Xu Hướng 5/2023 # Phương Pháp Giải Phương Trình Số Phức Cơ Bản Và Nâng Cao # Top 14 View | Ictu-hanoi.edu.vn

Xu Hướng 5/2023 # Phương Pháp Giải Phương Trình Số Phức Cơ Bản Và Nâng Cao # Top 14 View

Bạn đang xem bài viết Phương Pháp Giải Phương Trình Số Phức Cơ Bản Và Nâng Cao được cập nhật mới nhất trên website Ictu-hanoi.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất.

Trong bài này ta sẽ tìm hiểu một số phương pháp giải phương trình số phức:

Phương pháp 1: rút [z] hoặc [bar z]

Phương pháp này có thể áp dụng cho các phương trình đơn giản chỉ có ẩn [z] hoặc [bar z].

Ví dụ 1: Tìm số phức [z] thỏa: [left( {1 – i} right)z + 3 – 4i = 0].

Giải:

[left( {1 – i} right)z + 3 – 4i = 0 Leftrightarrow z = frac{{ – 3 + 4i}}{{1 – i}} Leftrightarrow z = – frac{7}{2} + frac{1}{2}i]

Ví dụ 2: Tìm số phức [z] thỏa: [left( {i,bar z – 3} right)left( {2 – i} right) + bar zleft( {1 + 2i} right) = i + 1]

Giải:

[left( {i,bar z – 3} right)left( {2 – i} right) + bar zleft( {1 + 2i} right) = i + 1]

[ Leftrightarrow left( {2i + 1} right)bar z – 6 + 3i + bar zleft( {1 + 2i} right) = i + 1]

[ Leftrightarrow bar zleft( {2i + 1 + 1 + 2i} right) = i + 1 + 6 – 3i]

[ Leftrightarrow bar z = frac{{7 – 2i}}{{2 + 4i}} = frac{3}{{10}} – frac{8}{5}i Rightarrow z = frac{3}{{10}} + frac{8}{5}i]

Phương pháp 2: đặt [z = a + bi,,left( {a,b in R} right)]

Ví dụ 3: Tìm số phức [z] biết $(2 – i)z – (5 + 3i)overline z = – 17 + 16i$

Giải:

Đặt [z = a + bi,,left( {a,b in R} right)]. Ta được phương trình:

[left( {2 – i} right)left( {a + bi} right) – left( {5 + 3i} right)left( {a – bi} right) = – 17 + 16i]

[ Leftrightarrow 2a + 2bi – ai + b – 5a + 5bi – 3ai – 3b = – 17 + 16i]

[ Leftrightarrow left{ begin{array}{l}2a + b – 5a – 3b = – 17\2b – a + 5b – 3a = 16end{array} right.]

[ Leftrightarrow left{ begin{array}{l}- 3a – 2b = – 17\- 4a + 7b = 16end{array} right. Leftrightarrow left{ begin{array}{l}a = 3\b = 4end{array} right.]

Vậy [z = 3 + 4i].

Ví dụ 4: Tìm số phức [z] biết [z.overline z + left( {z – overline z } right) = 4 – 2i]

Giải:

Đặt [z = a + bi,,left( {a,b in R} right)]. Ta được phương trình:

[left( {a + bi} right)left( {a – bi} right) + left( {a + bi – a + bi} right) = 4 – 2i]

[ Leftrightarrow {a^2} + {b^2} + 2bi = 4 – 2i]

[ Leftrightarrow left{ begin{array}{l}{a^2} + {b^2} = 4\2b = – 2end{array} right. Leftrightarrow left{ begin{array}{l}{a^2} + 1 = 4\b = – 1end{array} right. Leftrightarrow left{ begin{array}{l} a = pm sqrt 3 \b = – 1end{array} right.]

Vậy [z = sqrt 3 – i] hoặc [z = sqrt 3 + i]

Phương pháp 3: sử dụng các tính chất của số phức

Ta có thể sử dụng các tính chất của số phức liên hợp và môđun của số phức:

[overline {{z_1} pm {z_2}} = {bar z_1} pm {bar z_2}] [overline {{z_1}.{z_2}} = {{bar z}_1}.{{bar z}_2}] [overline {left( {frac{{{z_1}}}{{{z_2}}}} right)} = frac{{{{bar z}_1}}}{{{{bar z}_2}}}]

Phương pháp này sử dụng trong các bài toán tương đối khó, nếu giải bằng phương pháp 2 có thể dẫn đến các hệ phương trình phức tạp.

Giải:

Đặt [w = a + bi,,left( {a,b in R} right)] ta được:

Vậy [w = – 8 Leftrightarrow z^3 = – 8] [ Leftrightarrow left[ begin{array}{l} z = – 2\ z = 1 – sqrt 3 i\ z = 1 + sqrt 3 i end{array} right.]

Giải:

Thế lại ta được: [frac{{sqrt {10} }}{z} = 3 + i][ Leftrightarrow z = frac{{3sqrt {10} }}{{10}} – frac{{sqrt {10} }}{{10}}i]

Share this:

Facebook

Twitter

Email

Print

More

Pinterest

Like this:

Like

Loading…

Phương Pháp Giải Toán Từ Cơ Bản Đến Nâng Cao Đại Số 7

:

Phiên bản sách in

Nguyễn Quốc Tuấn

Nguyen Quoc Tuan

0

Resensi

 Nếu khó khăn trong thanh toán khi mua sách này. Bạn đọc có thể đặt mua trọn bộ sách in tại: https://forms.gle/dxvx8JR8pr1a8BQw5

Hoặc điện thoại: 0918.972.605

Tiếp tục với những phương pháp mới mà chúng tôi đã nghiên cứu và giảng dạy cho các em Toán 7. Chúng tôi giới thiệu tiếp đến cho cộng đồng bạn đọc quyển sách này như một phần công bố sự đổi mới dạy học của năm học 2020. Với nhiều sự thay đổi mạnh mẽ trong việc dạy và học toán 7 cũng như ứng dụng những phương pháp mới cho các em.

Tập này gồm 2 chương thuộc vào chương trình học kì 2 của các em. Bao gồm chương học về Thống Kê và Biểu Thức Đại Sô. Mỗi chương học đều được tác giả trình bày các phương pháp và hệ thống bài tập mẫu cũng như bài tập luyện tập và hướng dẫn giải đầy đủ.

Trong chương học về thống kê, đặc trưng của chương học này là các em cần phài có tính cẩn thận để nhận biết được các số liệu mà một cuộc điều tra cho ra bảng số liệu. Từ bảng số liệu này các em cần phân biệt được những thuật ngữ trong thống kê mà chúng tôi đã trình bày rất cần thận. Điều quan trọng của chương học này là vẽ biểu đồ và tính số trung bình. Thông qua đó nắm chắc những kỹ năng cơ bản về phần này.

Trong chương học về biểu thức đại số, các em cũng cần hiểu được các thuật ngữ từ đó áp dụng các phương pháp mà chúng tôi trình bày ở các chủ để. Từ đó thực hiện các phép toán tương ứng. Chẳng hạn: Tìm đơn thức đồng dạng , bậc đơn thức, bậc đa thức, cộng trừ các đa thức, …

Mội điều rất hữu dụng trong quyển sách này là chúng tôi đã bổ sung hàng loạt những bài tập trắc nghiệm cho từng chương ở cuối chương. Điều này rất hữu ích trong việc các em tiếp cận được phương pháp sẽ hướng tới sau này. Tất nhiên, ở trắc nghiệm thì không thể thiếu hướng dẫn Casio 570VN Plus . Do đó, ở những phần áp dụng máy tính bỏ túi giải toán, chúng tôi đã chèn vào một cách trực quan và chi tiết nhất có thể.

Sách ra đời dựa trên tinh thần tự học của học sinh và tham khảo cho giáo viên. Do đó, bạn đọc cần đọc kỹ các bước giải và thực hiện đúng như những phương pháp mà chúng tôi đã nêu. Với những bài tập ở trong bài tập mẫu bạn đọc có thể tham khảo cách giải của chúng tôi. Tuy nhiên với những bài luyện tập, tác giả khuyên bạn đọc tự làm. Sau đó kiểm tra kết quả ở cuối mỗi phần.

Mọi góp ý mong bạn đọc gửi về trực tiếp cho tác giả tại email: quoctuansp@gmail.com. Tác giả vô cùng cảm ơn những góp ý thiện chí để phát triển.

Pratinjau buku ini

»

Kiến Thức Cơ Bản Đại Số Lớp 10: Phương Trình Và Hệ Phương Trình

PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH §1.Khái niệm phương trình, phương trình bậc nhất một ẩn. A.KIẾN THỨC CƠ BẢN 1. Phương trình một ẩn Là mệnh đề chứa một biến x có dạng f(x) = g(x), x gọi là ẩn số, f(x) là vế trái; g(x) là vế phải. Điều kiện xác định (ĐKXĐ) của phương trình là điều kiện cho ẩn x để các biểu thức ở hai vế có nghĩa. Mỗi số x0 thoả mãn ĐKXĐ sao cho f(x0) = g(x0) là mệnh đề đúng, là một nghiệm của phương trình. Một phương trình có tập nghiệm bằng rỗng gọi là phương trình vô nghiệm. 2. Phương trình tương đương (PTTĐ), phương trình hệ quả (PTHQ) Cho hai phương trình (PT): f1(x) = g1(x) (1) & f2(x) = g2(x) (2). + PT (2) là (PTHQ) của PT (1) , kí hiệu f1(x) = g1(x) f2(x) = g2(x) nếu tập nghiệm của (1) là tập con của tập nghiệm của (2). + Hai phương trình (1) và (2) là tương đương, kí hiệu f1(x) = g1(x) f2(x) = g2(x), nếu các tập nghiệm của (1) và của (2) bằng nhau. 3. Phép biến đổi tương đương Định lý : Gọi D là ĐKXĐ của PT f(x) = g(x) và h(x) là biểu thức xác định thì a) f(x) = g(x) f(x) + h(x) = g(x) + h(x). b) f(x) = g(x) f(x) . h(x) = g(x) . h(x) , nếu h(x) 0 , . 4. Phương trình bậc nhất một ẩn + Phương trình bậc nhất một ẩn có dạng ax + b = 0, trong đó x là ẩn số, a, b R ; a0. x được gọi là ẩn còn a, b là các hệ số. + PT ax + b = 0 với a0 có nghiệm duy nhất x = -b/a. 5. Giải và biện luận phương trình ax + b = 0 Nếu a 0, PT có nghiệm duy nhất x = -b/a. Nếu a = 0, b 0, PT vô nghiệm. Nếu a = 0, b = 0, PT có nghiệm x R. B. CÁC VÍ DỤ GIẢI TOÁN Bài 3.1 Các cặp PT sau có tương đương không ? a) 2x + 3 = 8 – 3x và . b) 2x + 3 = 8 – 3x và 2x + 3 + = 8 – 3x + . Bài 3.2 Giải các phương trình : a) 2x – 1 + ; b) Bài 3.3 Cho các phương trình bậc nhất với tham số m : 3mx – 4 = 2(m – x) và m(4x – 1) = 5x + 1 . Xác định các giá trị của m để hai phương trình có một nghiệm chung. ài 3.4 Giải các phương trình sau : a) ; b) c) ; d) Bài 3.5 Giải và biện luận phương trình với ẩn số x : a) m2(x-1) = 9x + 3m ; b) c) ; d) . Bài 3.6 Giải và biện luận phương trình theo hai tham số a, b : a) ; b) . Bài 3.7 Tìm giá trị của tham số sao cho phương trình : a) vô nghiệm . b) có vô số nghiệm . c) có nghiệm duy nhất . C. BÀI TẬP TỰ GIẢI Bài 3.8 Các cặp PT sau có tương đương không ? a) 3x + 1 = 2x + 4 và 3x + 1 + = 2x + 4 + b) 3x +1 = 2x + 4 và 3x +1 + = 2x + 4 + Bài 3.9 Giải và biện luận các phương trình sau theo tham số ( x là ẩn số). 1a) ; 1b) 2a) ; 2b) 3a) ; 3b) 4a) ; 4b) 5a) ; 5b) 6a) ; 6b) . 7a) ; 7b) Bài 3.10 Giải và biện luận phương trình theo hai tham số a, b : a) ; b) Bài 3.11 Xác định m để các phương trình sau vô nghiệm : a) ; b) Bài 3.12 Tìm a và b để phương trình sau có tập nghiệm là R : a) ; b) Bài 3,13 Tìm m là số nguyên để các phương trình sau có nghiệm : a) ; b) Bài 3.14 Tìm m để các phương trình sau có nghiệm âm : a) ; b) §2. Phương trình – hệ phương trình bậc nhất hai ẩn số A.KIẾN THỨC CƠ BẢN 1. Phương trình bậc nhất hai ẩn số + Phương trình bậc nhất hai ẩn số có dạng : ax + by = c (1) , trong đó a, b, c là các số đã biết với a.b 0 ; x, y là hai ẩn số. + Cặp số (x0 ; y0) thoả mãn ax0 + by0 = c thì (x0 ; y0) được gọi là một nghiệm của (1). + + Phương trình bậc nhất hai ẩn số có vô số nghiệm, biểu diễn nghiệm trên mặt phẳng toạ độ là đường thẳng ax + by = c . 2. Giải và biện luận phương trình ax + by = c (1) a) Nếu a 0 , b 0, phương trình (1) có vô số nghiệm. Công thức nghiệm tổng quát của phương trình là : . Tập nghiệm của (1) được biểu diễn trên mặt phẳng toạ độ là đồ thị hàm số : . Còn gọi là đường thẳng ax + by = c. b) Nếu a = 0 , b 0, phương trình có dạng by = c . Công thức nghiệm tổng quát là : . Tập nghiệm được biểu diễn trên mặt phẳng toạ độ là đường thẳng song song với trục hoành và cắt trục tung tại điểm có tạo độ . c) Nếu a 0 , b =0, phương trình có dạng ax = c . Công thức nghiệm tổng quát là : . Tập nghiệm được biểu diễn trên mặt phẳng toạ độ là đường thẳng song song với trục tung và cắt trục hoành tại điểm có tạo độ . d) Nếu a = 0, b = 0, c 0 thì hệ vô nghiệm. e) Nếu a = b = c = 0 thì mọi cặp số (x ; y) , đều là nghiệm của phương trình. 3. Hệ phương trình bậc nhất hai ẩn số + Hệ hai phương trình bậc nhất hai ẩn (x và y) có dạng : (I) : trong đó (1) và (2) là các phương trình bậc nhất hai ẩn. + Kí hiệu : , gọi là định thức của hệ (1). ; . Ta có qui tắc Crame để giải hệ (I) như sau : Nếu D 0 hệ (I) có một nghiệm duy nhất (x0 ; y0) được xác định bỡi công thức : . Nếu D = 0 va ø Dx 0 (hoặc Dy 0) thì hệ (I) vô nghiệm. Nếu D = Dx = Dy = 0 thì hệ (I) có vô số nghiệm  là tập nghiệm của (1) hoặc của (2). 4. Biểu diễn hình học tập nghiệm của hệ phương trình bậc nhất hai ẩn. Gọi d1 là đường thẳng a1x + b1y = c1 và d2 là đường thẳng a2x + b2y = c2 . Hệ (I) có nghiệm duy nhất d1 và d2 cắt nhau. Hệ (I) vô nghiệm d1 Hệ (I) có vô số nghiệm d1 d2. O x y O x y d 1 d2 O x y d1 d 2 B. CÁC VÍ DỤ GIẢI TOÁN Bài 3.15 Giải phương trình bậc nhất hai ẩn và biểu diễn nghiệm trên mặt phẳng toạ độ : a) 4x – 3y = 6 ; b) -3x + 2y = 4 Bài 3.16 Giải và biện luận theo tham số m phương trình bậc nhất hai ẩn số x và y : a) (3m – 2)x + (m+1)y = m – 2 ; b) (m2 – 1)x + (m+1)y = m2 – m -2 Bài 3.17 Cho k là một số thực xác định. Hãy tìm một phương trình bậc nhất hai ẩn x, y sao cho cặp số là nghiệm của phương trình đó. Bài 3.18 Giải các hệ phương trình : a) ; b) c) ; d) e) ; g) Bài 3.19 Cho hệ phương trình : (I) ; trong đó m là tham số . Với giá trị nào của m hệ (I) có nghiệm duy nhất. Tìm nghiệm đó. Bài 3.20 Cho hệ phương trình : (I) ; trong đó m là tham số. Với giá trị nào của m hệ (I) có vô số nghiệm. Viết công thức nghiệm của hệ trong trường hợp đó. Bài 3.21 Giải và biện luận theo tham số a hệ phương trình (I) . Trong trường hợp hệ (I) có nghiệm duy nhất, hãy tìm một hệ thức giữa x và y độc lập với tham số a. Bài 3.22 1) Cho hệ phương trình với tham số m : (I) . Tìm những giá trị nguyên của m để hệ (I) có nghiệm nguyên . 2) Cho hệ phương trình với tham số m : (I) . Tìm những giá trị nguyên của m để hệ (I) có nghiệm nguyên . C. BÀI TẬP TỰ GIẢI Bài 3.23 Giải và biện luận theo tham số m phương trình bậc nhất hai ẩn số x và y : a) (2m – 3)x + (m-1)y = m + 2 ; b) (m2 – 4)x + (m-2)y = m2 + m -6 Bài 3.24 Cho k là một số thực xác định. Hãy tìm một phương trình bậc nhất hai ẩn x, y sao cho cặp số là nghiệm của phương trình đó. Bài 3.25 Giải các hệ phương trình : a) ; b) c) ; d) e) ; g) Bài 3.26 Giải và biện luận các hệ phương trình sau (ẩn số là x và y) 1a) ; 1b) 2a) ; 2b) 3a) ; 3b) 4a) ; 4b) Bài 3.27 1) Cho hệ phương trình : a) Giải và biện luận hệ phương trình theo tham số m . b) Giả sử (x;y) là nghiệm của hệ ,tìm một hệ thức giữa x và y độc lập đối với m . 2) Cho hệ phương trình : a) Giải và biện luận hệ phương trình theo tham số m . b) Giả sử (x;y) là nghiệm của hệ ,tìm một hệ thức giữa x và y độc lập đối với m . Bài 3.28 Tìm m là số nguyên để mỗi hệ phương trình sau có nghiệm duy nhất (x;y) với x, y đều là các số nguyên. Lúc đó tìm (x;y) : 1a) ; 1b) 2a) ; 2b) Bài 3.29 Tìm m và n để hai hệ phương trình sau tương đương với nhau : và Bài 3.30 Tìm m để hệ sau có nghiệm duy nhất : §3. Phương trình bậc hai một ẩn số A.KIẾN THỨC CƠ BẢN Công thức nghiệm Phương trình bâïc hai (một ẩn x) có dạng ax2 + bx + c = 0 (1) trong đó a, b, c là các số đã biết gọi là các hệ số ; x là ẩn số. Đặt là biệt thức của (1). Nếu = 0 (’= 0), phương trình (1) có một nghiệm kép tính bỡi công thức : x1 = x2 = -b/2a ( hay x1 = x2 = -b’/a) Nếu < 0 (’< 0), phương trình (1) vô nghiệm. Định lý Vi-et và ứng dụng Định lý : Nếu phương trình ax2 + bx + c = 0 (a 0) có các nghiệm là x1 và x2 thì tổng và tích các nghiệm của phương trình là : S = . Ứng dụng : * Nhẩm nghiệm của phương trình ax2 + bx + c = 0 (a 0) (1) Nếu (1) có các hệ số thoả mãn a + b + c = 0 thì nó có một nghiệm x1 = 1 và nghiệm x2 = c/a . Nếu (1) có các hệ số thoả mãn a – b + c = 0 thì nó có một nghiệm x1 = -1 và nghiệm x2 = -c/a . * Tìm hai số biết tổng và tích của chúng Nếu hai số có tổng là S và có tích là P thì các số ấy là nghiệm của phương trình : x2 -Sx + P = 0 * Phân tích một tam thức bậc hai thành thừa số Nếu 3.Giải và biện luận phương trình ax2 + bx + c = 0 Khi phương trình ax2 + bx + c = 0 trong đó a hoặc b hoặc c có chứa tham số .Bài toán giải và biện luận phương trình đượpc tiến hành như sau : Bước 1: xét trường hợp a = 0 (nếu a có chứa tham số ) (giả sử tham số là m) Từ a = 0 m = thay giá trị m vào b và c . Phương trình là bx + c = 0 với b, c là số đã biết. Có một trong hai khả năng sau xảy ra : Nếu b = 0 và c 0 ( 0x + c = 0 với c 0) thì phương trình vô nghiệm. Nếu b = 0 và c = 0 (0x + 0 = 0 ) thì phương trình có vô nghiệm xTXĐ Bước 2: Xét trường hợp a 0 m Tính biệt số (Chú ý dấu của và ’như nhau) Biện luận theo dấu của (hoặc ’) : Nếu < 0 thì phương trình vô nghiệm. Nếu = 0 thì phương trình có nghiệm kép x0 = -b/2a (hoặc x0 = -b’/a) Bước 3: Tóm tắt lại các kết quả. (Bước này có thể bỏ qua nếu làm bài không kịp thời gian) 4. Dấu các nghiệm số của phương trình bậc hai : ax2 + bx + c = 0 Nếu ac < 0 x1 < 0 < x2 (gt x1 < x2 ) (tức là phương trình có 2 nghiệm trái dấu). -Nếu S < 0 thì x1 < x2 < 0 (phương trình có hai nghiệm âm). Tóm tắt mục này như sau : Nếu P < 0 x1 < 0 < x2 Nếu 0 < x1 & … Tìm giá trị m để biểu thức A = có giá trị nhỏ nhất. Bài 3.69 Cho phương trình : x2 + px + q = 0 có hai nghiệm dương . Chứng minh rằng : phương trình qy2 +(p – 2rq)y + 1 – pr = 0 cũng có các nghiệm đều dương. Bài 3.70 Tìm tất cả các số thực dương a, b, c, d sao cho các điều kiện sau đây được thoả mãn : Phương trình ax2 + bdx + c = 0 có hai nghiệm là x1 và x2. Phương trình bx2 + cdx + a = 0 có hai nghiệm là x2 và x3 . Phương trình cx2 + adx + b = 0 có hai nghiệm là x3 và x1. §4. Một số hệ phương trình bậc hai , hai ẩn số đặc biệt A.KIẾN THỨC CƠ BẢN Hệ hai phương trình, một phương trình bậc nhất, một phương trình bậc hai. Cách giải : Từ phương trình bậc nhất, biểu diễn một ẩn qua ẩn còn lại. Đem thế vào phương trình bậc hai rồi giải phương trình nhận được. Ví dụ : Giải hệ phương trình : Hệ phương trình đối xứng của hai ẩn Hệ đối xứng loại I : có dạng trong đó f(x , y) , g(x , y) là các hàm hai biến x, y mà nếu ta đổi x thành y và y thành x thì chúng không thay đổi. Tức là: f(x , y) = f(y, x) và g(x , y) = g(y , x). Cách giải : Đặt ẩn phụ S = x + y , P = x.y. Giải hệ phương trình với các ẩn phụ, sau đó tìm các nghiệm với ẩn số x, y. Hệ đã cho có nghiệm theo x, y với điều kiện là S2 – 4P 0 Ví dụ : Giải hệ phương trình : Hệ đối xứng loại II : có dạng nếu đổi x thành y và đổi y thành x thì phương trình này của hệ trở thành phương trình kia của hệ và ngược lại. Tức là: f(y , x) = g(x, y) và g(y , x) = f(x , y). Cách giải : Trừ từng vế hai phương trình (1) và (2) của hệ ta thu được phương trình mới biến đổi về dạng : (x – y).h(x, y) = 0 (3) Phương trình (3) + Với x = y thay vào (1) hoặc (2) thì được phương trình một ẩn x (hoặc y). + Với h(x , y) = 0 ta giải tìm x theo y hoặc tìm y theo x rồi thay vào (1) hoặc (2) thì thu được phương trình một ẩn, giải tìm ẩn đó rồi tính ẩn còn lại. Ví dụ : Giải hệ phương trình : a) ; b) c) Hệ đẳng cấp bậc hai theo hai ẩn Hệ có dạng : ,trong đó m, n là số đã biết và các biểu thức f(x , y) và g(x , y) có tất cả các số hạng đều là bậc hai theo hai ẩn x , y.. Cách giải: + kiểm tra x = 0 hoặc y = 0 có thoả mãn là nghiệm của hệ hay không. +Xét trường hợp x0 (hoặc y0). Ta đặt y = kx (hoặc x = ty) sẽ đưa đến việc xác định k (hoặc t) và giải tiếp một phương trình theo ẩn x (hoặc ẩn y) Ví dụ : Giải hệ phương trình CÁC VÍ DỤ GIẢI TOÁN Bài 3.71 Cho hệ phương trình : (I) với m là tham số. Giải hệ (I) với m = 1. Với giá trị nào của m thì hệ có nghiệm. Bài 3.72 Xác định giá trị của m để hệ phương trình sau đây có nghiệm duy nhất : Bài 3.73 Giải hệ phương trình : a) ; b) Bài 3.74 Giải hệ phương trình : a) ; b) Bài 3.76 Giải hệ phương trình : a) ; b) Bài 3.77 Giải hệ phương trình : a) ; b) ; c) Bài 3.78 Giải hệ phương trình : a) ; b) ; c) Bài 3.79 Giải hệ phương trình : Bài 3.80 Giải hệ phương trình : a) ; b) C. BÀI TẬP TỰ GIẢI Bài 3.81 Giải và biện luận theo tham số m hệ phương trình : Bài 3.82 Chứng minh rằng hệ phương trình : luôn luôn có nghiệm với mọi giá trị của tham số m Bài 3.83 Giải hệ phương trình : a) ; b) ; c) Bài 3.84 Giải hệ phương trình : a) ; b) ; c) Bài 3.85 Giải hệ phương trình : a) ; b) ; c) Bài 3.86 Giải hệ phương trình : a) ; b) Bài 3.87 Giải hệ phương trình : a) ; b) ; c) Bài 3.88 Giải hệ phương trình : a) ; b) Bài 3.89 Giải hệ phương trình : a) ; b) ; c) Bài 3.90 Giải hệ phương trình : a) ; b) ; c) Bài 3.91 Giải hệ phương trình : a) ; b) ; c) PHƯƠNG TRÌNH QUI VỀ DẠNG ax + b = 0 TÀI LIỆU BỔ SUNG Bài 1: Giải và biện luận các phương trình sau theo tham số ( x là ẩn số). 1a) ; 1b) 2a) ; 2b) 3a) ; 3b) 4a) ; 4b) 5a) ; 5b) 6a) ; 6b) . Bài 2: Xác định m để các phương trình sau vô nghiệm : a) ; b) Bài 3: Tìm a và b để phương trình sau có tập nghiệm là R : a) ; b) Bài 4: Tìm m là số nguyên để các phương trình sau có nghiệm : a) ; b) Bài 5: Tìm m để các phương trình sau có nghiệm âm : a) ; b) Bài 1: Giải và biện luận bất phương trình : a) ; b) Bài 2: Tìm m để các bất phương trình sau có nghiệm với mọi x a) ; b) Bài 3: Tìm tham số m để hai bất phương trình sau tương đương : a) và b) và Bài 4: Tìm các giá trị của tham số m để các hệ bất phương trình sau có nghiệm duy nhất : a) ; b) Bài 5: Tìm các giá trị của tham số m để các hệ bất phương trình sau vô nghiệm : a) ; b) HỆ PHƯƠNG TRÌNH HAI ẨN SỐ (ÔN CHO LỚP 10) Hệ phương trình dạng Bài 1: Giải và biện luận các hệ phương trình sau (ẩn số là x và y) 1a) ; 1b) 2a) ; 2b) 3a) ; 3b) 4a) ; 4b) Bài 2: 1) Cho hệ phương trình : a) Giải và biện luận hệ phương trình theo tham số m . b) Giả sử (x;y) là nghiệm của hệ ,tìm một hệ thức giữa x và y độc lập đối với m . 2) Cho hệ phương trình : a) Giải và biện luận hệ phương trình theo tham số m . b) Giả sử (x;y) là nghiệm của hệ ,tìm một hệ thức giữa x và y độc lập đối với m . Bài 3: Tìm m là số nguyên để mỗi hệ phương trình sau có nghiệm duy nhất (x;y) với x, y đều là các số nguyên. Lúc đó tìm (x;y) : 1a) ; 1b) 2a) ; 2b) Bài 4: Tìm m và n để hai hệ phương trình sau tương đương với nhau : và Bài 5: Tìm m để hệ sau có nghiệm duy nhất : PHƯƠNG TRÌNH BẬC HAI-TAM THỨC BẬC HAI-BẤT PHƯƠNG TRÌNH BẬC HAI Bài 1)Giải và biện luận các bất phương trình sau theo tham số m 1) (m+1)x2-(2m+1)x+(m-2)=0 ; 2) mx2+2x+1=0 3) (m2-5m-36)x2-2(m+4)x+1=0 ; 4) 2×2-6x+3m-5=0 Bài 2)Giả sử x1,x2 là hai nghiệm của phương trình 2×2-11x+13=0. Không giải phương trình , hãy tính giá trị các biểu thức sau : 1) A = ; 2) B = 3) C = ; 4) D = Bài 3)Chứng tỏ rằng kb2 = (k+1)2.ac là điều kiện cần và đủ để phương trình ax2+bx+c=0 (a0) có hai nghiệm thoả mãn nghiệm này bằng k lần nghiệm kia. Bài 4)Tìm m và n để hai số m ,n là nghiệm của phương trình x2+mx+n=0. Bài 5)Cho a,b là nghiệm của phương trình x2+px+1=0 và b,c là nghiệm của phương trình x2+qx+2=0 .Chứng minh rằng : (b-a)(b-c)=pq-6. Bài 6)Cho hai phương trình x2+p1x+q1=0 (1) và x2+p2x+q2=0 (2) biết p1p2=2(q1+q2) . Chứng minh rằng có ít nhất một trong hai phương trình đã cho có nghiệm . Bài 7)Cho hai số là các nghiệm của phương rình x2+px+q=0 .Hãy lập phương trình bậc hai có các nghiệm số là . Bài 8)Cho phương trình x2+4x+m+1=0 (1) 1.Định m để phương trình (1) có hai nghiệm phân biệt x1,x2 thoả mãn hệ thức 2.Định m để phương trình (1) có đúng một nghiệm âm. 3.Chứng tỏ rằng nếu phương trình (1) có một nghiệm dương x1 thì phương trình : (m+1)x2+4x+1=0 cũng có một nghiệm dương . Bài 9)Cho phương trình 2×2+2(m+1)x+m2+4m+3=0. 1.Tìm m để phương trình có ít nhất một nghiệm lớn hơn hay bằng 1. 2.Gọi x1,x2 là hai nghiệm của phương trình .Tìm giá trị lớn nhất của biểu thức : A =. Bài10)Cho hai phương trình x2+3x+2a=0 (1) và x2+6x+5a=0 (2).Tìm tất cả các giá trị của a để mỗi phương trình đều có hai nghiệm phân biệt và giữa hai nghiệm của phương trình này có đúng một nghiệm của phương trình kia . Bài11)Tìm các giá trị nguyên của a,b để phương trình : x2+ax+b=0 có hai nghiệm x1và x2 thoả mãn điều kiện : Bài12)Xác định m để phương trình mx2+(2m+1)x-1=0 có ít nhất một nghiệm dương . Bài13)Giả sử x1,x2 là các nghiệm của phương trình x2+2mx+4=0 .Hãy tìm các giá trị của m để xảy ra đẳng thức :. Bài14)Tìm các giá trị của a để hiệu hai nghiệm của phương trình : 2×2-(a+1)x+a+3=0 bằng 1. Bài15)Hãy tìm các giá trị của k để các nghiệm của phương trình :2×2-(k+2)x+7=k2 trái dấu nhau và là nghịch đảo của nhau về giá trị tuyệt đối. tính tỉ số giữa tổng hai nghiệm và hiệu hai nghiệm của phương trình. Bài17)Tìm các giá trị của m để phương trình : 1. có cả hai nghiệm đều âm. 2. có cả hai nghiệm đều dương. Bài18)Giải và biện luận phương trình : Bài19)Cho phương trình . 1.Xác định m để phương trình có một nghiêïm x=-1 và tìm nghiệm còn lại. 2.Xác định m để phương trình có đúng một nghiệm dương. Bài20)Xác định m để phương trình (x-2)[x2-2(m+1)x+m2+5]=0 có ba nghiệm phân biệt . Bài22)Tìm các giá trị của m để mỗi phương trình sau có bốn nghiệm phân biệt : 1.(m+3)x4-3(m-1)x2+4m=0 ; 2. (m-1)x4+(2m-3)x2+m-1=0 Bài23)Cho phương trình : x2-2(m-1)x+m2-3m+4=0. 1.Xác định m để ptrình có hai nghiệm phân biệt x1,x2 và nghiệm này gấp đôi nghiệm kia 2.Xác định m để . 3.Xác định m để biểu thức đạt giá trị nhỏ nhất . Bài24)Cho phương trình .Tìm m để phương trình có đúng 1 nghiệm Bài25)Cho phương trình . Tìm giá trị nhỏ nhất của biểu thức A = trong đó x1,x2 là hai nghiệm của phương trình . Bài26)Tìm m để phương trình có hai nghiệm x1,x2 sao cho : x1< 1 < x2 Bài27)Tìm m để phương trình có hai nghiệm x1,x2 sao cho : . Bài28)Tìm m để phương trình có nghiệm thoả điều kiện <x2 Bài29)Tìm m để phương trình có hai nghiệm thuộc khoảng (-1;2). Bài30)Tìm các giá trị của m để phương trình (m+1)x2-3mx+4m=0 : 1. Có một nghiệm thuộc (-1;1), còn nghiệm kia nhỏ hơn -1. 2. Có nghiệm lớn hơn 1. Bài31) Tìm m để phương trình có hai nghiệm ,trong đó có một nghiệm lớn hơn 3 còn nghiệm kia nhỏ hơn 2. Bài32)Tìm các giá trị của m để số -4 nằm giữa hai nghiệm của phương trình : (m+3)x2-2(m-1)x+4m =0 . Bài33)Tìm các giá trị của m để phương trình (m-5)x2-(m-9)x+m-5=0 có: 1. Hai nghiệm lớn hơn -3 . 2. Hai nghiệm nằm giữa -2 và 3 . Bài34)Cho phương trình (3m-5)x2-2(3m+2)x+4m-1=0 .Xác định m để phương trình có : 1. Hai nghiệm phân biệt đều nhỏ hơn -1. 2. Một nghiệm thuộc khoảng (-1;0) và nghiệm kia nằm ngoài đoạn [-1;0] Bài35)Tìm m để bất phương trình sau đúng với mọi x : 1. ; 2. HỆ PHƯƠNG TRÌNH HAI ẨN SỐ (ÔN CHUNG CHO LTĐH) Giải các hệ phương trình sau : 1) ; 2) ; 3) 4) ; 5) ; 6) 10) ; 11) ; 12) 13) ; 14) ; 15) 16) ; 17) 18) ; 19) ; 20) 21) ; 22) ; 23) 24) ; 25) 26*) ; 27*) ; 28*) 29*) ; 30*)

Sách Giải Bài Tập Toán Lớp 12 Bài 2: Căn Bậc Hai Của Số Phức Và Phương Trình Bậc Hai (Nâng Cao)

Sách giải toán 12 Bài 2: Căn bậc hai của số phức và phương trình bậc hai (Nâng Cao) giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 12 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Bài 17 (trang 195 sgk Giải Tích 12 nâng cao): Tìm các căn bậc hai của số phức sau: -i; 4i; -4;1+4 √3 i

Lời giải:

Gọi z=x+yi là căn bậc hai của -I, ta có: z 2=-i

Tương tự, 4i có căn bậc hai là z=√2+√2 i và z=-√2-√2 i; -4 có căn bậc hai là: z = 2i và z = -2i, 1+4 √3 i và z=-2-2 √3 i

Lời giải:

Giả sử w=a+bi có một căn bậc hai là z=x+yi

Vì z là một căn bậc hai của w nên z 2=w

Bài 19 (trang 196 sgk Giải Tích 12 nâng cao): Giải các phương trình bậc hai sau:

Vậy phương trình có hai nghiệm là

Vậy Phương trình có hai nghiệm là: z 1=-1-2i;z 2=-1+2i

c) z 2+(1-3i)z-2(1+i)=0

Ta có Δ=(1-3i) 2+8(1+i)=2i

Δ có căn bậc hai là: a 1=1+i,a 2=-1-i

Nên Phương trình có 2 nghiệm là:

Bài 20 (trang 196 sgk Giải Tích 12 nâng cao):

a) Hỏi công thức Viet về Phương trình bậc hai với hệ số thực có còn đúng cho Phương trình bậc hai với hệ số phức không? Vì sao?

b) Tìm hai số phức, biế tổng của chúng bằng 4 – I và tích của chúng bằng 5(1 – i).

c) Có phải mọi phương trình bậc hai z 2+Bx+C=0 (B, C là hai số phức nhận hai nghiệm là hai số phức liên hợp không thực phải có các hệ số B, C là hai số thực? vì sao? Điều ngược lại có đúng không?

Lời giải:

a) Định lí Viet vẫn đúng cho Phương trình bậc hai với hệ số phức,

Giả sử Phương trình: Az 2+Bz+C=0 (A ≠ 0;A,B,C ∈C) có hai nghiệm:

với α là một căn bậc hai của biệt số Δ=B 2-4AC

b) Theo định lí Viet thì hai số phức có nghiệm của Phương trình:

Ta có Δ=(4-i) 2-20(1-i)=-5+12i

Δ là một căn bậc hai là α=2+3i, nên (*) có hai nghiệm là:

Vậy hai số cần tìm là: 3+i;1-2i

c) Giả sử phương trình: z 2+Bz+C=0 nhận hai nghiệm là hai số phức liên hợp không thức sau đây: z 1=a+bi;z 2=a-bi với b ≠ 0;a.b ∈R

Vì z 1;z 2 là nghiệm Phương trình: z 2+Bz+C=0 nên ta có:

Cộng vế với vế của (1) và (2) ta được:

Thay vào (1) ta được:

Vì b ≠ 0 nên B = -2a – bi không thể là một số thực, vật khẳng định: B và C là hai số thực là sai.

– Điều ngược lại. nếu B, C là hai số thực thì Phương trình z 2+Bz+C=0 nhận hai nghiệm số phức liên hợp là sai, chẳng hạn Phương trình z 2+2z-3=0 có nghiệm là z = 1; z =-3

Bài 21 (trang 197 sgk Giải Tích 12 nâng cao):

a) Giải Phương trình: (z 2+i)(z 2-2iz-1)=0

b) Tìm số phức B để Phương trình bậc hai z 2 Bz+3i=0 có tổng bình Phương hai nghiệm bằng 8.

Lời giải:

a) Phương trình: (z 2+i)(z 2-2iz-1)=0

Vậy Phương trình đã cho có 3 nghiệm:

Số 6i + 8 có căn bậc hai là: 3+i và-3-i

Vậy B = 3 + i hoặc B = -3 – i

Đáp số: có hai số B thỏa mãn bài toán.

Bài 22 (trang 197 sgk Giải Tích 12 nâng cao): Đố vui. Một học sinh kí hiệu một căn bậc hai của -1 là √(-1) và tính √(-1).√(-1) như sau:

a) Tính theo định nghĩa của căn bậc hai là -1 thì √(-1).√(-1)=-1

b) Tính theo tính chất của căn bậc hai (tích của hai căn bậc hai của hai số bằng căn bậc hai của tích hai số đó) thì:

√(-1).√(-1)=√((-1)(-1) )=√1=1

Từ đó, học sinh suy ra – 1 = 1. Hãy tìm điều sai trong lập luận trên.

Lời giải:

1. Trước hết không nên kí hiệu √(-1) là một căn bậc hai của -1, bởi vì trong phần lí thuyết ta đã biết số -1 có dùng căn bậc hai là: √(-(-1) ) i và -√(-(-1) ) i. Kí hiệu √a chỉ nên chỉ: “Giá trị không âm của căn bậc hai của số thực không âm a” mà thôi.

2. Sai lầm chính ở điểm b). học sinh đó đã xem kí hiệu mới của mình √(-1) như là căn bậc hai số học của một số thực không âm, mặc dù rằng √(-1) không phải là một số thực. (học sinh đó dùng √(-1) để chỉ số ảo i hoặc số ảo -i) và kí hiệu mới √(-1) của học sinh đó cũng không có tính chất tương tự như tính chất của √a (Với a là số thực không âm) mà bằng chứng là chính mâu thuẫn tìm được trong b)

3. Một sai lầm nữa phải nhắc đến đó là: tính chất trong b) “tích của hai căn bậc hai của hai số bằng căn bậc hai của hai số đó” là phát biểu sai, chẳng hạn.

Ví dụ: số 2 là một căn bậc hai của 4.

Số -3 là một căn bậc hai của số 9

Số 6 là một căn bậc hai của số 4.9

Theo tính chất trên thì:2(-3) = 6, đường nhiên sai.

Ví dụ 2. Số I là một căn bậc hai của số -1;

Số I +1 là một căn bậc hai của 2i

Số I – 1 là một căn bậc hai của số -1.2i

Theo tính chất trên thì:

4. Cần giải thích thêm sự phân tích trong 2) như sau:

Tính chất. nếu x, y là các số thực không âm thì: √x √y=√(x.y) (1)

Khi kí hiệu: √(-1).√(-1)=√((-1)(-1) )=1, nghĩa là đã xem số -1 thõa mãn tích chất -1 ≥ 0

Con đường dẫn đến sai lầm của học sinh đó (có lẽ) diễn ta như sự phân tích trong 4).

Cập nhật thông tin chi tiết về Phương Pháp Giải Phương Trình Số Phức Cơ Bản Và Nâng Cao trên website Ictu-hanoi.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!