Bạn đang xem bài viết Phương Trình Lượng Giác Và Ứng Dụng (Nâng Cao) được cập nhật mới nhất trên website Ictu-hanoi.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất.
Phương trình lượng giác và ứng dụng (Nâng cao) chúng tôi Ths. Lê Văn Đoàn “Cần cù bù thông minh” chúng tôi - 1 - MỤC LỤC Trang Ths. Lê Văn Đoàn chúng tôi Phương trình lượng giác và ứng dụng (Nâng cao) - 2 - chúng tôi CÁC CÔNG THỨC LƯỢNG GIÁC NẮM VỮNG Công thức cơ bản ● 2 2sin x cos x 1+ = ● tan chúng tôi 1= ● sin x tan x cos x = ● cos x cotx sin x = ● os 2 2 1 1 tan x c x + = ● 2 2 1 1 cot x sin x + = Công thức cung nhân đôi – Công thức hạ bậc – Công thức cung nhân ba ● sin2x 2sin chúng tôi x= ● 2 2 2 2 cos x sin x cos2x 2cos x 1 1 2 sin x −= − = − ● os2 1 c 2xsin x 2 − = ● os os2 1 c 2x c x 2 + = ● 3sin 3x 3 sin x 4 sin x= − ● 3cos 3x 4 cos x 3cos x= − Công thức cộng cung ● ( )sin a b chúng tôi chúng tôi b± = ± ● ( )osc a b chúng tôi chúng tôi b± = ∓ ● ( ) tana tanb tan a b 1 tana.tanb + + = − ● ( ) tana tan b tan a b 1 tana.tanb − − = + ● π 1 tan x tan x 4 1 tan x + + = − ● π 1 tan x tan x 4 1 tan x − − = + Công thức biến đổi tổng thành tích ● a b a b cosa cosb 2cos .cos 2 2 + − + = ● a b a b cosa cosb 2sin .sin 2 2 + − − =− ● a b a b sina sin b 2sin .cos 2 2 + − + = ● a b a b sina sin b 2cos .sin 2 2 + − − = ● ( )sin a b tana tanb cosa.cosb + + = ● ( )sin a b tana tanb cosa.cosb − − = Công thức biến đổi tích thành tổng ● ( ) ( )cos a b cos a b cosa.cosb 2 + + − = ● ( ) ( )sin a b sin a b sin a.cosb 2 + + − = ● ( ) ( )cos a b cos a b sin chúng tôi b 2 − − + = Một số công thức thông dụng khác ● π π sinx cosx 2 sin x 2cos x 4 4 + = + = − ● π π sinx cosx 2 sin x 2cos x 4 4 − = − = + ● 4 4 2 1 cos4x cos x sin x 1 s 3 1 in 2x 2 4 + + = − = ● 6 6 2 3 cos4x cos x sin x 1 s 5 3 in 2x 4 8 + + = − = Phương trình lượng giác và ứng dụng (Nâng cao) chúng tôi Ths. Lê Văn Đoàn “Cần cù bù thông minh” chúng tôi - 3 - Một số lưu ý: Điều kiện có nghiệm của phương trình sin x cos x = α = α là: 1 1− ≤α ≤ . Khi giải phương trình có chứa các hàm số tan hoặc cot , có mẫu số hoặc căn bậc chẵn thì nhất thiết phải đặt điều kiện để phương trình xác định. Phương trình chứa tan x , điều kiện: ( ) cos x 0 x k k 2 π ≠ ⇔ ≠ + π ∈ ℤ . Phương trình chứa cotx , điều kiện: ( ) sin x 0 x k k≠ ⇔ ≠ π ∈ ℤ . Phương trình chứa cả tan x và cotx , điều kiện: ( ) x k. k 2 π ≠ ∈ ℤ . Khi tìm được nghiệm phải kiểm tra (so) với điều kiện. Ta thường dùng một trong các cách sau đây để kiểm tra điều kiện: Kiểm tra trực tiếp bằng cách thay giá trị của x vào biểu thức điều kiện. Nếu khi thế vào, giá trị ấy làm đẳng thức đúng thì nhận nghiệm, nếu sai thì loại nghiệm. Dùng đường tròn lượng giác, nghĩa là biểu diễn các ngọn cung của điều kiện và cung của nghiệm. Nếu các ngọn cung này trùng nhau thì ta loại nghiệm, nếu không trùng thì ta nhận nghiệm. Cách biểu diễn cung – góc lượng giác trên đường tròn: " Nếu cung hoặc góc lượng giác AM có số đo là k2 n π α + 0 0 k.360hay a n + với k ,n +∈ ∈ℤ ℕ thì có n điểm M trên đường tròn lượng giác cách đều nhau". Ví dụ 1: Nếu sđ AM k2 3 π = + π thì có một điểm M tại vị trí 3 π (ta chọn k 0= ). Ví dụ 2: Nếu sđ AM k 6 π = + π thì có 2 điểm M tại vị trí 6 π và 7 6 π (ta chọn k 0,k 1= = ). Ví dụ 3: Nếu sđ 2AM k. 4 3 π π = + thì có 3 điểm M tại các vị trí 11; 4 12 π π và 19 12 π , ( )k 0;1;2= . Ví dụ 4: Nếu sđ k2AM k. 4 2 4 4 π π π π = + = + thì có 4 điểm M tại các vị trí 4 π , 3 4 π , 5 4 π ; 7 4 π (ứng với các vị trí k 0,1,2,3= ). Ví dụ 5: Tổng hợp hai cung x k 6 π =− + π và x k 3 π = + π Biểu diễn cung x k 6 π = − + π trên đường tròn thì có 2 điểm tại các vị trí: 6 π − và 5 6 π Biểu diễn cung x k 3 π = + π trên đường tròn thì có Để giải được phương trình lượng giác cũng như các ứng dụng của nó, các bạn học sinh cần nắm vững tất cả những công thức lượng giác. Đó là hành trang, là công cụ cần thiết nhất để chinh phục thế giới mang tên: "Phương trình lượng giác" Ths. Lê Văn Đoàn chúng tôi Phương trình lượng giác và ứng dụng (Nâng cao) - 4 - chúng tôi 2 điểm tại các vị trí: 3 π và 4 3 π . Tổng hợp hai cung gồm 4 điểm như hình vẽ và cung tổng hợp là: x k 3 2 π π = + Đối với phương trình 2 2 1 1 cos x cos x 2 2 1 1 sin x sin x 2 2 = = ± ⇔ = = ± ta không nên giải trực tiếp vì khi đó có tới 4 nghiệm, khi kết hợp và so sánh với điều kiện rất phức tạp, ta nên hạ bậc là tối ưu nhất. Nghĩa là: 2 2 2 2 1 cos x 2cos x 1 0 cos2x 0 2 1 cos2x 02sin x 1 0 sin x 2 = − = = ⇔ ⇔ =− = = . Tương tự đối với phương trình 2 2 sin x 1 sin x 1 cos x 1cos x 1 = = ± ⇔ = ±= ta không nên giải như thế, mà nên biến đổi dựa vào công thức 2 2sin x cos x 1+ = . Lúc đó: 2 2 2 2 sin x 1 cos x 0 cos x 0 sin x 0cos x 1 sin x 0 = = = ⇔ ⇔ == = Sử dụng thành thạo câu thần chú: '' Cos đối – Sin bù – Phụ chéo '' Đây có thể xem là câu thần chú ''đơn giản, dễ nhớ'' trong lượng giác nhưng nó lại đóng vai trò là một trong những nhân tố cần thiết, hiệu quả nhất khi giải phương trình lượng giác. Cos đối, nghĩa là cos của hai góc đối nhau thì bằng nhau, tức là ( )cos cos−α = α , còn các cung góc lượng giác còn lại thì bằng '' – '' chính nó: ( ) ( ) ( ) sin sin , tan tan , cot tan−α =− α −α =− α −α =− α Sin bù, nghĩa là sin của hai góc bù nhau thì bằng nhau, tức là ( )sin sinπ−α = α , còn các cung góc lượng giác còn lại thì bằng '' – '' chính nó: ( ) ( ) ( ) cos cos , tan tan , cot tanπ−α =− α π−α = − α π−α = − α Phụ chéo, nghĩa là với hai góc phụ nhau (có tổng bằng 900) thì sin góc này bằng cos góc kia và ngược lại, tức là: sin cos , cos sin , tan cot , cot tan 2 2 2 2 π π π π −α = α −α = α −α = α −α = α Ta hãy thử đến với ví dụ nhỏ sau đây để thấy được hiệu quả của '' câu thần chú '' này: Giải phương trình lượng giác: sin u cos v= Rõ ràng, ở phần phương trình lượng giác cơ bản, ta chỉ biết cách giải sao cho phương trình sin u sin v= , vậy còn phương trình sin u cos v= thì sao ? Câu trả lời ở đây chính là phụ chéo, bởi: sin u cos v sin u sin v 2 π = ⇔ = − ( ) u v k2 u v k2 , k 2 2 π π = − + π ∨ = + + π ∈ ℤ . Qua ví dụ này, chắc hẳn nếu trong bài gặp những phương trình dạng như 2sin x cos x 3 π = − pi/3 5pi/6 4pi/3 –pi/6 O Phương trình lượng giác và ứng dụng (Nâng cao) chúng tôi Ths. Lê Văn Đoàn “Cần cù bù thông minh” chúng tôi - 5 - thì các bạn học sinh sẽ không còn cảm thấy lúng túng nữa. Một số cung góc hay dùng khác: ( ) ( ) sin x k2 sin x cos x k2 cos x + π = + π = và ( ) ( ) ( ) sin x k2 sin x k cos x k2 cos x + π + π =− ∈ + π + π =− ℤ . A – PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN Dạng: u v k2 sin u sin v u v k2 = + π= ⇔ = π− + π Đặc biệt: sin x 0 x k sin x 1 x k2 2 sin x 1 x k2 2 = ⇒ = π π = ⇒ = + π π = − ⇒ =− + π Dạng: u v k2 cosu cos v u v k2 = + π= ⇔ = − + π Đặc biệt: cos x 0 x k 2 cos x 1 x k2 cos x 1 x k2 π = ⇒ = + π = ⇒ = π = − ⇒ = π+ π Dạng: tanu tan v u v k Ðk : u,v k 2 = ⇔ = + π π ≠ + π Đặc biệt: tan x 0 x k tan x 1 x k 4 = ⇔ = π π = ± ⇔ = ± + π Dạng: cotu cotv u v k Ðk : u,v k = ⇔ = + π ≠ π Đặc biệt: cotx 0 x k 2 cotx 1 x k 4 π = ⇔ = + π π = ± ⇔ = ± + π BÀI TẬP ÁP DỤNG Bài 1. Giải phương trình: ( ) cos 3x 4 cos2x 3cos x 4 0 , x 0;14 − + − = ∗ ∀ ∈ Bài 2. Giải phương trình: ( )( ) ( ) 2cos x 1 2 sin x cos x sin2x sin x− + = − ∗ Bài 3. Giải phương trình: ( ) cos 3x cos2x cos x 1 0+ − − = ∗ Bài 4. Giải phương trình: ( ) sin x cos x 1 sin2x cos2x 0+ + + + = ∗ Bài 5. Giải phương trình: ( ) ( ) 2 sin x 1 cos2x sin2x 1 cos x+ + = + ∗ Bài 6. Giải phương trình: ( ) 1 1 7 4 sin x sin x 43 sin x 2 π + = − ∗ π − Bài 7. Giải phương trình: ( ) 4 4 7 sin x cos x cot x cot x 8 3 6 π π + = + − ∗ Ths. Lê Văn Đoàn chúng tôi Phương trình lượng giác và ứng dụng (Nâng cao) - 6 - chúng tôi Bài 8. Giải phương trình: ( ) 4 4 4sin 2x cos 2x cos 4x tan x tan x 4 4 + = ∗ π π − + Bài 9. Giải phương trình: ( ) 3 x 1 3x sin sin 1 10 2 2 10 2 π π − = + Bài 10. Giải phương trình: ( ) sin 3x sin2x sin x 1 4 4 π π − = + Bài 11. ( ) 38 cos x cos 3x 1 3 π + = Bài 12. Giải phương trình: ( ) 32 sin x 2 sin x 1 4 π + = Bài 13. Giải phương trình: ( ) 3sin x 2 sin x 1 4 π − = Bài 14. Giải phương trình: ( ) cos x cos2x cos 3x cos 4x 0+ + + = ∗ Bài 15. Giải phương trình: ( ) 2 2 2 3sin x sin 2x sin 3x 2 + + = ∗ . Bài 16. Giải phương trình: ( ) 2 2 2sin x sin 2x sin 3x 2+ + = ∗ . Bài 17. Giải phương trình: ( ) 2 2 2 2sin x sin 3x cos 2x cos 4x+ = + ∗ Bài 18. Giải phương trình: ( ) 2 2 2 2sin 3x cos 4x sin 5x cos 6x− = − ∗ Bài 19. Giải phương trình: ( )sin 2 2 5x 9x cos 3x sin7x 2 2cos 4 2 2 π + = + − ∗ Bài 20. Giải phương trình: ( ) 2 2 2sin x cos 2x cos 3x= + ∗ Bài 21. Giải phương trình: ( ) 22sin 2x sin 7x 1 sin x+ − = ∗ Bài 22. Giải phương trình: ( ) sin x sin2x sin 3x 1 cos x cos2x+ + = + + ∗ Bài 23. Giải phương trình: ( ) 3 3 3sin x cos 3x cos x sin 3x sin 4x+ = ∗ Bài 24. Giải phương trình: ( ) 2 3cos10x 2cos 4x 6cos 3x cos x cos x 8 cos x cos 3x+ + = + ∗ Bài 25. Giải phương trình: ( ) 3 3 24 sin x 3cos x 3sin x sin x cos x 0+ − − = ∗ Bài 26. Giải phương trình: ( )( ) ( ) 22sin x 1 3cos 4x 2sin x 4 4 cos x 3+ + − + = ∗ Bài 27. Giải phương trình: ( ) ( ) 6 6 8 8sin x cos x 2 sin x cos x+ = + ∗ Bài 28. Giải phương trình: ( ) ( ) 8 8 10 10 5sin x cos x 2 sin x cos x cos2x 4 + = + + ∗ Bài 29. Giải phương trình: ( ) ( ) 3 3 5 5sin x cos x 2 sin x cos x+ = + ∗ Bài 30. Giải phương trình: ( ) 4 2 2 43cos x 4 cos x sin x sin x 0− + = ∗ Bài 31. Giải phương trình: ( ) 3 3 2 3 2cos 3x cos x sin 3x sin x 8 − − = ∗ Phương trình lượng giác và ứng dụng (Nâng cao) chúng tôi Ths. Lê Văn Đoàn “Cần cù bù thông minh” chúng tôi - 7 - Bài 32. Giải phương trình: ( ) 1cos x cos2x cos 4x cos 8x 16 = ∗ Bài 33. Giải phương trình: ( ) 34 sin 3x cos2x 1 6sin x 8 sin x= + − ∗ Bài 34. Giải phương trình: ( ) 1cos x cos2x cos 3x cos 4x cos5x 2 + + + + =− ∗ Bài 35. Giải phương trình: ( ) sin2x 2cos x sin x 1 0 tan x 3 + − − = ∗ + Bài 36. Giải phương trình: ( ) 2 1 sin2x cos2x 2 sin x sin2x 1 cot x + + = ∗ + Bài 37. Giải phương trình: ( ) ( ) tan x cotx 2 sin2x cos2x+ = + ∗ Bài 38. Giải phương trình: ( ) 2tan x tan x tan 3x 2− = ∗ Bài 39. Giải phương trình: ( ) 2 2 2 11tan x cot x cot 2x 3 + + = ∗ Bài 40. Giải phương trình: ( ) 2 2 2 x x sin tan x cos 0 2 4 2 π − − = ∗ Bài 41. Giải phương trình: ( ) ( ) 2sin2x cotx tan2x 4 cos x+ = ∗ Bài 42. Giải phương trình: ( ) ( ) 2 2cot x tan x 16 1 cos 4x cos2x − = + ∗ Bài 43. Giải phương trình: ( ) 12 tan x cot2x 2 sin2x 2sin2x + = + ∗ Bài 44. Giải phương trình: ( ) ( ) ( ) 3 sin x tan x 2 1 cos x 0 tan x sin x + − + = ∗ − Bài 45. Giải phương trình: ( ) ( ) ( ) ( ) ( ) 2 2 2 2 1 cos x 1 cos x 1 tan x sin x 1 sin x tan x 24 1 sin x − + + − = + + ∗ − Bài 46. Giải phương trình: ( ) cos 3x tan5x sin7x= ∗ Bài 47. Giải phương trình: ( ) 1 1sin2x sin x 2cotx 2 sin x sin2x + − − = ∗ Bài 48. Giải phương trình: ( ) ( ) 4 4sin x cos x 1 tan x cot2x sin2x 2 + = + ∗ Bài 49. Giải phương trình: ( ) 2 2 2 2tan chúng tôi 2x.cot3x tan x cot 2x cot3x= − + ∗ Bài 50. Giải phương trình: ( ) x cotx sin x 1 tan x tan 4 2 + + = ∗ Ths. Lê Văn Đoàn chúng tôi Phương trình lượng giác và ứng dụng (Nâng cao) - 8 - chúng tôi HƯỚNG DẪN GIẢI PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN Lời bình: Từ việc xuất hiện ba cung x,2x,3x , giúp ta liên tưởng đến việc đưa chúng về cùng một cung. Nhưng đưa về cung x hay cung 2x ? Các bạn có thể trả lời câu hỏi đó dựa vào quan niệm sau: " Trong phương trình lượng giác tồn tại ba cung x,2x,3x , ta nên đưa về cung trung gian 2x nếu trong biểu thức có chứa sin2x (hoặc cos2x). Còn không chứa sin2x (hoặc cos2x), nên đưa về cung x ". Bài giải tham khảo ( ) ( ) ( )3 2 3 24 cos x 3cos x 4 2cos x 1 3cos x 4 0 4 cos x 8 cos x 0∗ ⇔ − − − + − = ⇔ − = ( ) ( ) ( ) ( ) 2 cos x 0 N 4 cos x cos x 2 0 x k , k cos x 2 L 2 = π⇔ − = ⇔ ⇔ = + π ∈ = ℤ . 0,5 k 3,9 3 5 7 Do x 0;14 ,k 0 k 14 x ; ; ; k2 2 2 2 2 − ≤ ≤≈ π π π π π ∈ ∈ ⇔ ≤ + π ≤ ⇔ ⇒ ∈ ∈ ℤ ℤ . Bài giải tham khảo ( ) ( )( )2cos x 1 2 sin x cos x 2sin x cos x sin x∗ ⇔ − + = − ( )( ) ( ) 2cos x 1 2 sin x cos x sin x 2cos x 1 0⇔ − + − − = ( ) ( ) ( )( ) 2cos x 1 2sin x cos x sin x 0 2cos x 1 sin x cos x 0 ⇔ − + − = ⇔ − + = ( ) x k22cos x 1 0 cos x cos 3 k; l3 sin x cos x 0 tan x 1 x l 4 π π = ± + π − = = ⇔ ⇔ ⇔ ∈ + = π = − = − + π ℤ . Lời bình: Từ việc xuất hiện các cung 3x và 2x , chúng ta nghĩ ngay đến việc đưa chúng về cùng một cung x bằng công thức nhân ba và công thức nhân đôi của hàm cos Bài giải tham khảo ( ) 3 2 3 24 cos x 3cos x 2cos x 1 cos x 1 0 2cos x cos x 2cos x 1 0∗ ⇔ − + − − − = ⇔ + − − = ( ) ( ) ( )( ) 2 2cos x 2cos x 1 2cos x 1 0 2cos x 1 cos x 1 0⇔ + − + = ⇔ + − = Bài 1. Giải phương trình: ( ) cos 3x 4 cos2x 3cos x 4 0 , x 0;14 − + − = ∗ ∀ ∈ Trích đề thi tuyển sinh Đại học khối D năm 2002 Bài 2. Giải phương trình: ( )( ) ( ) 2cos x 1 2 sin x cos x sin2x sin x− + = − ∗ Trích đề thi tuyển sinh Đại học khối D năm 2004 Bài 3. Giải phương trình: ( ) cos 3x cos2x cos x 1 0+ − − = ∗ Trích đề thi tuyển sinh Đại học khối D năm 2006 Phương trình lượng giác và ứng dụng (Nâng cao) chúng tôi Ths. Lê Văn Đoàn “Cần cù bù thông minh” chúng tôi - 9 - Bài 4. Giải phương trình: ( ) sin x cos x 1 sin2x cos2x 0+ + + + = ∗ Trích đề thi tuyển sinh Đại học khối B năm 2005 ( ) ( ) 2 sin x 0 x k 2cos x 1 sin x 0 k;l1 2 cos x x l2 2 3 = = π ⇔ − + = ⇔ ⇔ ∈π = − = ± + π ℤ . Bài giải tham khảo ( ) ( ) 2sin x cos x 2 sin x cos x 2cos x 0∗ ⇔ + + + = ( ) ( ) sin x cos x 2cos x sin x cos x 0⇔ + + + = ( )( ) sin x cos x 1 2cos x 0⇔ + + = ( ) sin x cos x tan x 1 x k 4 k; l1 2 2cos x cos x cos x l22 3 3 π = − =− = − + π ⇔ ⇔ ⇔ ∈π π= − = = ± + π ℤ . Lời bình: Từ việc xuất hiện của cung 2x và cung x mà ta nghĩ đến việc chuyển cung 2x về cung x bằng công thức nhân đôi của hàm sin và cos, từ đó xuất hiện nhân tử chung ở hai vế ( ) ( )2sin x 1 2cos x 1 2 sin x cos x 1 cos x∗ ⇔ + − + = + ( ) ( ) 22sin x cos x 2 sin x cos x 1 cos x 2sin x cos x cos x 1 1 cos x 0⇔ + = + ⇔ + − + = ( )( ) ( ) 21 x k2cos x 3cos x 1 sin2x 1 0 k, l2 sin2x 1 x l 4 π = ± + π = − ⇔ + − = ⇔ ⇔ ∈ π= = + π ℤ . Lời bình: Từ việc xuất hiện hai cung 3x 2 π − và 7 x 4 π − giúp ta suy nghĩ đến việc đưa hai cung khác nhau này về cùng một cung chung là x . Để làm được điều đó, ta có thể dùng công thức cộng cung hoặc dùng câu thần chú "cos đối – sin bù – phụ chéo''. Ta thực hiện hai ý tưởng đó qua hai cách giải sau đây Bài giải tham khảo Cách giải 1. Sử dụng công thức cộng cung: ( )sin a b chúng tôi chúng tôi b± = ± Bài 6. Giải phương trình: ( ) 1 1 7 4 sin x sin x 43 sin x 2 π + = − ∗ π − Trích đề thi tuyển sinh Đại học khối A năm 2008 Bài 5. Giải phương trình: ( ) ( ) sin x 1 cos2x sin2x 1 cos x+ + = + ∗ Trích đề thi tuyển sinh ĐạiHàm Số Lượng Giác Lớp 11 Nâng Cao
27 Tháng 09, 2018
Phương pháp giải bài tập hàm số lượng giác lớp 11 nâng cao tìm GTLN, GTNN.
Trước tiên, chúng ta sẽ cùng tham khảo phương pháp giải dạng bài tập hàm số lượng giác lớp 11 nâng cao.
Để giải được các dạng toán này các em cần thuộc lòng các bất đẳng thức sau. Đây chính là chìa khóa để cả em giải các bài tập về tìm giá trị lớn nhất, nhỏ nhất hàm lượng giác.
Ngoài ra các em cũng có thể tận dụng chiếc máy tính cầm tay của mình để giải các dạng bài cơ bản. Tuy nhiên với các dạng bài tập ở mức vận dụng cao thì cần phải biết biến đổi công thức lượng giác linh hoạt.
Các bài tập nâng cao tìm giá trị lớn nhất, nhỏ nhất của hàm số
Ví dụ1: Tìm giá trị nhỏ nhất của hàm số y = 2cos²x + 4cosx
A. min y = 5 B. min y = -2
C. miny = 7 D. min y = 8.
y = 2 cos²x + 4cosx = 2.(cosx + 1)² – 2
Áp dụng bất đẳng thức – 1 ≤ cosx ≤ 1 ⇔ 0 ≤ cosx + 1 ≤ 2 ⇔ 0 ≤ (cosx + 1)² ≤ 4. Do đó -2 ≤ y ≤ 6.
Vậy hàm số có giá trị nhỏ nhất y = -2 khi cosx = 1.
Phương pháp dùng biến số phụ để giải bài toán tìm GTLLN, GTNN của hàm lượng giác.
Ví dụ 2: Tìm giá trị lớn nhất, nhỏ nhất của hàm số y = cos2x + 4cosx +1.
A. min y = 5 chúng tôi y = 6
C. min y = 7 D. min y = 8
Biến đổi y = cos2x + 4cosx + 1 = 2.cos²x + 4 cosx.
Đặt t = cosx ( -1 ≤ t ≤ 1). Khi đó y = f(t) = 2t² + 4t . Lúc này các em sẽ quay về dạng toán tìm giá trị lớn nhất, nhỏ nhất của hàm số trên 1 đoạn thông thường.
Ở bài toán này là hàm f(t) với tập xác định D = [-1; 1].
y = f(t) = 2t² + 4t ⇒ f'(t) = 4t + 4 = 0 ⇔ t = -1
⇒ f(-1) = -2 = min f(t) = min f(x)
f(1) = 6 = max f(t) = max f(x) = 6.
Tìm giá trị nhỏ nhất của hàm số y = cos³x – 9/2 cos²x + 3cosx + 1/2 là:
A. 1 B = -24
C. -12 D = -9.
Hướng dẫn giải:
Tập xác định D = R.
Với bài toán này, việc biến đổi hàm số và áp dụng các bất đẳng thức lượng giác để giải sẽ rất phức tạp. Trong khi đó, các em chỉ cần đặt biến phụ, bài toán sẽ trở nên đơn giản hơn nhiều.
Đặt t = cosx, t ∈ [-1;1]. Hàm số trở thành y = 2t³ – 9/2t² + 3t + 1/2. Bây giờ các em sẽ vận dụng kiến thức tìm giá trị lớn nhất, nhỏ nhất của hàm bậc 3 để giải.
Ta có y’ = 6t² – 9t + 3, y ‘ = 0 ⇔ t = 1 hoặc t = 1/2.
y (1) = 1 , y (-1) = 9, y (1/2) = 9/8.
Bài toán tìm GTLN, GTNN của hàm số lượng giác với tham số m
Các em có thể gặp bài toán hàm số lượng giác lớp 11 nâng cao hơn với tham số m.
A. 8√2 B. 7√3
C.8√3 D. 16.
Hướng dẫn giải:
Biến đổi 3cosx – 4sinx = 5.(3/5cox – 4/5sinx).
Đặt 3/5 = sinα ⇒ cosα = 4/5. Khi đó 5. (3/5. cosx – 4/5.sinx) = 5 sin (α -x).
3 ≤ 5sin(α -x) + 8 ≤ 13 ⇒ 3 ≤ y ≤ 13, ∀ x ∈ [0; 2π].
Sách hệ thống bài tập Toán đại số cả 3 năm từ cơ bản đến nâng cao
Nội dung sách bám sát với định hướng ra đề thi của Bộ. Vì vậy em không phải loay hoay chọn sách tham khảo. Xác định được đúng mục đích học cho từng chuyên đề kiến thức. Điều này giúp em nâng cao hiệu quả ôn luyện, tránh lãng phí thời gian.
Định Lý Viet Và Ứng Dụng Trong Phương Trình.
I. Định lý Viet – Lý thuyết quan trọng.
Định lý Viet hay hệ thức Viet thể hiện mối quan hệ giữa các nghiệm của một phương trình đa thức do nhà toán học Pháp François Viète khám phá ra.
1. Định lý Viet thuận.
Cho phương trình bậc 2 một ẩn: ax2+bx+c=0 (a≠0) (*) có 2 nghiệm x1 và x2. Khi đó 2 nghiệm này thỏa mãn hệ thức sau:
Hệ quả: Dựa vào hệ thức Viet khi phương trình bậc 2 một ẩn có nghiệm, ta có thể nhẩm trực tiếp nghiệm của phương trình trong một số trường hợp đặc biệt:
Nếu a+b+c=0 thì (*) có 1 nghiệm x1=1 và x2=c/a
Nếu a-b+c=0 thì (*) có nghiệm x1=-1 và x2=-c/a
2. Định lý Viet đảo.
Giả sử hai số thực x1 và x2 thỏa mãn hệ thức:
thì x1 và x2 là 2 nghiệm của phương trình bậc 2: x2-Sx+P=0 (1).
Chú ý: điều kiện S2-4P≥0 là bắt buộc. Đây là điều kiện để ∆(1)≥0 hay nói cách khác, đây là điều kiện để phương trình bậc 2 tồn tại nghiệm.
II. Các dạng bài tập ứng dụng định lý Viet.
1. Ứng dụng hệ thức Viet tìm hai số khi biết tổng và tích.
Phương pháp:
Nếu 2 số u và v thỏa mãn:
thì u, v sẽ là 2 nghiệm của phương trình: x2-Sx+P=0.
Như vậy, việc xác định hai số u, v sẽ quay về bài toán giải phương trình bậc 2 một ẩn:
Nếu S2-4P≥0 thì tồn tại u,v.
Nếu S2-4P<0 thì không tồn tại số nào thỏa mãn.
Ví dụ 1: Một hình chữ nhật có chu vi 6a, diện tích là 2a2. Hãy tìm độ dài 2 cạnh.
Hướng dẫn:
Gọi x1, x2 lần lượt là chiều dài và chiều rộng của hình chữ nhật. Theo đề ta có:
Suy ra x1, x2 là nghiệm của phương trình: x2-3ax+2a2=0.
Vậy hình chữ nhật có chiều dài 2a, chiều rộng là a.
Hướng dẫn:
Ta cần biến đổi hệ đã cho về dạng tổng tích quen thuộc:
Trường hợp 1:
suy ra x1, x2 là nghiệm của phương trình bậc 2: x2-5x+6=0. Giải tìm được x1=3, x2=2
Trường hợp 2:
suy ra x1, x2 là nghiệm của phương trình bậc 2: x2+5x+6=0. Giải tìm được x1=-2, x2=-3.
Ví dụ 3: Giải phương trình:
Hướng dẫn:
Điều kiện: x≠-1
Để ý, nếu quy đồng mẫu, ta sẽ được một phương trình đa thức, tuy nhiên bậc của phương trình này khá lớn. Rất khó để tìm ra định hướng khi ở dạng này.
Vì vậy, ta có thể nghĩ đến việc đặt ẩn phụ để bài toán đơn giản hơn.
Ta đặt:
Khi đó theo đề: uv=6.
Ta lại có:
Suy ra u, v là nghiệm của phương trình bậc 2: t2-5t+6=0.
Giải phương trình trên được:
Trường hợp 1: u=3, v=2. Khi đó ta thu được phương trình: x2-2x+3=0 (vô nghiệm)
Trường hợp 2: u=2, v=3. Khi đó ta thu được phương trình x2-3x+2=0, suy ra x1=1, x2=2 (thỏa mãn điều kiện x≠-1)
2. Áp dụng định lý Viet tính giá trị biểu thức đối xứng.
Phương pháp:
Biểu thức đối xứng với x1, x2 nếu ta đổi chỗ x1, x2 cho nhau thì giá trị biểu thức không thay đổi:
Nếu f là một biểu thức đối xứng, nó luôn tồn tại cách biểu diễn qua biểu thức đối xứng S=x1+x2, P=x1x2
Một số biểu diễn quen thuộc:
Áp dụng hệ thức Viet, ta tính được giá trị biểu thức cần tìm.
Ví dụ 4: Cho phương trình bậc 2 một ẩn: ax2+bx+c=0 (a≠0) tồn tại 2 nghiệm x1, x2. Gọi:
Hãy chứng minh:
Hướng dẫn:
Ví dụ 5: Cho phương trình x2+5x+2=0. Gọi x1, x2 là nghiệm của phương trình. Tính giá trị của:
Hướng dẫn:
Cách 1:
Ta biến đổi:
Lại có:
Thế vào ta tính được S.
Cách 2:
Ta có thể ứng dụng ví dụ 4 để tính trong trường hợp này, chú ý:
Ta có: S=S7.
Vậy ta tính lần lượt S1, S2,.., S6. Sau đó sẽ có được giá trị của S7.
3. Áp dụng định lý Viet vào các bài toán có tham số.
Đối với các bài toán tham số, điều kiện tiên quyết là phải xét trường hợp để phương trình tồn tại nghiệm. Sau đó áp dụng định lý Viet cho phương trình bậc hai, ta sẽ có các hệ thức của hai nghiệm x1, x2 theo tham số, kết hợp với dữ kiện đề bài để tìm đáp án.
Ví dụ 5: Cho phương trình mx2-2(3-m)x+m-4=0 (*) (tham số m).
Hãy xác định giá trị của tham số để:
Có đúng 1 nghiệm âm.
Có 2 nghiệm trái dấu.
Hướng dẫn:
Nhắc lại kiến thức:
Đặc biệt, do ở hệ số a có chứa tham số, vì vậy ta cần xét hai trường hợp:
Trường hợp 1: a=0⇔m=0
Khi đó (*)⇔-6x-4=0⇔x=-⅔. Đây là nghiệm âm duy nhất.
Trường hợp 2: a≠0⇔m≠0
Lúc này, điều kiện là:
Ví dụ 6: Tìm tất cả giá trị m thỏa mãn phương trình bậc 2 sau:
tồn tại nghiệm x1, x2 phân biệt sao cho:
Hướng dẫn:
Điều kiện để phương trình tồn tại 2 nghiệm phân biệt:
Khi đó dựa vào hệ thức Viet:
Hai nghiệm phân biệt này phải khác 0 (vì để thỏa mãn đẳng thức đề cho), suy ra:
(2)
Mặt khác, theo đề:
Trường hợp 1:
Trường hợp 2:
Kết hợp với 2 điều kiện (1) và (2) suy ra m=1 hoặc m=5 thỏa yêu cầu bài toán.
Các Phương Pháp Giải Phương Trình Lượng Giác
Chương I: Phương trình lượng giác cơ bản và một số phương trình lượng giác thường gặp Để giải 1 PTLG , nói chung ta tiến hành theo các bước sau: Bước 1: Đặt điều kiện để phương trình có nghĩa. Các điều kiện ấy bao hàm các điều kiện để căn có nghĩa,phân số có nghĩa, biểu thức có nghĩa. Ngoài ra trong các PTLG có chứa các biểu thức chứa va thì cần điều kiện để và có nghĩa. Bước 2: Bằng phương pháp thích hợp đưa các phương trình đã cho về một trong các phương trình cơ bản . Bước 3: Nghiệm tìm được phải đối chiếu với điều kiện đã đặt ra. Những nghiệm nào không thoả mãn điều kiện ấy thì bị loại. 1.1-Phương trình lượng giác cơ bản 1.1.1- Định nghĩa: Phương trình lượng giác là phương trình chứa một hay nhiều hàm số lượng giác . 1.1.2- Các phương trình lượng giác cơ bản. a) Giải và biện luận phương trình (1) Do nên để giải phương trình (1) ta đi biện luận theo các bước sau -Khả năng 1: Nếu m được biểu diễn qua sin của góc đặc biệt ,giả sử khi đó phương trình sẽ có dạng đặc biệt. -Khả năng 2: Nếu m không biểu diễn được qua sin của góc đặc biệt khi đó đặt m= . Ta có: Như vậy ta có thể kết luận phương trình có 2 họ nghiệm Đặc biệt ta cần phải nhớ được các giá trị của các cung đặc biệt như vì sau khi biến đổi các bài toán thương đưa về các cung đặc biệt. Ví dụ 1: Giải phương trình Giải: Ta nhận thấy không là giá trị của cung đặc biệt nào nên ta đặt = Khi đó ta có: Vậy phương trình có 2 họ ngiệm Ví dụ 2: Giải phương trình Giải: Do nên Vậy phương trình có hai họ nghiệm . b) Giải và biện luận phương trình lượng giác Ta cũng đi biện luận (b) theo m Bước 1: Nếu phương trình vô nghiệm . Bước 2: Nếu ta xét 2 khả năng: -Khả năng 1: Nếu được biểu diễn qua của góc đặc biệt, giả sử góc. Khi đó phương trình có dạng -Khả năng 2: Nếu không biểu diễn được qua của góc đặc biệt khi đó đặt = .Ta có: Như vậy ta có thể kết luận phương trình có 2 họ nghiệm Ví Dụ Minh Hoạ. Ví dụ 1: Giải phương trình sau: Giải: Do nên Vậy phương trình có 2 họ nghiệm Ví dụ 2: Giải phương trình: Giải: Vì và không là giá trị của cung đặc biệt nên tồn tại góc sao cho Ta có: Vậy phương trình có hai họ nghiệm . c) Giải và biện luận phương trình lượng giác Ta cũng biện luận phương trình (c) theo các bước sau: Bước 1: Đặt điều kiện Bước 2: Xét 2 khả năng -Khả năng 1: Nếu được biểu diễn qua tan của góc đặc biệt , giả sử khi đó phương trình có dạng -Khả năng 2: Nếu không biểu diễn được qua tan của góc đặc biệt , khi đó đặt = ta được Nhận xét: Như vậy với mọi giá trị của tham số phương trình luôn có nghiệm Ví Dụ Minh Hoạ: Ví dụ 1: Giải phương trình Giải : Do nên ta có: Vậy phương trình có 1 họ nghiệm. Ví dụ 2: Giải phương trình Giải: Điều kiện: Do không thể biểu diễn được qua của góc đặc biệt nên ta đặt . Từ đó ta có Vậy phương trình có một họ nghiệm. d) Giải và biện luận phương trình lượng giác Ta cũng đi biện luận theo Bước1: Đặt điều kiện Bước 2: Xét 2 khả năng -Khả năng 1: Nếu được biểu diễn qua cot của góc đặc biệt , giả sử khi đó phương trình có dạng -Khả năng 2: Nếu không biểu diễn được qua cot của góc đặc biệt , khi đó đặt = ta được Nhận xét: Như vậy với mọi giá trị của tham số phương trình (d) luôn có nghiệm. Ví Dụ Minh Hoạ: Ví dụ 1: Giải phương trình sau: (1) Giải: Điều kiện (*) Ta có: (1) Họ nghiệm trên thoả mãn điều kiện (*) Vậy phương trình có 1 họ nghiệm. Ví dụ 2: Giải phương trình Giải: Ta nhận thấy nên ta có Vậy phương trình có 1 họ nghiệm . Lưu ý: Không được ghi hai loại đơn vị ( radian hoặc độ ) trong cùng một công thức. 1.2- Một số phương trình lượng giác thường gặp. 1.2.1- Phương trình bậc hai đối với một hàm số lượng giác Dạng 1: (1) Cách giải: Đặt , điều kiện Đưa phương trình (1) về phương trình bậc hai theo , giải tìm chú ý kết hợp với điều kiện rồi giải tìm Dạng 2: (2) Cách giải: Đặt điều kiện ta cũng đưa phương trình (2) về phương trình bậc hai theo , giải tìm rồi tìm Dạng 3: (3) Cách giải: Điều kiện Đặt ta đưa phương trình (3) về phương trình bậc hai theo , chú ý khi tìm được nghiệm cần thay vào điều kiện xem thoả mãn hay không Dạng 4: (4) Cách giải: Điều kiện Đặt . Ta cũng đưa phương trình (4) về phương trình bậc hai theo ẩn t. Ví Dụ Minh Hoạ: Ví dụ 1: Giải phương trình (1) Giải: Phương trình (1) Vậy phương trình có 3 họ nghiệm. Ví dụ 2: Giải phương trình: (2) Giải: Điều kiện Ta có: Ta thấy không thoả mãn điều kiện. Do đó (*) Vậy phương trình có 2 họ nghiệm. Bài tập: Bài 1: Giải phương trình: Bài 2 Giải phương trình: Bài 3: Giải phương trình: Bài 4: Giải phương trình: Bài 5: Giải phương trình: Bài 6: Giải phương trình: Bài 7: Giải phương trình: Bài 8: Giải phương trình Bài 9: Giải phương trình 1.2.2- Phương trình bậc nhất đối với a)Định nghĩa: Phương trình trong đó a, b, c và được gọi là phương trình bậc nhất đối với b) Cách giải. Ta có thể lựa chọn 1 trong 2 cách sau: Cách 1: Thực hiện theo các bước Bước 1:Kiểm tra -Nếu < phương trình vô nghiệm -Nếu khi đó để tìm nghiệm của phương trình ta thực hiện tiếp bước 2 Bước 2: Chia cả 2 vế phương trình (1) cho , ta được Vì nên tồn tại góc sao cho Khi đó phương trình (1) có dạng Đây là phương trình cơ bản của sin mà ta đã biết cách giải Cách 2: Thực hiện theo các bước Bước 1: Với thử vào phương trình (1) xem có là nghiệm hay không? Bước 2: Với Đặt suy ra Khi đó phương trình (1) có dạng Bước 3: Giải phương trình (2) theo t , sau đó giải tìm x. * Dạng đặc biệt: . . . Chú ý: Từ cách 1 ta có kết quả sau từ kết quả đó ta có thể áp dụng tìm GTLN và GTNN của các hàm số có dạng , và phương pháp đánh giá cho một số phương trình lượng giác . Ví Dụ Minh Hoạ: Ví Dụ 1: Giải phương trình: (1) Giải : Cách 1: Chia cả hai vế phương trình (1) cho ta được Đặt . Lúc đó phương trình (1) viết được dưới dạng Vậy phương trình có 2 nghiệm Cách 2:-Ta nhận thấy là nghiệm của phương trình -Với . Đặt ,lúc đó Phương trình (1) sẽ có dạng Hay Vậy phương trình có 2 họ nghiệm Cách 3: Biến đổi phương trình về dạng Vậy phương trình có hai họ nghiệm Chú ý: Khi làm bài toán dạng này chúng ta nên kiểm tra điều kiện trước khi bắt tay vào giải phương trình bởi có một số bài toán đã cố tình tạo ra những phương trình không thoả mãn điều kiện. Ta xét ví dụ sau: Ví Dụ 2: Giải phương trình Giải: Ta biến đổi phương trình (2) Ta có: Suy ra < Vậy phương trình đã cho vô nghiệm . Ngoài ra chúng ta cần lưu ý rằng việc biến đổi lượng giác cho phù hợp với từng bài toán sẽ biểu diễn chẵn các họ nghiệm . Ta xét ví dụ sau Ví Dụ 3: Giải phương trình Giải : Cách 1:Thực hiện phép biến đổi (3) Đặt Phương trình (3) sẽ được viết thành Vậy phương trình có hai họ nghiệm Cách 2: Biến đổi phương trình về dạng Vậy phương trình có hai họ nghiệm Qua hai cách giải ở bài trên ta nhận thấy bằng cách 2 ta thu được nghiệm phương trình chẵn. Bài trên cĩng có thể sử dụng cách đặt và ta cũng thu được nghiệm chẵn (*) trong đó là các góc phụ thích hợp. Ta xét ví dụ sau: Ví Dụ 4: Giải phương trình: Giải: (4) Vậy phương trình có hai họ nghiệm. Bài tập: Giải các phương trình sau : 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1.2.3- Phương trình thuần nhất bậc hai đối với và . a) Định nghĩa: Phương trình thuần nhất bậc hai đối với , là phương trình. (1) trong đó a, b, c, d b) Cách giải : Chia từng vế của phương trình (1) cho một trong ba hạng tử hoặc . Chẳng hạn nếu chia cho ta làm theo các bước sau: Bước 1: Kiểm tra: xem nó có phải là nghiệm của phương trình(1) hay không? Bước 2: Với chia cả hai vế cho lúc đó phương trình (1) trở thành Đây là phương trình bậc hai theo tan ta đã biết cách giải. Cách 2: Dùng công thức hạ bậc đưa phương trình đã cho về phương trình Đây là phương trình bậc nhất đối với sin và cos ta đã biết cách giải *Chú ý: Đối với phương trình đẳng cấp bậc n (n3) với dạng tổng quát trong đó Khi đó ta cũng làm theo 2 bước : Bước 1: Kiểm tra xem có phải là nghiệm của phương trình hay không? Bước 2: Nếu .Chia cả hai vế của phương trình trên cho ta sẽ được phương trình bậc n theo . Giải phương trình này ta được nghiệm của phương trình ban đầu. Ví Dụ Minh Hoạ: Ví Dụ 1: Giải phương trình : (1) Giải: Cách 1: Phương trình (1) Vậy phương trình có hai họ nghiệm. Cách 2: +) Thử với vào phương trình (1) ta có vô lí. Vậy không là nghiệm của phươngtrình. +)Với Chia cả hai vế của phương trình cho ta được Vậy phương trình có hai họ nghiệm * Chú ý: Không phải phương trình nào cũng ở dạng thuần nhất ta phải thực hiện một số phép biến đổi thích hợp Ví Dụ 2: Giải phương trình: (2) Giải : Ta nhận thấy có thể biểu diễn được qua . Luỹ thừa bậc ba biểu thức ta sẽ đưa phương trình về dạng thuần nhất đã biết cách giải Phương trình (2) +) Xét với . Khi đó phương trình có dạng mâu thuẫn Vậy phương trình không nhận làm nghiệm +) Với . Chia cả hai vế của phương trình (2) cho ta được : . Đặt phương trình có được đưa về dạng: Họ nghiệm trên thoả mãn điều kiện của phương trình . Vậy phương trình có duy nhất 1 họ nghiệm *Chú ý: Ngoài phương pháp giải phương trình thuần nhất đã nêu ở trên có những phương trình có thể giải bằng phương pháp khác tuỳ thuộc vào từng bài toán để giải sao cho cách giải nhanh nhất ,khoa học nhất. Ví Dụ 3: Giải phương trình: (3) Giải : Điều kiện Cách 1: Biến đổi phương trình về dạng : Chia cả hai vế của phương trình (3) cho ta được : (do vô nghiệm) nên: Phương trình (*) Vậy phương trình có một họ nghiệm Cách 2: Biến đổi phương trình về dạng Đặt ta được : Vậy phương trình có một họ nghiệm Bài tập : Giải các phương trình sau : 1) 2) 3) 4) 5) 6) 7) 8) 9) 1.2.4-Phương trình đối xứng đối với và . a) Định nghĩa: Phương trình đối xứng đối với và là phương trình dạng trong đó (1) b) Cách giải: Cách 1: Do nên ta đặt . Điều kiện Suy ra và phương trình (1) được viết lại: Đó là phương trình bậc hai đã biết cách giải Cách 2: Đặt thì nên phương trình (1) trở thành . Đây là phương trình bậc hai đã biết cách giải *Chú ý: Hai cách giải trên có thể áp dụng cho phương trình bằng cách đặt và lúc đó Ví Dụ Minh Hoạ : Ví Dụ 1: Giải phương trình Giải: Cách 1: Đặt điều kiện . Lúc đó Khi đó phương trình (1) sẽ có dạng Với không thoả mãn điều kiện nên (*) Cách 2: Đặt . Khi đó phương trình có dạng (*’) Ta thấy không thoả mãn Do đó (*’) Vậy phương trình có hai họ nghiệm *Chú ý: Ta có thể đưa một số dạng phương trình về dạng phương trình đối xứng đã xét ở trên Bài toán 1: Giải phương trình Cách giải: Phương trình (1) có thể viết *Quy ước: Khi có nhiều dấu trong một biểu thức hay một hệ hiểu là cùng lấy dòng trên hoặc cùng lấy dòng dưới Ví Dụ 2: Giải phương trình Giải: Điều kiện: Ta có (2) Ta có (3) (4) (6) Các gía trị của x trong (5) và (6) đều thoả mãn điều kiện của phương trình Vậy theo phương trình có hai họ nghiệm. Bài toán 2: Giải phương trình: với (1) Cách giải: Ta có: Đến đây chúng ta đã biết cách giải Tương tự cho phương trình Ví Dụ 3: Giải phương trình (3) Giải: Điều kiện (3) Giải (4) Giải (5): Đặt (*) Suy ra . Phương trình (5) trở thành Kết hợp với điều kiện (*) thì bị loại Với ta có Các nghiệm của phương trình (4) và (5) đều thoả mãn điều kiện của phương trình Vậy phương trình có ba họ nghiệm Chú ý: Ta có thể áp dụng phương pháp đối với phương trình hỗn hợp chứa các biểu thức đối xứng đối với và với bậc lớn hơn 2. Ví dụ 4: Giải phương trình: Giải : Ta có: Phương trình (1) có dạng Vậy phương trình có 3 họ nghiệm Ví Dụ 5: Giải phương trình: (2) Giải: Điều kiện: Phương trình (2) (loại) Các nghiệm đều thoả mãn điều kiện Vậy phương trình có 3 họ nghiệm Bài tập: Giải các phương trình sau: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 1.2.5- PTLG hỗn hợp chứa các biểu thức đối xứng và . * Phương trình có dạng Cách giải: Bước 1: Đặt ẩn phụ đưa phương trình đã cho về dạng đại số Bước 2: Giải phương trình loại những nghiệm không thoả mãn điều kiện của bài toán Bước 3: Với nghiệm t tìm được ở bước 2 thế vào bước 1 để tìm x Ví dụ Minh Hoạ: Ví Dụ 1: Giải phương trình Giải: Phương trình (1) Đặt , phương trình (2) trở thành hay Vậy phương trình có hai họ nghiệm Ví Dụ 2: Giải phương trình: (2) Giải: Điều kiện Ta có: Phương trình (2) (3) Đặt , phương trình (3) có dạng Với thì nên (4) Suy ra ( thoả mãn điều kiện(2)). Vậy là họ nghiệm duy nhất của phương trình đã cho Bài tập:Giải các phương trình sau: 1. 2. 3. 4. 5. 6. 7. 1.3- Vấn đề loại nghiệm không thích hợp của PTLG. Với nhiều PTLG ta cần đặt điều kiện cho ẩn. Khi đó, trước khi kết luận nghiệm ta cần kiểm tra xem các nghiệm tìm được có thoả mãn điều kiện đã đặt ra hay không, để ta có thể loại những nghiệm không thích hợp. Chúng ta có thể xét ba phương pháp sau: 1.3.1 Phương pháp loại nghiệm trực tiếp. Giả sử ta cần tìm nghiệm của phương trình (1) thoả mãn điều kiện (*) nào đó Trước hết ta giải phương trình (1) sau đó thay nghiệm của phương trình (1) tìm được vào (*) để loại nghiệm không thích hợp. Ví Dụ: Giải phương trình (1) Giải: Điều kiện (*) Khi đó (1) Thay vào (*) xem có thoả mãn hay không ? Suy ra không thoả mãn (*) . Vậy phương trình (1) vô nghiệm . 1.3.2- Phương pháp hình học (dùng đường tròn lượng giác). Giả sử ta cần tìm nghiệm của phương trình (1) thoả mãn điều kiện (*) nào đó .Gọi L là tập các cung không thoả mãn các điều kiện (*), N là tập nghiệm của phg trình (1).Ta biểu diễn điểm cuối của các cung thuộc hai tập L và N lên trên cùng một đường tròn lượng giác. Chẳng hạn điểm cuối của các cung thuộc L ta đánh dấu (x), điểm cuối của các cung thuộc N ta đánh dấu (.). Khi đó những cung có điểm cuối được đánh dấu (.) mà không bị đánh dấu (x) là nghiệm của phương trình. Ví Dụ: Giải phương trình: (1) Giải: Điều kiện Khi đó phương trình (1) Biểu diễn các họ nghiệm (*) và (** ) lên trên cùng một đường tròn lượng giác. sin cos Từ đó ta có nghiệm của phương trình (1) là 1.3.3- Phương pháp đại số. Phương pháp này ta kiểm tra nghiệm bằng cách chuyển về phương trình (thường là phương trình nghiệm nguyên) hoặc bất phương trình đại số. * Ví Dụ: Giải phương trình: Giải: Điều kiện Khi đó (1) Gía trị này là nghiệm của (1) nếu Điều này đúng vì là số lẻ còn là số chẵn Vậy nghiệm của phương trình là Bài tập: 1: Tìm các nghiệm thuộc của phương trình 2: Giải phương trình: 3: Giải phương trình: 4: Giải phương trình: 5: Giải phương trình: 6: Giải phương trình:
Cập nhật thông tin chi tiết về Phương Trình Lượng Giác Và Ứng Dụng (Nâng Cao) trên website Ictu-hanoi.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!