ -2

Suy ra ĐKXĐ: x ≠ -2

Khử mẫu ta được:

x = 0, x = 1 thỏa ĐKXĐ của phương trình.

Vậy phương trình có tập nghiệm là S = {0;1}.

x = 3 không thỏa ĐKXĐ.

Vậy phương trình có nghiệm duy nhất x = -4

Bài 32 trang 23 sách giáo khoa Toán lớp 8 tập II.

x=0 không thoả ĐKXĐ.

Vậy phương trình có nghiệm duy nhất

Vậy phương trình có nghiệm duy nhất x = -1.

Bài 33 trang 23 sách giáo khoa Toán lớp 8 tập II.

Muốn tìm giá trị của a để bểu thức A(a) bằng k ta xem a như ẩn và giải phưng trình A(a) = k.

a)Ta có phương trình

Khử mẫu ta được :

b)Ta có phương trình:

Khử mẫu ta được:

Giải Bài Toán Bằng Cách Lập Phương Trình Lớp 8 / 2023

I.Giải bài toán bằng cách lập phương trình lớp 8 chọn lọc (đề)

Bài 2: Tích của 2 số tự nhiên chẵn liên tiếp. Tìm hai số đó ?

A. 2;4   B. 4;6C. 6;8   D. 8;10

Bài 3: Trong mảnh đất hình chữ nhật có chiều dài mảnh đất hơn chiều rộng 3cm. Chu vi mảnh đất là 100cm. Chiều rộng hình chữ nhật là:

A. 23,5cm   B. 47cmC. 100cm   D. 3cm

A. 1h   B. 2hC. 3h   D. 4h

A. 20km/h   B. 20km/hC. 25km/h   D. 30km/h

A. 12km /h     B. 15km/hC. 20km/h     D. 16km/h

A. 38     B. 35C. 30     D. 40

A. 270 km     B. 200kmC. 240 km     D. 300km

A. 20km/h     B. 25km/hC. 27 km /h     D. 30km/h

II.Giải bài tập lớp 8 chọn lọc (hướng dẫn giải)

Câu 1: Hướng dẫn chi tiết giải toán 8:

20km/h25km/h. 27 km /h30km/h

X là số tuổi của mẹ hiện tại  (Tuổi) (x ∈ N)

→ số tuổi của mẹ là x + 24 (Tuổi)

Theo bài ra ta có: 3(x + 2) = x + 24 + 2

⇔ 3x + 6 = x + 26

⇔ 2x – 20 = 0

⇔ x = 10

Vậy hiện tại tuổi con là 10 

Chọn đáp án B.

Câu 2: Hướng dẫn chi tiết 

Gọi 2 số chẵn liên tiếp cần tìm là x; x + 2 (x chia hết 2; x ∈ N)

Theo bài ra ta có: x(x + 2) = 24 ⇔ x2 + 2x – 24 = 0

Vậy hai số đó là 4; 6.

Câu 3: Hướng dẫn chi tiết 

→ Chiều dài hình chữ nhật là x + 3(cm)

 Theo đề bài, ta có:

2[ x + (x + 3) ] = 100 ⇔ 2x + 3 = 50 ⇔ x = 23,5

Vậy chiều rộng của mảnh đất hình chữ nhật là 23,5cm

Chọn đáp án A.

Câu 4: Hướng dẫn chi tiết 

⇒ t + 6 ( h ) là thời gian kể từ lúc xe đạp đi đến lúc xe hơi đuổi kịp.

+ Quãng đường xe đạp đi được là s1 = 15( t + 6 ) km.

+ Xe hơi đi được quãng đường là s2 = 60t km.

Hai xe xuất phát cùng 1 điểm (A) nên khi gặp nhau s1 = s2.

Khi đó ta có: 15(t + 6) = 60t ⇔ 60t – 15t = 90 ⇔ t = 2(h) (thỏa mãn)

Sau 2 giờ xe hơi bắt kịp xe đạp.

Chọn đáp án B.

Câu 5: Hướng dẫn chi tiết 

 x(km/h) là vận tốc trung bình của người đó đi được 

a là nửa quãng đường AB là: (km)

Khi đó ta có:

+ Nửa quãng đường đầu là: (h)

+ Nửa quãng đường còn lại là: (h)

→ Đi hết quãng đường AB là

Do đó ta có:

Vậy vận tốc cần tìm là 24km/h

Câu 6: Hướng dẫn chi tiết 

Giải phương trình:

Vận tốc của xe đạp đi từ A đi đến B là 12km/h.

Chọn đáp án A

Câu 7: Hướng dẫn chi tiết

Bước 1: Lập phương trình

+ Chọn ẩn và đặt điều kiện cho ẩn (thường chọn đại lượng đề bài yêu cầu làm ẩn)

+ Biểu diễn tất cả các đại lượng khác qua ẩn vừa chọn.

+ Sau đó hãy lập phương trình và biểu thị mối quan hệ giữa các đại lượng đã cho.

Bước 2: Giải phương trình

Bước 3: So sánh với điều kiện của bài, đưa ra kết quả là kết luận cuối cùng.

Vậy lớp sẽ có 40 học sinh 

Câu 8: Hướng dẫn chi tiết 

Chọn đáp án C

Câu 9: Hướng dẫn chi tiết 

Thời gian ô tô tải đi từ A đến B là  (giờ)

Thời gian xe con đi từ A đến B là (giờ)

Vì xe con xuất phát sau xe tải 1 giờ 30 phút =  giờ nên ta có phương trình:

(thỏa mãn điều kiện)

Vậy AB dài 270km.

Chọn đáp án A

Câu 10: Hướng dẫn chi tiết 

Thời gian ca nô xuôi dòng từ A đến B là  (giờ)

x-3 là vận tốc ca nô đi ngược dòng (km/h)

Ca nô di chuyển từ điểm B đến địa điểm gặp bè có quãng đường là : 40 – 8 = 32 km

Thời gian ca nô ngược dòng từ B đến địa điểm gặp bè là: (giờ)

Thời gian bè trôi là:

Ta có phương trình:

Cập nhật thông tin chi tiết về Luyện Tập Phần Giải Bài Toán Bằng Cách Lập Phương Trình (Tiếp) Sách Giáo Khoa Toán Lớp 8 / 2023 trên website Ictu-hanoi.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!