Xu Hướng 3/2024 # Sáng Kiến Kinh Nghiệm Một Số Kinh Nghiệm Giải Các Bài Toán Điển Hình Lớp 4 Bằng “Phương Pháp Dùng Sơ Đồ Đoạn Thẳng” # Top 6 Xem Nhiều

Bạn đang xem bài viết Sáng Kiến Kinh Nghiệm Một Số Kinh Nghiệm Giải Các Bài Toán Điển Hình Lớp 4 Bằng “Phương Pháp Dùng Sơ Đồ Đoạn Thẳng” được cập nhật mới nhất tháng 3 năm 2024 trên website Ictu-hanoi.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất.

uan hệ oán học. Quan hệ "số b lớn hơn số a 3 đơn vị" hay "số a kém số b 3 đơn vị" có thể biểu thị một trong hai cách: 3 a a 3 b b Quan hệ "số b gấp 3 lần số a" hay "số a kém 3 lần số b". a a b b Để nói tổng 2 số a và b là số S nào đó ta dùng dấu ngoặc móc. a a S S b b Để nói hiệu 2 số a và b là số c nào đó, ta có thể tóm tắt: a c b Để nói rằng a bằng hai phần ba số b ta dùng: a b Để có thể thực hiện những bài toán bằng sơ đồ đoạn thẳng thì nắm được cách biểu thị các phép tính (cộng, trừ, nhân, chia) các mối quan hệ (quan hệ về tổng, hiệu, quan hệ về tỉ số) là hết sức quan trọng. Vì nó làm một công cụ biểu đạt mối quan hệ và phụ thuộc giữa các đại lượng. "Công cụ" này học sinh đã được trang bị từ những lớp đầu cấp nhưng cần được tiếp tục củng cố, "mài giũa" ở các lớp cuối cấp. Bước 3: Phân tích bài toán để tìm cách giải. Ở đây, muốn trả lời câu hỏi bài toán thì phải biết những gì? Cần phải làm tính gì? Trong đó ta đã biết gì? Cái gì chưa biết, cái gì đã biết. Muốn tìm cái chưa biết thì lại phải biết gì? Cần làm gì? Cứ như thế ta đi tìm tới những điều đã cho trong đề toán (theo hướng phân tích đi lên) Bước 4: Giải và kiểm tra các bước giải. Trình bày bài giải: Thực hiện các bước giải của bài giải. Thực hiện các phép tính theo trình tự được thiết lập để tìm đáp số; chú ý kiểm tra từng bước tính toán suy luận. tránh viết tắt, dùng kí hiệu tuỳ tiện. Đối với học sinh khá giỏi sau khi trình bày bài giải phải rút ra kinh nghiệm tìm ra cách giải khác; cố gắng tìm ra cách giải ngắn gọn và hay nhất. Bước 5: Bài toán còn có cách giải nào khác? Ra đề toán mới tương tự, khai thác bài toán bằng mở rộng và khái quát hoá (thường dùng cho học sinh khá, giỏi). Tóm lại, để học sinh có thể giải các bài toán thành thạo bằng "Phương pháp dùng sơ đồ đoạn thẳng" trong việc giải toán thì việc giúp cho các em hiểu rõ nội dung của từng dạng toán sau đó có thể mô hình hoá nội dung từng dạng bằng sơ đồ đoạn thẳng từ đó tìm ra cách giải bài toán là một việc làm hết sức quan trọng. Làm được việc này giáo viên đã đạt được mục tiêu lớn nhất trong giảng dạy đó là việc không chỉ dừng lại ở việc "dạy toán" mà còn hướng dẫn học sinh "học toán sao cho đạt hiệu quả cao nhất" vì dạy toán không phải là "giải toán cho học sinh" mà là "dạy học sinh giải toán". Để khẳng định cụ thể hơn lợi ích của việc sử dụng sơ đồ đoạn thẳng để dạy giải toán ở tiểu học tôi xin trình bày một số dạng toán cơ bản mà khi giải có thể sử dụng sơ đồ đoạn thẳng. Đối với dạng toán này, học sinh nắm được khái niệm số trung bình cộng. Biết cách tìm số trung bình cộng của nhiều số. Khi giải các bài toán dạng này, thông thường các em thường sử dụng công thức. 1. Số trung bình = Tổng : số các số hạng 2. Tổng = số trung bình cộng x số các số hạng 3. Số các số hạng = Tổng : số trung bình cộng Áp dụng kiến thức cơ bản đó học sinh được làm quen với rất nhiều dạng toán về trung bình cộng mà có những bài toán nếu không tóm tắt bằng sơ đồ, học sinh sẽ rất khó khăn trong việc suy luận tìm ra cách giải. Ví dụ: Cho ba số có trung bình cộng bằng 21. Tìm ba số đó, biết rằng số thứ ba gấp 3 lần số thứ hai, số thứ hai gấp 2 lần số thứ nhất. Giải: ? ? ? Sau khi đọc kỹ đề toán, phân tích mối quan hệ giữa các đại lượng trong bài, học sinh tóm tắt bài toán bằng sơ đồ: Số thứ nhất: Số thứ hai 63 Số thứ ba Sau khi hướng dẫn tìm hiểu đề và tóm tắt bằng sơ đồ, nhiều học sinh đã biết từng bước tìm cách giải. Những em chưa làm được bài, sau khi nghe bạn trình bày cách suy luận của sơ đồ các em đều nắm được và biết tự giải quyết các bài toán dạng tương tự. Tổng của 3 số là: 21 x 3 = 63 Số thứ nhất là: 63 : ( 1 + 2 + 6) = 7 Số thứ hai là: 7 x 2 = 14 Số thứ ba là: 14 x 3 = 42 Đáp số: - Số thứ nhất: 7 - Số thứ hai: 14 - Số thứ ba: 42 Ví dụ 2: Dùng sơ đồ có thể giúp học sinh hiểu hoặc các em có thể giải thích cách làm dạng toán tìm 2 số khi biết hiệu và trung bình cộng của 2 số đó một cách ngắn gọn. Ta thấy: Hiệu Số lớn: Số bé: TBC: Qua sơ đồ ta có thể tìm ra: Số lớn = TBC + ( Hiệu : 2) Số bé = TBC - ( Hiệu : 2) Ví dụ 3: Một tổ công nhân đường sắt sửa đường, ngày thứ nhất sửa được 17m đường, ngày thứ hai sửa được nhiều hơn ngày thứ nhất 2m, ngày thứ ba sửa được nhiều hơn ngày thứ nhất 4m. Hỏi trung bình mỗi ngày sửa được bao nhiêu mét đường? Ta có sơ đồ: 17 m Ngày thứ nhất: 2m Ngày thứ hai: 4m Ngày thứ ba: Thông thường ta giải bài toán như sau: Ngày thứ hai sửa được là: 17 + 2 = 19 (m) Ngày thứ 3 sửa được 17 + 4 = 21 (m) Trung bình mỗi ngày sửa được (17 + 19 + 21) : 3 = 19 (m) Đáp số: 19 m Nhận xét: Quan sát kỹ sơ đồ ta thấy nếu chuyển 2 mét từ ngày thứ ba sang ngày thứ nhất thì số m đường sửa được trong các ngày đều bằng 19 m. 17m 2m Ngày thứ nhất: 2m Ngày thứ hai: 2m 2m Ngày thứ ba: Ta thấy ngay trung bình mỗi ngày tổ đó sửa được 19m đường. Như vậy, sơ đồ giúp ta hình dung rõ khái niệm, đôi khi sơ đồ còn giúp ta tính nhẩm nhanh kết quả. Dạng 2: Dạng toán tìm hai số khi biết tổng và hiệu của hai số đó. Bài toán: Tổng hai số là 82, hiệu hai số là 16. Tìm hai số đó? Tóm tắt bài toán bằng sơ đồ, căn cứ sơ đồ hướng dẫn học sinh tìm ra phương pháp giải. Số lớn: 16 82 Số bé: Nhìn vào sơ đồ, yêu cầu học sinh nhận xét: + Nếu lấy tổng trừ đi hiệu, kết quả đó có quan hệ như thế nào với số bé? (Giáo viên thao tác che phần hiệu là 16 trên sơ đồ)... từ đó học sinh sẽ dễ dàng nhận thấy phần còn lại là 2 lần số bé. Dựa vào suy luận trên, yêu cầu học sinh nêu cách tìm số bé. Hơn 80% số em nêu được tìm số bé là: (82 - 16) : 2 = 33 Tìm được số bé suy ra số lớn là: 33 + 16 = 49 Hay: Số lớn là: 82 - 33 = 49 Từ bài toán ta xây dựng được công thức tính: Số bé = ( Tổng - hiệu) : 2 = Số bé + hiệu Số lớn = Tổng - số bé Cách giải vừa nêu trên là dễ nhất với học sinh. Tuy nhiên cũng có thể giới thiệu thêm phương pháp sau đây: Cũng biểu thị mối quan hệ hiệu nhưng sử dụng sơ đồ Số lớn: 16 82 Số bé: Suy luận: nếu thêm một đoạn thẳng hiệu (16) vào số bé ta được hai đoạn thẳng bằng nhau tức là hai lần số lớn. Từ đó suy ra: Số lớn là: (82 + 16) : 2 = 49 Vậy số bé là: 49 - 16 = 33 Hoặc: Số bé là: 82 - 49 = 33 Sau khi học sinh đã nắm được cách giải ta xây dựng công thức tổng quát: Số lớn = ( Tổng + hiệu) : 2 Số bé = Số lớn - hiệu = Tổng - số lớn Giáo viên nói thêm số lớn bằng tổng chia hai cộng hiệu chia hai = (tổng + hiệu) :2 chính là cách tìm số lớn. Như vậy qua sơ đồ đoạn thẳng học sinh nắm được phương pháp giải dạng toán này và có thể áp dụng để giải các bài tập về tìm hai số khi biết tổng và hiệu ở nhiều dạng khác nhau. Ví dụ 1: Ba lớp A, B, C mua tất cả 150 quyển vở. Tính số vở của mỗi lớp. Biết rằng nếu lớp 4A chuyển cho lớp 4B 15 quyển và cho lớp 4C 10 quyển thì số vở của 3 lớp sẽ bằng nhau. Giải Phân tích nội dung bài toán sẽ vẽ được sơ đồ 15 10 Lớp 4A: 15 Lớp 4B: 150 Lớp 4C: 10 Dựa vào sơ đồ ta có: Sau khi lớp 4A chuyển cho hai lớp thì mỗi lớp có số vở là: 150 : 3 = 50 (quyển) Lúc đầu lớp 4C có là: 50 - 10 = 40 (quyển) Lúc đầu lớp 4B có là: 50 - 15 = 35 (quyển) Lúc đầu lớp 4A có là: 50 + 15 + 10 = 75 (quyển) Đáp số: 4A: 75 quyển; 4B: 35 quyển; 4C: 40 quyển. Dạng 3: Tìm hai số khi biết tổng và tỉ số của hai số đó. Bài toán: Một đội tuyển học sinh giỏi toán có 12 bạn, trong đó số bạn gái bằng số bạn trai. Hỏi có mấy bạn gái, mấy bạn trai trong đội tuyển đó? Tóm tắt bài toán bằng sơ đồ, cắn cứ vào sơ đồ hướng dẫn học sinh tìm ra phương pháp giải: Số bạn trai: 12 bạn Số bạn gái: Vẽ sơ đồ đoạn thẳng thế này học sinh dễ dàng thấy được hai điều kiện của bài toán: cả trai và gái có 12 bạn (biểu thị mối quan hệ về tổng) và có số bạn trai gấp 3 lần số bạn gái (biểu thị mối quan hệ về tỉ). Sơ đồ trên gợi cho ta 12 gồm (3+1)=4 phần bằng nhau. Từ đó dễ dàng tìm số bạn gái bằng cách 12 : (3+1) = 3 từ đó tìm được số học sinh trai. Bài giải Tổng số phần bằng nhau là 1 + 3 = 4 (phần) Số bạn gái trong đội tuyển là 12 : 4 = 3 (bạn) Số bạn trai trong đội tuyển là 3 x 3 = 9 (bạn) Hoặc 12 - 3 = 9 (bạn) Đáp số: Trai: 9 bạn Gái: 3 bạn Từ bài toán cơ bản trên ta xây dựng các bước giải bài toán "Tìm hai số khi biết tổng và tỉ số của 2 số đó". Bước 1: Vẽ sơ đồ Bước 2: Tìm tổng số phần bằng nhau Bước 3: Tìm giá trị một phần Giá trị một phần = Tổng : Tổng số phần bằng nhau Bước 4: Tìm số bé Số bé = giá trị 1 phần x số phần của số bé Bước 5: Tìm số lớn = giá trị 1 phần x số phần của số lớn = Tổng - số bé Số lớn Nắm được các bước giải học sinh sẽ biết áp dụng để giải nhiều bài toán cùng dạng, học sinh giỏi sẽ biết áp dụng quy tắc để giải các bài toán khó dạng này (đó là các bài toán cùng dạng như tổng, tỉ được thể hiện dưới dạng ẩn). Đề 1: Tuổi anh hiện nay gấp 3 lần tuổi em trước kia, lúc đó tuổi anh bằng tuổi em hiện nay. Sau này lúc tuổi em bằng tuổi anh hiện nay thì tổng số tuổi của hai anh em sẽ bằng 28. Tính tuổi hiện nay của anh và của em. (Bài toán trong quyển: phương pháp dạy học Toán.Giáo trình đào tạo GV Tiểu học hệ CĐSP). Bài giải: + Trước kia Tuổi em ? ? Tuổi anh ? ? + Hiện nay Tuổi em Tuổi anh + Sau này: Tuổi em 28 tuổi Tuổi anh A B C D E ( Khi vẽ đồ chú ý vẽ sao cho tuổi anh trước đây bằng tuổi em hiện nay và tuổi anh hiện nay bằng tuổi em sau này). BC biểu thị hiệu của tuổi anh và tuổi em trước đây. CD biểu thị hiệu của tuổi anh và tuổi em hiện nay. DE biểu thị hiệu của tuổi anh và tuổi em sau này. Vì hiệu số tuổi không thay đổi nên BC =CD = DE Tiếp theo ta có: AD bằng tuổi anh hiện nay. AB bằng tuổi em trước đây. Vì vậy, AD gấp 3 lần AB, nhưng vì BC =CD Nên AB = BC =CD. Như thế nếu gọi tuổi em trước đây là 1 phần thì tuổi em sau này bằng 3 phần, tuổi anh sau này bằng 4 phần và tổng số tuổi của hai anh em bằng 7 phần. Do đó: Số tuổi 1 phần bằng: 28: 7 = 4 ( tuổi) Tuổi em hiện nay: 4 x 2 = 8 ( tuổi) Tuổi anh hiện nay: 4 x 3 = 12 (tuổi) Đáp số: 8 tuổi; 12 tuổi. Đề 2: Học sinh khối 3, khối 4 và khối 5 cùng thu nhặt giấy vụn để đóng góp phong trào " kế hoạch nhỏ" được tất cả 360 kg. Biết số giấy vụn của khối 5 thu nhặt được gấp đôi số giấy vụn của khối 3 và bằng khối 4. Tính số giấy vụn mỗi khối ? ( Đề thi học sinh giỏi Thành phố Hải Dương năm học 2001 - 2002) Bài giải: Theo đề bài ra ta có sơ đồ: ? ? ? Số giấy Khối 3: 360 kg Số giấy Khối 5: Số giấy Khối 4 Tổng số phần bằng nhau mà 3 khối có: 1 + 2 + 3 = 6 (phần) Số giấy khối 3 là: 360 : 6 = 60 (kg) Số giấy khối 5 là: 60 x 2 = 120 (kg) Số giấy khối 4 là: 60 x 3 = 180 (kg) Đáp số: Khối 3: 60 kg Khối 5: 120 kg Khối 4: 180 kg Dùng phương pháp giải bài toán tìm hai số khi biết tổng và tỉ số của 2 số đó học sinh dễ dàng tìm ra đáp số bài toán. Qua các ví dụ trên ta có thể thấy sơ đồ đoạn thẳng không chỉ đơn thuần dùng để tóm tắt bài toán mà còn là một công cụ giúp cho việc suy luận tìm ra cách giải toán. Sử dụng sơ đồ ta có thể làm cho các bài toán khó, phức tạp trở thành các bài toán đơn giản theo dạng cơ bản nên có thể dễ dàng giải được. Đề 3: Ông chia 105 quyển vở cho 3 cháu theo tỉ lệ: Cứ Hồng được 4 quyển thì Cúc được 3 quyển và cứ Mai 7 quyển thì Hồng được 6 quyển. Hỏi mỗi cháu được bao nhiêu quyển vở? ( Đề thi học sinh giỏi Khối 4 Quận Ba Đình năm học 1997- 1998) Giải: Từ đề bài ta thấy cứ Hồng 4 x 3 = 12 quyển thì Cúc 3 x 3 = 9 quyển và Hồng 6 x 2 = 12 quyển thì Mai 7 x 2 = 14 quyển. Hay số vở của Hồng chiếm 12 phần, Cúc 9 phần, Mai 14 phần. ? ? ? 105 quyển Từ đó ta có sơ đồ: Số vở của Cúc Số vở của Hồng Số vở của Mai Ta có tổng số phần: 9 + 14 + 12 = 35 (phần) Số vở 1 phần: 105 : 35 = 3 (quyển) Số vở của Cúc là: 3 x 9 = 27 (quyển). Số vở của Hồng là: 3 x 12 = 36 (quyển) Số vở của Mai là: 3 x 14 = 42 (quyển) Đáp số: Cúc: 27 quyển Hồng: 36 quyển Mai: 42 quyển Dạng 4: Tìm hai số khi biết hiệu và tỉ số của hai số đó. Số thứ nhất kém số thứ hai là 123. Tỉ số của hai số đó là . Tìm hai số đó. Hướng dẫn: Các bước giải: + Vẽ sơ đồ + Tìm hiệu số phần bằng nhau. + Tìm số bé. + Tìm số lớn. Học sinh phân tích để vẽ sơ đồ vừa biểu thị mối quan hệ về hiệu, vừa biểu thị mối quan hệ về tỉ số: Bài giải Theo đề bài ta có sơ đồ: ? ? 123 Số bé: Số lớn: Theo sơ đồ, hiệu số phần bằng nhau là: 5 - 2 = 3 (phần) Số bé là: 123 : 3 x 2 = 82 Số lớn là: 123 + 82 = 205 Đáp số: số bé: 82; số lớn: 205 Từ bài toán cơ bản trên ta xây dựng các bước giải bài toán "Tìm hai số khi biết hiệu và tỉ số của 2 số đó". Bước 1: Vẽ sơ đồ Bước 2: Tìm hiệu số phần bằng nhau Bước 3: Tìm số bé Số bé = Hiệu : Hiệu số phần bằng nhau x số phần của số bé Bước 4: Tìm số lớn = Số bé + hiệu = Hiệu : Hiệu số phần bằng nhau x số phần của số lớn Số lớn Nắm vững quy tắc giải học sinh cũng sẽ biết áp dụng để giải các bài toán nâng cao. Việc dùng sơ đồ đoạn thẳng một lần nữa lại thể hiện vai trò vô cùng quan trọng vì sơ đồ chính là chỗ dựa giúp học sinh dễ dàng trong việc suy luận tìm ra cách giải. Ta có thể lấy một số bài toán sau đây làm ví dụ. Đề 1: Một cửa hàng có số gạo nếp ít hơn số gạo tẻ là 540 kg. Tính số gạo mỗi loại, biết rằng số gạo nếp bằng số gạo tẻ. Tìm hai số khi biết hiệu và tỉ số của hai số đó) Toán 4 tập 2. Hướng dẫn: Các bước giải Vẽ sơ đồ. Tìm hiệu số phần bằng nhau. Tìm số gạo mỗi loại. Giải: ? 540 kg ? kg Ta có sơ đồ: Gạo nếp: Gạo tẻ: Hiệu số phần bằng nhau là: 4 - 1 = 3 ( phần) Số gạo nếp là: 540 : 3 = 180 ( kg) Số gạo tẻ là: 540 + 180 = 720 ( kg) Đáp số: Gạo nếp: 180 kg; gạo tẻ: 720 kg. Ví dụ 2: Hiện nay cha gấp 4 lần tuổi con. Trước đây 6 năm tuổi cha gấp 13 lần tuổi con. Tính tuổi cha và tuổi con hiện nay? Đây là một bài toán khó, học sinh sẽ lúng túng vì cả hiệu và tỉ số đều dưới dạng ẩn. Nhưng sử dụng sơ đồ đoạn thẳng các em sẽ có số dựa vào suy luận và đưa ra bài toán về dạng điển hình. Sơ đồ bài toán: Trước đây 6 năm: Tuổi con: Tuổi cha: Hiện nay: 12 lần tuổi con trước đây 6 năm Tuổi con: Tuổi cha: Theo sơ đồ, hiệu số tuổi của cha và con bằng 12 lần tuổi con trước đây. Còn hiệu số tuổi của cha và con hiện nay bằng 3 lần tuổi con hiện nay. Vì hiệu không thay đổi nên 3 lần tuổi con hiện nay bằng 12 lần tuổi con trước đây. Ta vẽ sơ đồ biểu thị tuổi con trước đây và tuổi con hiện nay: Tuổi con trước đây: 6 năm Tuổi hiện nay: Bài toán được đưa ra dạng cơ bản học sinh dễ dàng giải được: Giải Từ sơ đồ suy ra tuổi con trước đây là: 6 : (4 - 1) = 2(tuổi) Tuổi con hiện nay là: 2 + 6 = 8 (tuổi) Tuổi cha hiện nay là: 4 x 8 = 32 (tuổi) Đáp số: Cha: 32 tuổi ; Con: 8 tuổi III. KẾT QUẢ Thực tế giảng dạy ở trường tiểu học tôi nhận thấy việc sử dụng sơ đồ đoạn thẳng trong dạy toán điển hình hết sức cần thiết và có hiệu quả cao. Sau quá trình thực hiện đề tài kết quả bài kiểm tra về giải toán về điển hình cao hơn và kết quả học tập môn toán của học sinh cũng nâng cao rõ rệt. Trung bình cộng; Tìm hai số khi biết tổng và hiệu của hai số đó Xếp loại Tổng số HS Giỏi Khá Trung Bình Yếu SL % SL % SL % SL % 21 em 12 57,1 7 33,3 2 9,6 0 0 Nhìn vào bảng thống kê ta thấy: - Học sinh Giỏi, Khá của dạng điển hình:Trung bình cộng; Tìm hai số khi biết tổng và hiệu của hai số đó của năm học 2009 - 2010 là 90,4%, tăng 12,1% so với năm học 2008-2009. @ Phần 3: KẾT LUẬN I. KHÁI QUÁT CÁC KẾT LUẬN D ạy giải các bài toán điển hình lớp 4 bằng " Phương pháp dùng sơ đồ đoạn thẳng" là khi phân tích một bài toán cần phải thiết lập được các mối liên hệ và phụ thuộc giữa các đại lượng cho trong bài toán đó. Muốn làm việc này ta dùng các đoạn thẳng thay thế cho các số ( số đã cho, số phải tìm trong bài toán) để minh hoạ các mối quan hệ đó. Ta phải chọn độ dài các đoạn thẳng và cần sắp xếp các đoạn thẳng đó một cách thích hợp để dễ dàng thấy được mối liên hệ và phụ thuộc giữa các đại lượng, tạo một hình ảnh cụ thể giúp ta suy nghĩ tìm tòi cách giải bài toán. Để giúp học sinh có được kỹ năng sử dụng " Phương pháp dùng sơ đồ đoạn thẳng để giải các bài toán điển hình tôi đã chú ý các bước sau: Bước 1: Đọc kỹ bài toán (Phân tích xem bài toán cho gì, hỏi hoặc tính cái gì, thuộc loại nào? Cần tìm hiểu kỹ ý nghĩa đầu bài toán và ý nghĩa của từng lời) Bước 2: Tóm tắt được bài toán bằng sơ đồ đoạn thẳng một cách cẩn thận, chính xác; từ đó suy nghĩ, tìm tòi phát hiện mối liên hệ giữa cái đã cho và cái cần tìm. Bước 3: Phân tích bài toán để tìm ra cách giải. Huy động vốn kiến thức toán học, nắm vững các bước giải các dạng toán điển hình để áp dụng giải. Bước 4: Trình bày bài giải và thử lại kết quả. Thực hiện các bước giải của bài giải. Thực hiện các phép tính theo trình tự được thiết lập để tìm đáp số; chú ý kiểm tra thử lại từng bước tính toán suy luận và đáp số. tránh viết tắt, dùng kí hiệu tuỳ tiện. Bước 5: Khai thác bài toán, sau khi làm xong cần suy nghĩ: Có thể giải bài toán theo cách khác không. Từ bài toán có rút ra nhận xét kinh nghiệm gì. Từ bài toán này đặt bài toán mới như thế nào và giải ra sao. II. LỢI ÍCH VÀ KHẢ NĂNG VẬN DỤNG. Hướng dẫn các em giải các bài toán điển hình bằng " Phương pháp dùng sơ đồ đoạn thẳng" là thiết thực. Bởi vì học sinh khi vẽ được sơ đồ thì các em sẽ nhìn thấy được hướng giải bài toán. " Phương pháp dùng sơ đồ đoạn thẳng" phù hợp với học sinh tiểu học ở tất cả các lớp, các em có thể học ở mọi lúc mọi nơi phù hợp với cả các em ở cả các vùng miền. Ví dụ: Mẹ cho hai anh em 10 viên kẹo, cho em nhiều hơn anh 2 viên. Hỏi mỗi người được mấy viên? Như vậy trong thực tế cuộc sống các em cũng có bài toán khi anh em chơi với nhau và tự đặt đề toán rồi tự giải. * Vấn đề ra đề toán mới tương tự trước đây không thấy ( hoặc rất ít thấy) nói tới. Trong CTTH 2000 việc cho học sinh tự lập đề toán là một hoạt động đặc thù trong dạy học ở tiểu học. Nó không những giúp trẻ phát triển tư duy độc lập mà còn giúp trẻ phát triển tính linh hoạt, sáng tạo của tư duy. Ngoài ra nó còn gây hứng thú trong học tập; làm cho học sinh nắm vững hơn cấu trúc, cách giải của bài toán ( loại toán); tạo điều kiện gắn toán học với cuộc sống, tập thói quen tự mình nêu vấn đề, giải quyết vấn đề như cuộc sống thường đòi hỏi. Việc sử dụng phương pháp trên thực sự có hiệu quả khi giáo viên có sự kiên trì và biết vận dụng một cách linh hoạt bằng nhiều hình thức dạy học. III. Đề xuất, kiến nghị. Để việc sử dụng sơ đồ có hiệu quả tôi nhận thấy giáo viên phải nắm được trình độ học sinh của mình để lựa chọn phương pháp và hình thức tổ chức cho phù hợp tạo ra không khí vui vẻ, sôi nổi. Học sinh, tìm tòi phát hiện kiến thức, giáo viên chỉ đạo. Khi dạy mỗi bài, mỗi dạng cần giúp em nắm vững bản chất, xác lập mối quan hệ giữa các dữ kiện, không bỏ sót dữ kiện để có kỹ năng giải thạo. Dạy giải các bài toán điển hình lớp 4 bằng " Phương pháp dùng sơ đồ đoạn thẳng" là việc dạy học toán không chỉ đem lại cho học sinh những tri thức mới, những kỹ năng cơ bản cần thiết của việc giải toán mà nó còn góp phần hình thành phương pháp học tập, phương pháp phát hiện và giải quyết các vấn đề trong học tập và cuộc sống. Qua thời gian tìm tòi, nghiên cứu, vận dụng một số kinh nghiệm trong giảng dạy môn Toán lớp 4 tôi đã đạt được kết quả bước đầu. Những kinh nghiệm trên cũng chỉ là kết quả thử nghiệm. Tôi sẽ cố gắng tìm hiểu, nghiên cứu hơn nữa để sáng kiến kinh nghiệm này được áp dụng vào thực tiễn một cách có hiệu quả. Cát Hải, ngày 28 tháng 2 năm 2010 Hiệu trưởng Người thực hiện Võ Thanh Trang

Sáng Kiến Kinh Nghiệm

Mụn toỏn ở tiểu học bước đầu hỡnh thành và phỏt triển năng lực trừu tượng hoỏ, khỏi quỏt hoỏ, kớch thớch trớ tưởng tượng, gõy hứng thỳ học tập toỏn, phỏt triển hợp lý khả năng suy luận và biết diễn đạt đỳng bằng lời, bằng viết, cỏc, suy luận đơn giản, gúp phần rốn luyện phương phỏp học tập và làm việc khoa học, linh hoạt sỏng tạo. Tuy nhiên trong thực tế hiện nay, việc rèn luyện kỹ năng giải toán có lời văn là một vấn đề bức xúc, khó giải quyết ở các trường tiểu học vùng cao và đặc biệt là ở các vùng dân tộc thiểu số trong đó có trường tiểu học Pha Long huyện Mường Khương. Các em là con người dân tộc, thông hiểu ngôn ngữ Tiếng Việt còn hạn chế cho nên việc giải toán có lời văn gặp rất nhiều khó khăn . Trong dạy – học toỏn ở tiểu học, việc giải toỏn cú lời văn chiếm một vị trớ quan trọng. Cú thể coi việc dạy – học và giải toỏn là ” hũn đỏ thử vàng” của dạy – học toỏn. Trong giải toỏn, học sinh phải tư duy một cỏch tớch cực và linh hoạt, huy động tớch cực cỏc kiến thức và khả năng đó cú vào tỡnh huống khỏc nhau, trong nhiều trường hợp phải biết phỏt hiện những dữ kiện hay điều kiện chưa được nờu ra một cỏch tường minh và trong chừng mực nào đú, phải biết suy nghĩ năng động, sỏng tạo. Vỡ vậy cú thể coi giải toỏn cú lời văn là một trong những biểu hiện năng động nhất của hoạt động trớ tuệ của học sinh. Ở học sinh lớp 5, kiến thức toỏn đối với cỏc em khụng cũn mới lạ, khả năng nhận thức của cỏc em đó được hỡnh thành và phỏt triển ở cỏc lớp trước, tư duy đó bắt đầu cú chiều hướng bền vưỡng và đang ở giai đoạn phỏt triển. Vốn sống, vốn hiểu biết thực tế đó bước đầu cú những hiểu biết nhất định. Tuy nhiờn trỡnh độ nhận thức của học sinh khụng đồng đều, yờu cầu đặt ra khi giải cỏc bài toỏn cú lời văn cao hơn những lớp trước, cỏc em phải đọc nhiều, viết nhiều, bài làm phải trả lời chớnh xỏc với phộp tớnh, với cỏc yờu cầu của bài toỏn đưa ra, nờn thường vướng mắc về vấn đề trỡnh bày bài giải: sai sút do viết khụng đỳng chớnh tả hoặc viết thiếu, viết từ thừa. Một sai sút đỏng kể khỏc là học sinh thường khụng chỳ ý phõn tớch theo cỏc điều kiện của bài toỏn nờn đó lựa chọn sai phộp tớnh. Trong quá trình giảng dạy các em học sinh lớp 5 A trường tiểu học Pha Long, tôi nhận thấy các em học sinhh trong lớp hầu như rất lúng túng trong việc giải toán có lời văn. Là một giáo viên đứng lớp trước những thực tế đó nên tôi mạnh dạn lựa chọn đề tài : “ Biện pháp rèn kỹ năng giải toán có lời văn cho học sinh lớp 5 ”. Phần II : nộI DUNG I. Thực trạng 1. Thuận lợi + Điều kiện cơ sở vật chất đảm bảo cho việc dạy và học + Đồ dùng dạy học tương đối đầy đủ cho giáo viên , học sinh . + Học sinh được dự án trường học trang bị thêm một số đồ dùng cá nhân như áo khoác ,dép + được sự quan tâm và chỉ đạo sát sao của ban giám hiệu nhà truờng tới giáo viên chủ n hiệm và lớp học 2 . khó khăn a. về phía giáo viên – Còn lúng túng trong quá trình hướng dẫn học sinh giải bài toán có lời văn – Một số bài toán giáo viên hướng dẫn cách giải còn trừu tượng với học sinh tiểu học b. Về phía học sinh – 47,4% học sinh trong lớp chưa có kỹ năng giải toán có lời văn – Bài giải toán của học sinh chưa đúng ,đủ theo yêu cầu của bài toán 3. nguyên nhân Có rất nhiều nguyên nhân dẫn đến việc học sinh chưa có kỹ năng giải toán có lời văn nhưng nguyên nhân chủ yếu là : – Phương pháp hướng dẫn học sinh giẩi toán của giáo viên chưa phù hợp với đối tượng học sinh của lớp – Khả năng đọc hiểu của các em còn hạn chế nên các em không hiểu sâu về ngôn ngữ toán học .Vì vậy khi đọc đề toán , học sinh không hiểu rõ yêu cầu của bài toán ,khó nhận dạng và định hình về các dạng bài toán. 4. kết quả khảo sát đầu năm về kỹ năng giải toán có lời văn Tổng số học sinh : 19 Trong đó giỏi : 0 Trung bình :7 Yêú : 9 Khá :3 II. Một số biện pháp rèn kỹ năng giảI toán có lời văn cho học sinh lớp 5 Toỏn cú lời văn thực chất là những bài toỏn thực tế. Nội dung bài toỏn được thụng qua những cõu văn núi về những quan hệ, tương quan và phụ thuộc, cú liờn quan đến cuộc sống thường xảy ra hành ngày. Cỏi khú của bài toỏn cú lời văn là phải lược bỏ những yếu tố về lời văn đó che đậy bản chất toỏn học của bài toỏn, hay núi cỏch khỏc là chỉ ra cỏc mối quan hệ giữa cỏc yếu tố toỏn học chứa đựng trong bài toỏn và nờu ra phộp tớnh thớch hợp để từ đú tỡm được đỏp số bài toỏn. Giáo viên cần đổi mới phương pháp dạy học về giải toán có lời văn, hướng dẫn học sinh cách giải a. Đề bài của bài toỏn cú lời văn bao giờ cũng cú hai phần: – Phần đó cho hay cũn gọi giả thiết của bài toỏn. – Phần phải tỡm hay cũn gọi kết luận của bài toỏn. Ngoài ra, trong đề toỏn cú nờu mối quan hệ giữa phần đó cho và phần phải tỡm hay thực chất là mối quan hệ tương quan phụ thuộc vào giả thiết và kết luận của bài toỏn. b. Quy trỡnh giải toỏn cú lời văn thường thụng qua cỏc bước sau: – Nghiờn cứu kỹ đầu bài: Trước hết cần đọc cẩn thận đề toỏn, suy nghĩ về ý nghĩa bài toỏn, nội dung bài toỏn, đặc biệt chỳ ý đến cõu hỏi bài toỏn. Chớ vội tớnh toỏn khi chưa đọc kỹ đề toỏn. – Thiết lập mối quan hệ giữa cỏc số đó cho và diễn đạt nội dung bài toỏn bằng ngụn ngữ hoặc túm tắt điều kiện bài toỏn, hoặc minh hoạ bằng sơ đồ hỡnh vẽ. – Lập kế hoạch giải toỏn: học sinh phải suy nghĩ xem để trả lời cõu hỏi của bài toỏn phải thực hiện phộp tớnh gỡ? Suy nghĩ xem từ số đó cho và điều kiện của bài toỏn cú thể biết gỡ, cú thể làm tớnh gỡ, phộp tớnh đú cú thể giỳp trả lời cõu hỏi của bài toỏn khụng? Trờn cỏc cơ sở đú, suy nghĩ để thiết lập trỡnh tự giải toỏn. – Thực hiện phộp tớnh theo trỡnh tự đó thiết lập để tỡm đỏp số. Mỗi khi thực hiện phộp tớnh cần kiểm tra đó tớnh đỳng chưa? Phộp tớnh được thực hiện cú dựa trờn cơ sở đỳng đắn khụng?… Giải xong bài toỏn, khi cần thiết, cần thử xem đỏp số tỡm được cú trả lời đỳng cõu hỏi của bài toỏn, cú phự hợp với cỏc điều kiện của bài toỏn khụng? Trong một số trường hợp, giáo viờn nờn khuyến khớch học sinh tỡm xem cú cỏch giải khỏc gọn hay khụng? Vớ dụ 1: Thựng to cú 21 lớt nước mắm, thựng bộ cú 15 lớt nước mắm. Nước mắm được chứa vào cỏc chai như nhau, mỗi chai cú 0,75 lớt. Hỏi cú tất cả bao nhiờu chai nước mắm? Giỏo viờn hướng dẫn học sinh thực hiện bài toỏn trờn bằng cỏch dựng phương phỏp hỏi đỏp, kết hợp với minh hoạ bằng túm tắt đề toỏn. + Phõn tớch nội dung bài toỏn: Giỏo viờn dựng hai cõu hỏi: Bài toỏn cho biết gỡ? Bài toỏn hỏi gỡ? Để học sinh thấy rừ nội dung: – Thựng to cú 21 lớt nước mắm. – Thựng nhỏ cú 15 lớt nước mắm. – Mỗi chai chứa 0,75 lớt nước mắm. – Hỏi cú tất cả bao nhiờu chai nước mắm ? + Túm tắt bài toỏn: Theo những cõu trả lời của học sinh, giao viờn hướng dẫn học sinh túm tắt như sau: Thựng to: 21 lớt. Thựng nhỏ : 15 lớt. Cú … chai nước mắm ? Túm tắt trờn chớnh là chỗ dựa cho học sinh tỡm ra trỡnh tự giải và phộp tớnh tương ứng. + Thiết lập trỡnh tự giải: Giao viờn đặt cõu hỏi: ” Muốn biết cú bao nhiờu chai nước mắm, ta làm thế nào?” Học sinh trả lời: ” Trước hết ta phải tỡm tổng số nước mắm cú ở cả hai thựng; sau đú mới tỡm tổng số chai đựng nước mắm”. + Tỡm phộp tớnh và thực hiện phộp tớnh: Học sinh tự đặt lời giải và làm như sau: Bài giải Tổng số nước mắm ở hai thựng là: 21 + 15 = 36 (lớt ) Số chai đựng nước mắm là: 36 : 0,75 = 48 ( chai) Đỏp số: 48 chai. * CÁC PHƯƠNG PHÁP DÙNG ĐỂ DẠY GIẢI BÀI TOÁN Cể LỜI VĂN a. Phương phỏp trực quan: Nhận thức của trẻ từ 6 đến 11 tuổi cũn mang tớnh cụ thể , gắn với cỏc hỡnh ảnh và hiện tượng cụ thể, trong khi đú kiến thức của mụn toỏn lại cú tớnh trừu tượng và khỏi quỏt cao. Sử dụng phương phỏp này giỳp học sinh cú chỗ dựa cho hoạt động tư duy, bổ xung vốn hiểu biết, phỏt triển tư duy trừu tượng và vốn hiểu biết. Vớ dụ: khi dạy giải toỏn ở lớp Năm, giỏo viờn cú thể cho học sinh quan sỏt mụ hỡnh hoặc hỡnh vẽ, sau dú lập túm tắt đề bài qua, rồi mới đến bước chọn phộp tớnh. b. Phương phỏp thực hành luyện tập: Sử dụng phương phỏp này để thực hành luyện tập kiến thức, kỹ năng giải toỏn từ đơn giản đến phức tạp ( Chủ yếu ở cỏc tiết luyện tập ). Trong quỏ trỡnh học sinh luyện tập, giỏo viờn cú thể phối hợp cỏc phương phỏp như: gợi mở – vấn đỏp và cả giảng giải – minh hoạ. c. Phương phỏp gợi mở – vấn đỏp: Đõy là phương phỏp rất cần thiết và thớch hợp với học sinh tiểu học, rốn cho học sinh cỏch suy nghĩ, cỏch diễn đạt bằng lời, tạo niềm tin và khả năng học tập của từng học sinh. d. Phương phỏp giảng giải – minh hoạ: Giỏo viờn hạn chế dựng phương phỏp này. Khi cần giảng giải – minh hoạ thỡ giỏo viờn núi gọn, rừ và kết hợp với gợi mở – vấn đỏp. Giỏo viờn nờn phối hợp giảng giải với hoạt động thực hành của học sinh ( Vớ dụ: Bằng hỡnh vẽ, mụ hỡnh, vật thật…) để học sinh phối hợp nghe, nhỡn và làm. g. Phương phỏp sơ đồ đoạn thẳng: Giỏo viờn sử dụng sơ đồ đoạn thẳng để biểu diễn cỏc đại lượng đó cho ở trong bài và mối liờn hệ phụ thuộc giữa cỏc đại lượng đú. Giỏo viờn phải chọn độ dài cỏc đoạn thẳng một cỏch thớch hợp để học sinh dễ dàng thấy được mối liờn hệ phụ thuộc giữa cỏc đại lượng tạo ra hỡnh ảnh cụ thể để giỳp học sinh suy nghĩ tỡm tũi giải toỏn. * MỘT SỐ BIỆN PHÁP ĐỂ NÂNG CAO CHẤT LƯỢNG GIẢI CÁC BÀI TOÁN Cể LỜI VĂN Ở LỚP 5: Muốn phõn tớch được tỡnh huống, lựa chọn phộp tớnh thớch hợp, cỏc em cần nhận thức được: cỏi gỡ đó cho, cỏi gỡ cần tỡm, mối quan hệ giữa cỏi đó cho và cỏi phải tỡm. Trong bước đầu giải toỏn, việc nhận thức này, việc lựa chọn phộp tớnh thớch hợp đối với cỏc em là một việc khú. Để giỳp cỏc em khắc phục khú khăn này, cần dựa vào cỏc hoạt động cụ thể của cỏc em với vật thật, với mụ hỡnh, dựa vào hỡnh vẽ , cỏc sơ đồ toỏn học…. nhằm làm cho cỏc em hiểu khỏi niệm ” gấp ” với phộp nhõn, khỏi niệm ” một phần … ” với phộp chia” trong tương quan giữa cỏc mối quan hệ trong bài toỏn. Trong một bài toỏn, cõu hỏi cú một chức năng quan trọng vỡ việc lựa chọn phộp tớnh thớch hợp được quy định khụng chỉ bởi cỏc dữ kiện mà cũn bởi cỏc cõu hỏi. Với cựng cỏc dữ kiện như nhau cú thể đặt cỏc cõu hỏi khỏc nhau do đú việc lựa chọn phộp tớnh cũng khỏc nhau, việc thấu hiểu cõu hỏi của bài toỏn là điều kiện căn bản để giải đỳng bài toỏn đú. Nhưng trẻ em ở giai đoạn đầu khi mới giải toỏn chưa nhận thức được đầy đủ chức năng của cõu hỏi trong bài toỏn. Để rốn luyện cho cỏc em suy luận đỳng, cần giỳp cỏc em nhận thức được chức năng quan trọng của cõu hỏi trong bài toỏn. Muốn vậy cú thể dựng biện phỏp: thường xuyờn gợi cho cỏc em phõn tớch đề toỏn để xỏc định cỏi đó cho, cỏi phải tỡm, cỏc dữ kiệm của bài toỏn , cõu hỏi của bài toỏn, đụi khi nờu cho cỏc em bài toỏn vui khụng giải được, chẳng hạn: ” trờn cành cõy cú 8 con sóc, người thợ săn bắn rơi 2 con. Hỏi trong lồng cũn mấy con sóc ?” cú em sẽ nhẩm và trả lời là 6 con, lỳc đú giỏo viờn sẽ giải thớch để học sinh nhận ra cỏi sai trong cõu hỏi của bài toỏn. Đối với toỏn cú lời văn ở lớp 5, chủ yếu là cỏc bài toỏn hợp, giải bài toỏn cũng cú nghĩa là giải quyết cỏc bài toỏn đơn. Mặt khỏc cỏc dạng toỏn đều đó được học ở cỏc lớp trước, bao gồm hai nhúm chớnh như sau: a) Nhúm 1: Cỏc bài toỏn hợp mà quỏ trỡnh giải khụng theo một phương phỏp thống nhất cho cỏc bài toỏn đú. b) Nhúm 2: Cỏc bài toỏn điển hỡnh, cỏc bài toỏn mà trong quỏ trỡnh giải cú phương phỏp riờng cho từng dạng bài toỏn. Trong chương trỡnh toỏn 5 cú những dạng toỏn điển hỡnh sau: – Tỡm số trung bỡnh cộng. – Tỡm hai số khi biết tổng và hiệu của hai số đú. – Tỡm hai số khi biết tổng và tỉ của hai số đú. – Tỡm hai số khi biết hiệu và tỉ số của hai số đú. – Bài toỏn liờn quan đến đại lượng tỉ lệ thuận, liờn quan đến đại lượng tỉ lệ nghịch. Người giỏo viờn phải nắm vững cỏc dạng toỏn để khi hướng dẫn học sinh giải toỏn sẽ tổ chức cho học sinh trước hết xỏc định dạng toỏn để cú cỏch giải phự hợp. Giải toỏn là một hoạt động trớ tuệ khú khăn, phức tạp. Hỡnh thành kỹ năng giải toỏn khú hơn nhiều so với hỡnh thành kỹ năng tớnh vỡ bài toỏn là sự kết hợp đa dạng nhiều khỏi niệm, nhiều quan hệ toỏn học. Giải toỏn khụng chỉ là nhớ mẫu để rồi ỏp dụng , mà đũi hỏi nắm chắc khỏi niệm, quan hệ toỏn học, nắm chắc ý nghĩa của phộp tớnh, đũi hỏi khả năng độc lập suy luận của học sinh, đũi hỏi biết tớnh đỳng. Cỏc bước để giải một bài toỏn cú lời văn ở tiểu học núi chung và lớp Năm núi riờng đó được đề cập ở một số sỏch về phương phỏp giải toỏn ở bậc tiểu học. ở đõy tụi rỳt ra một số kinh nghiệm hướng dẫn: Phần dạy toỏn cú lời văn ở lớp Năm. Ở lớp 5 việc học phõn số, học số thập phõn, học về cỏc đơn vị đo đại lượng … cũng được kết hợp học cỏc phộp tớnh, học giải toỏn được kết hợp một cỏch hữu cơ để cú tỏc dụng hỗ trợ lẫn nhau. Việc dạy cho học sinh nắm được phương phỏp chung để giải toỏn được chỳ trọng ngay từ khi cỏc em giải bài toỏn đầu tiờn ở đầu bậc tiểu học và sau này vẫn được thường xuyờn quan tõm, cỏc em luụn được rốn luyện trong việc tỡm hiểu đề toỏn, trong việc phõn tớch cỏi gỡ đó cho, cỏi gỡ phải tỡm trong việc suy nghĩ tỡm ra cỏch giải và trong việc thực hiện cỏch giải. Đặc biệt, cỏc em được thường xuyờn sử dụng việc túm tắt đề toỏn bằng sơ đồ, hỡnh vẽ. Sau đõy là một số vớ dụ về cỏc dạng bài toỏn cú lời văn ở lớp 5: Vớ dụ 1: Bài 4 ( trang 65 SGK Toỏn 5) Bài toỏn về đại lượng tỉ lệ thuận. Có 243,2 kg gạo đựng đều trong 8 bao. Hỏi có 12 bao gạo như thế cân nặng bao nhiêu ki- lô -gam ? Bài giải Số kg gạo của một bao là 243,2 : 8 = 30,4 (kg) 12 bao gạo như thế cân nặng số kg là 30,4 x 12 = 364,8 (kg) Đỏp số: 364,8 ( kg) Vớ dụ 2: Bài 3 ( tr 64 SGK Toỏn 5) Toỏn chuyển động đều. Một người đi xe máy ttrong 3 giờ đI được 126,54 km .Hỏi trung bình mỗi giờ người đó đi được bao nhiêu ki -lô -mét ? Hướng dẫn học sinh tóm tắt 3 giờ :126.54km 1 giời : chúng tôi ? Hướng dẫn học sinh trình bày bài giải Bài giải Trung bình mỗi giờ người đó đi được bao nhiêu km 126.54 : 3 = 42,18 (km) Đáp số : 42 ,18 km Vớ dụ 3: Bài 4 (tr 125 SGK Toỏn 5) Toỏn về tỉ lệ nghịch. Một đội thợ xõy dựng cú 8 người xõy xong một bức tường trong ngày. Hỏi muốn xõy xong bức tường đú trong 4 ngày thỡ cần bao nhiờu thợ xõy (sức làm ngang nhau). Túm tắt: ngày cần: 8 người 4 ngày cần: ? người Bài giải: ngày = ngày Xõy xong trong 1 ngày thỡ cần số thợ là: 8 x = 44 (thợ) Xõy xong trong 4 ngày thỡ cần số thợ là: 44 : 4 = 11 (thợ) Đỏp số: 11 thợ. Vớ dụ 4:Bài 3 (trang 59) Bài toỏn về nhõn số thập phõn với số thập phõn. Một vườn cõy hỡnh chữ nhật cú chiều dài 15,62 m, chiều rộng 8,4 m. Tớnh chu vi và diện tớch vườn cõy đú. Túm tắt: Chiều dài: 15,62 m Chiều rộng: 8,4 m Chu vi: ? m; Diện tớch: ? Bài giải: Chu vi vườn cõy hỡnh chữ nhật là: ( 15,62 + 8,4 ) x 2 = 48,04 (m) Diện tớch vườn cõy hỡnh chữ nhật là: 15,62 x 8,4 = 131,208 (m2) Đỏp số: 1) 48,08 m 2) 131,208 m2 Đối với cỏc bài toỏn cú lời văn như trờn, giỏo viờn nờn khuyến khớch học sinh tự nờu ra cỏc giả thiết đó biết, cỏi cần phải tỡm, cỏch túm tắt bài toỏn và tỡm đường lối giải. Cỏc phộp tớnh giải chỉ là khõu thứ yếu mang tớnh kĩ thuật. * Một số bài nõng cao dành cho dành cho học sinh khỏ, giỏi: Đối với những đối tượng học sinh đó giải được và giải thành thạo cỏc bài toỏn đơn cơ bản, thỡ việc đưa ra hệ thống bài tập nõng cao là rất quan trọng và cần thiết để cho học sinh cú điều kiện phỏt huy năng lực trớ tuệ của mỡnh, vượt xa khỏi tư duy cụ thể mang tớnh chất ghi nhớ và ỏp dụng một cỏch mỏy múc trong cụng thức. Qua đú phỏt triển trớ thụng minh cho học sinh. Dưới đõy là cỏc dạng bài nõng cao mà tụi đó thực hiện trong cỏc tiết dạy để nõng cao tớnh hiểu biết của học sinh đồng thời bồi dưỡng học sinh giỏi. Vớ dụ 1: Hai người thợ cựng làm chung một cụng việc thỡ sau 5 giờ sẽ xong. Sau khi làm được 3 giờ thỡ người thợ cả bận việc phải nghỉ, chỉ cũn người thợ thứ hai phải làm nốt cụng việc cũn lại trong 6 giờ. Hỏi nếu mỗi người thợ làm một mỡnh thỡ mất mấy giờ mới xong cụng việc ? Bài giải: Hai người làm chung thỡ hết 5 giờ mới xong. Vậy mỗi giờ 2 người làm được cụng việc. Trong 3 giờ, hai người làm được là: x 3 = (cụng việc) Phõn số chỉ cụng việc người thứ hai làm một mỡnh là: 1 – = (cụng việc) Mỗi giờ người thứ hai làm được là: : 6 = (giờ) Thời gian người thứ hai làm một mỡnh là: 1 : = 15 (giờ) Mỗi giờ người thứ nhất làm được là: – = (cụng việc) Thời gian người thứ nhất làm một mỡnh là: 1 : = 7 giờ = 7 giờ 30 phỳt Đỏp số: 1) 7 giờ 30 phỳt; 2) 15 giờ. Vớ dụ 2: Tân , Kim , Sú và chá á cú 1 số quyển vở. Tân lấy số vở để dựng, Kim lấy cũn lại, Sú lấy cũn lại, cuối cựng Chá dựng nốt 8 quyển vở. Hỏi lỳc đầu cả 4 bạn cú tất cả bao nhiờu quyển vở ? Túm tắt:Tân Kim Sú Chá 8 vở Bài giải: Sú vở của Sú và Chá là: 8 : 2 x 3 = 12 (quyển Số vở của Sú ,Chá và Kim là: 12 : 2 x 3 = 18 (quyển) Số vở của 4 bạn lỳc đầu là: 18 : 2 x 3 = 27 (quyển) Đỏp số: 27 quyển. 2. Về phía học sinh Các em cần đọc kỹ yêu cầu của bài toán có lời văn để hiểu rõ bài toán cho biết gì ? Bài toán yêu cầu gì ? từ đó học sinh có kỹ năng giải bài toán chính xác theo yêu cầu của đề bài . Bài soạn minh hoạ Toán Tiết 16: Ôn tập và bổ sung về giải toán I/ Mục tiêu: – HSY : làm được bài 1 theo hướng dẫn của giáo viên II Đồ dùng dạy học : – Bảng nhóm III/ Các hoạt động dạy học: 1. Kiểm tra bài cũ: 2. Bài mới. a. Ví dụ: -GV nêu ví dụ. -Cho HS tự tìm quãng đường đi được trong 1 giờ, 2giờ, 3 giờ. -Gọi HS lần lượt điền kết quả vào bảng ( GV kẻ sẵn trên bảng. -Em có nhận xét gì về mối quan hệ giữa hai đại lượng: thời gian đi và quãng đường được? b. Bài toán: -GV nêu bài toán. -Cho HS tự giải bài toán theo cách rút về đơn vị đã biết ở lớp 3. -GV gợi ý để dẫn ra cách 2 “tìm tỉ số”: +4 giờ gấp mấy lần 2 giờ? +Quãng đường đi được sẽ gấp lên mấy lần? c. Thực hành: *Bài 1: GV gợi ý để HS giải bằng cách rút về đơn vị: -Tìm số tiền mua 1 mét vải. -Tìm số tiền mua 7mét vải. – hớng dẫn HSY tìm hiểu yêu cầu bài 1 – GVnhận xét Bài 2 : Mời 1 HS nêu yêu cầu bài toán -Hướng dẫn HS nêu cách giải . – yêu cầu làm bài theo nhóm 4 – hướng dẫn HSY làm bài 1 vào vở Bài 3: GV hướng dẫn để HS tóm tắt. -Yêu cầu HS tìm ra cách giải rồi giải vào vở: – Cả lớp và GV nhận xét, đánh giá IV. Củng cố – dặn dò: -Bài tập về nhà: BT2 – tr.19. -GV nhận xét giờ học. -HS tìm quãng đường đi được trong các khoảng thời gian đã cho. -HS lần lượt điền kết quả vào bảng. -Nhận xét: SGK- tr.18. Tóm tắt: 2 giờ: 90 km. 4 giờ:..km? Bài giải: *Cách 1: “Rút về đơn vị”. Trong 1 giờ ô tô đi đợc là: 90 : 2 = 45 (km) (*) Trong 4 giờ ô tô đi được là: 45 x 4 = 180 (km) Đáp số: 180 km. *Cách 2: “ Tìm tỉ số”. 4 giờ gấp 2 giờ số lần là: 4: 2 = 2 (lần) Trong 4 giờ ô tô đi được là: 90 x 2 = 180 (km) Đáp số: 180 km. Tóm tắt: 5m: 80000 đồng. 7m:..đồng? – HS làm nháp , 1 HS làm bảng phụ Số tiền mua 1 mét vải là: 80000 : 5 = 16000 (đồng) Mua 7 mét vải hết số tiền là: 16000 x 7 = 112000 (đồng) Đáp số: 112000 đồng. HS làm bài theo yêu cầu . Tóm tắt: 3 ngày: 1200 cây. 12 ngày:cây? Bài giải: Một ngày trồng được số cây là. 1200 : 3 = 400( cây) 12 ngày trồng được số cây là. 400 x12 =4800(cây). Đáp số: 4800 cây – HS nêu yêu cầu Tóm tắt: 1000 người tăng: 21 người 4000 người tăng:..người? 1000 người tăng: 15 người 4000 người tăng..người? Bài giải: 4000 người gấp 1000 số lần là: 4000 : 1000 = 4 (lần) Sau 1 năm dân số xã đó tăng thêm là: 21 x 4 = 84 (người) Đáp số: 84 người. ( làm tương tự). Đáp số: 60 người. 3 . Kết quả cuối học kỳ I Qua quá trình nghiên cứu và áp dụng biện pháp rèn kỹ năng giải toán có lời văn cho học sinh lớp 5 A Các em học sinh có kỹ năng giải toán thành thạo .Cuối học kỳ I cho thấy Tổng số học sinh :19 Trong đó : Giỏi : 5 Trung bình : 5 Khá : 8 Yếu  : 1 Phần III KếT Luận chung Qua thời gian nghiên cứu và áp dụng và biện pháp rèn kỹ năng giải toán có lời văn cho học sinh phụ thuộc vào nhiều yếu tố .Việc bồi dưỡng kiến thức cũ ,rèn kỹ năng đọc hiểu đề ,nhận thức của học sinh về giải toán có lời văn . Điều này hoàn toàn phù hợp với giả thiết mà đề tài nêu ra với nhiều tác dụng : Hướng dẫn và giỳp học sinh giải toỏn cú lời văn nhằm giỳp cỏc em phỏt triển tư duy trớ tuệ, tư duy phõn tớch và tổng hợp, khỏi quỏt hoỏ, trừu tượng hoỏ, rốn luyện tốt phương phỏp suy luận lụgic. Bờn cạnh đú đõy là dạng toỏn rất gần gũi với đời sống thực tế. Do vậy, việc giảng dạy toỏn cú lời văn một cỏch hiệu quả giỳp cỏc em trở thành những con người linh hoạt, sỏng tạo, làm chủ trong mọi lĩnh vực và trong cuộc sống thực tế hàng ngày. Những kết quả mà tụi đó thu được trong quỏ trỡnh nghiờn cứu khụng phải là cỏi mới so với kiến thức chung về mụn toỏn ở bậc tiểu học, song lại là cỏi mới đối với bản thõn tụi. Trong quỏ trỡnh nghiờn cứu, tụi đó phỏt hiện và rỳt ra nhiều điều lý thỳ về nội dung và phương phỏp dạy học giải toỏn cú lời văn ở bậc tiểu học Đối với giỏo viờn, ở mỗi dạng toỏn cần hướng dẫn học sinh nhận dạng bằng nhiều cỏch: đọc, nghiờn cứu đề, phõn tớch bằng nhiều phương phỏp ( Mụ hỡnh, sơ đồ đoạn thẳng, suy luận ….) để học sinh dễ hiểu, dễ nắm bài hơn. Khụng nờn dừng lại ở kết quả ban đầu ( giải đỳng bài toỏn ) mà nờn cú yờu cầu cao hơn đối với học sinh. Trẻ em là tương lai của đất nước, là hạnh phúc của mỗi gia đình. Chúng ta hãy trang bị cho các em một hệ thống tri thức cơ bản, vững chắc để các em tự tin bước vào thời

Sáng Kiến Kinh Nghiệm: Giải Một Bài Toán Quỹ Tích Như Thế Nào

Published on

Tài liệu tham khảo dành cho quý thầy cô nhằm trau dồi kiến thức và kinh nghiệm trong công tác giảng dạy với sáng kiến kinh nghiệm về giải một bài toán quỹ tích của trường THCS Việt Đoàn.

3. Trường THCS Việt đoàn Tổ khoa học tự nhiên Giáo viên: Trần Thị Thanh Hường – 3 – + Yếu tố thay đổi: đỉnh B, đỉnh C. Còn yếu tố không đổi là gì? đó là hình dạng của tam giác ABC. Nếu dừng lại ở khái niệm chung là hình dạng không đổi (tự đông dạng) thì ta không thể giải được bài toán. Do vậy, ta phải cụ thể hoá giả thiết tam giác ABC luôn tự đồng dạng ra như sau: – Các góc A, B, C có độ lớn không đổi; tỉ số các cạnh, chẳng hạn AB AC là một số không đổi. Như vậy, việc tìm hiểu kĩ bài toán cũng đòi hỏi phải suy nghĩ, chọn lọc để tìm được những yếu tố cố định, yếu tố không đổi, yếu tố thay đổi thích hợp, giúp cho việc tìm ra cách giải bài toán. 2.2 Đoán nhận quỹ tích Thao tác tư duy đoán nhận quỹ tích nhằm giúp HS hình dung được hình dạng của quỹ tích (đường thẳng, đoạn thẳng, cung tròn, đường tròn), nhiều khi còn cho HS biết cả vị trí và kích thước của quỹ tích nữa. Để đoán nhận quỹ tích ta thường tìm 3 điểm của quỹ tích. Muốn vậy nên xét 3 vị trí đặc biệt, tốt nhất là sử dụng các điểm giới hạn, với điều kiện vẽ hình chính xác, trực giác sẽ giúp ta hình dung được hình dạng quỹ tích. – Nếu 3 điểm ta vẽ được là thẳng hàng thì có nhiều khả năng quỹ tích là đường thẳng. – Nếu 3 điểm ta vẽ được là không thẳng hàng thì quỹ tích cần tìm là đường tròn. Ta sẽ làm sáng tỏ điều này trong ví dụ sau: Ví dụ 3: Cho nửa đường tròn tâm O, đường kính AB=2R. Một điểm M di chuyển trên nửa đường tròn. Nối AM và đặt trên tia AM một đoạn AN = BM. Tìm tập hợp các điểm N. Đoán nhận quỹ tích – Khi M B thì BM O do vậy AN O hay NA.

4. Trường THCS Việt đoàn Tổ khoa học tự nhiên Giáo viên: Trần Thị Thanh Hường – 4 – Vậy A là một điểm của quỹ tích. – Khi M đến vị trí điểm I, điểm chính giữa của cung AB, thì do AI=BI nên NI. Vậy I là một điểm của quỹ tích. A BO I N M B’ t’ – Khi M A thì dây cung AM đến vị trí của tiếp tuyến At với đường tròn tại điểm A và do BM=BA nên điểm N sẽ dần đến vị trí điểm B’ trên tiếp tuyến At sao cho AB’=AB=2R; B’ là một điểm của quỹ tích. Do 3 điểm A, I, B’ không thẳng hàng nên ta dự đoán rằng điểm N sẽ nằm trên đường tròn đi qua 3 điểm A, I, B’, tức là đường tròn đường kính AB’. Ví dụ 4: Cho góc vuông xOy. Một điểm A chạy trên Ox, một điểm B chạy trên Oy. Người ta dựng hình chữ nhật OAMB. Tìm tập hợp điểm M sao cho chu vi hình chữ nhật OAMB bằng một độ dài 2p cho trước. Đoán nhận quỹ tích Dễ thấy MA +MB = p Khi A O thì B D trên Oy, mà OD = p Khi B  O thì A  C trên Ox, mà OC = p. Dự đoán tập hợp của M là đoạn thẳng CD. B M A D C o y x

6. Trường THCS Việt đoàn Tổ khoa học tự nhiên Giáo viên: Trần Thị Thanh Hường – 6 – 3) Tập hợp tất cả những điểm cách đường thẳng b một khoảng l cho trước là hai đường thẳng song song với đường thẳng b và cách đường thẳng b một khoảng l. 4) Tập hợp tất cả những điểm cách một điểm cố định O một khoảng không đổi r là đường tròn tâm O, bán kính r. 5) Tập hợp các điểm M tạo thành với hai mút của đoạn thẳng AB cho trước một góc AMB có số đo bằng  ( không đổi) là hai cung tròn đối xứng nhau qua AB (gọi là cung chứa góc  vẽ trên đoạn AB). Trường hợp đặc biệt: Tập hợp các điểm M luôn nhìn hai điểm cố định A, B dưới một góc vuông là đường tròn đường kính AB. Muốn vậy, ta tìm cách thay việc tìm quỹ tích những điểm M có tính chất  bằng việc tìm quỹ tích điểm M có tính chất  ‘ và quỹ tích của những điểm thoả tính chất  ‘ là một trong những quỹ tích cơ bản mà ta đã biết. (như vậy  ‘ có thể là “cách đều hai điểm cố định”; “cách một điểm cố định một đoạn không đổi”; ” cách một đường thẳng cố định một đoạn không đổi” v.v…). Như vậy ta thay việc xét mệnh đề M( ) bằng việc xét mệnh đề M( ‘) mà M( ) M( ‘) Ví dụ 6: Cho tam giác ABC và một điểm D di chuyển trên cạnh đáy BC. Tìm quỹ tích trung điểm M của đoạn thẳng AD. Đoán nhận quỹ tích  Nếu DB thì M P, mà AP=BP. P là một điểm thuộc quỹ tích.  Nếu D C thì MQ, mà AQ=QC. Q là một điểm thuộc quỹ tích.  Nếu DH (với AH BC tại H) thì M I, mà IH=AH. H là một điểm thuộc quỹ tích. Do 3 điểm P, I, Q thẳng hàng nên ta dự đoán quỹ tích điểm M là đoạn thẳng PQ, là đường trung bình của tam giác ABC.

7. Trường THCS Việt đoàn Tổ khoa học tự nhiên Giáo viên: Trần Thị Thanh Hường – 7 – Phân tích phần thuận Từ M kẻ MK  BC và kẻ đường cao AH của  ABC. Dễ thấy MK= 2 AH .  ABC cố định nên AH không đổi suy ra MK không đổi. B A CHD M P Q K – Vậy điểm M luôn luôn cách BC một đoạn không đổi bằng 2 AH . Ta có thể thấy ở đây là: M( ): M là trung điểm của AD. M( ‘): M cách BC một đoạn không đổi. Như vậy là ta thay việc tìm quỹ tích điểm M, trung điểm của đoạn thẳng AN, bằng việc tìm quỹ tích của điểm M luôn cách cạnh BC một đoạn không đổi bằng 2 AH , mà quỹ tích này thì ta đã biết tìm, là dạng bài toán quỹ tích cơ bản thứ 3. Ví dụ 7: Cho một tam giác cố định ABC. Một điểm D di chuyển trên cạnh đáy BC. Qua D người ta kẻ đường thẳng song song với cạnh AC cắt cạnh AB ở E và đường thẳng song song với cạnh AB cắt cạnh AC ở F. Tìm quỹ tích trung điểm M của đoạn thẳng EF. Phân tích phần thuận A B CD E F M P Q Vì DF//AE và DE//AF nên tứ giác AEDF là hình bình hành, hai đường chéo EF và AD giao nhau tại trung điểm, vậy M là trung điểm của EF cũng là trung điểm của AD. Bài toán được đưa về việc tìm quỹ tích của trung điểm M của đoạn thẳng AD. – Tính chất  ở đây là: M( )  M là trung điểm của EF.

8. Trường THCS Việt đoàn Tổ khoa học tự nhiên Giáo viên: Trần Thị Thanh Hường – 8 – – Tính chất  ‘ ở đây là: M( ‘)  M là trung điểm của AD. Và ta đã thay việc tìm quỹ tích trung điểm của EF bằng việc tìm quỹ tích trung điểm của AD, mà quỹ tích này thì ta đã có cách đưa về quỹ tích cơ bản trong ví dụ 6. Cần lưu ý là khi thay các điểm M( ) bằng các điểm M( ‘) mà M( ) M( ‘) thì tập hợp các điểm M( ) chỉ là một tập hợp con (một bộ phận) của tập hợp các điểm M( ‘), như trong ví dụ 6 tập hợp các điểm M( ‘) là hai đường thẳng song song và cách đường thẳng BC một đoạn 2 AH , còn tập hợp các điểm M( ) là đường trung bình PQ song song với cạnh BC của tam giác ABC mà thôi. Trong nhiều trường hợp ta không thành công trong việc đưa về các quỹ tích cơ bản mà nhờ vào thao tác dự đoán quỹ tích ta thấy quỹ tích có thể là một đường cố định nào đó. Trong trường hợp này ta tìm cách chứng minh hình chứa các điểm của quỹ tích là một hình cố định. Ví dụ 8: Cho nửa đường tròn đường kính AB và một điểm P di động trên nửa đường tròn. Tiếp tuyến tại P cắt đường thẳng song song với AP, kẻ từ tâm O của nửa đường tròn, tại điểm M. Tìm tập hợp các điểm M. Phân tích phần thuận Nối MB; do OM//AP nên AO  1 (đồng vị) 12 PO  (so le trong) Mặt khác 1PA  (vì OA=OP) P O M A B 1 1 2 t Vậy 21 OO  OBMOPM OM OBOP OO         chung 21

10. Trường THCS Việt đoàn Tổ khoa học tự nhiên Giáo viên: Trần Thị Thanh Hường – 10 – Trong nhiều bài tập, khi chứng minh phần thuận, ta tìm được hình (H’) chứa các điểm M có tính chất  , nhưng do những điều kiện hạn chế khác của bài toán, tập hợp các điểm M cần tìm là hình (H) chỉ là một bộ phận của hình (H’). Trong trường hợp này, ta phải thức hiện thêm một công việc nữa: giới hạn quỹ tích. Có nhiều cách nhìn nhận vị trí của phần giới hạn quỹ tích. Ta có thể coi phần giới hạn là một bộ phận của việc chứng minh phần thuận. Ta cũng có thể đặt phần giới hạn vào phần đảo, hoặc tách phần giới hạn thành một phần riêng biệt, ngang với phần thuận và phần đảo. Trong quá trình dạy học sinh, tôi đặt giới hạn vào trong phần thuận. Làm như vậy sẽ tránh được việc chọn nhầm phải những điểm không thuộc quỹ tích khi tiến hành chứng minh phần đảo. Thông thường, ta tìm các điểm giới hạn của quỹ tích bằng cách xét các điểm của quỹ tích trong các trường hợp giới hạn, như trong ví dụ sau: Ví dụ 10: Cho một góc vuông xOy, đỉnh O. Trên cạnh Ox có một điểm A cố định và trên cạnh Oy có một điểm B cố định. Một điểm C thay đổi di chuyển trên đoạn thẳng OB. Gọi H là hình chiếu của điểm B trên tia AC. Tìm tập hợp các điểm H. Giải 1) Phần thuận. Vì H là hình chiếu của B trên AC nên ACBH  0 90 BHA Hai điểm A, B cố định. Điểm H luôn luôn nhìn hai điểm A, B dưới một góc vuông nên H nằm trên đường tròn đường kính AB. Chú ý: Đường tròn này cũng đi qua đỉnh O của góc vuông xOy. O B A C H y x

12. Trường THCS Việt đoàn Tổ khoa học tự nhiên Giáo viên: Trần Thị Thanh Hường – 12 – cung OHB mới là hình chiếu của điểm B trên tia AC mà thôi. Việc tìm giới hạn giúp chúng ta loại bỏ được những điểm không thuộc về quỹ tích cần tìm. 3.2 Chứng minh phần đảo Thông thường điểm di động cần tìm quỹ tích M phụ thuộc vào sự di động của một điểm khác, điểm P chẳng hạn. Trong phần đảo ta làm như sau: Lấy một vị trí P’ khác của P và ứng với nó ta được điểm M’ trên hình H mà trong phần thuận ta đã chứng minh được đó là hình chứa những điểm M có tính chất  . Ta sẽ phải chứng minh M’ cũng có tính chất  . Ví dụ 10: 2) Phần đảo. Lấy một điểm C’ bất kì trên đoạn OB. Nối AC’ và tia AC’ cắt cung OHB tại một điểm H’. Nối BH’ góc BH’A là góc nội tiếp trong nửa đường tròn nên ”’90’ 0 HACBHABH  là hình chiếu của điểm B trên tia AC’. O B A C H C’ H’ y x  Kết luận: Tập hợp các hình chiếu H của điểm B trên tia AC là cung OB thuộc đường tròn đường kính AB (phần thuộc nửa mặt phẳng không chứa tia Ox, bờ là đường thẳng Oy). Ví dụ 11: Cho một hình vuông cố định ABCD và một điểm P di động trên cạnh AB. Trên tia CP và bên ngoài đoạn thẳng CP ta lấy một điểm M sao cho: .PCBMAB  Tìm tập hợp các điểm M. Phần đảo Lấy một điểm P’ bất kì thuộc cạnh AB của hình vuông. Tia CP’ cắt cung nhỏ AB của đường tròn đường kính AC tại điểm M’. D A B C M’ P’ 1 2

13. Trường THCS Việt đoàn Tổ khoa học tự nhiên Giáo viên: Trần Thị Thanh Hường – 13 – Ta có 0 90′  CAM (góc nội tiếp chắn nửa đường tròn) và 21 ” PP  suy ra CBPABM ”   Kết luận: Tập hợp các điểm M là cung AB (không chứa đỉnh C) của đường tròn ngoại tiếp hình vuông ABCD. Lưu ý: Tuy vậy, trong nhiều bài toán, ta chứng minh phần đảo bằng cách lấy một điểm M’ thuộc hình (H), ứng với nó ta có một vị trí khác của các yếu tố chuyển động mà M’ phụ thuộc, sau đó ta chứng minh trong những điều kiện ấy M’ có tính chất  . Chúng ta sẽ xét ví dụ cụ thể sau đây. Ví dụ 12: Cho một góc vuông xOy. Một điểm A chạy trên cạnh Ox, một điểm B chạy trên cạnh Oy sao cho độ dài đoạn thẳng AB luôn bằng một đoạn l cho trước. Tìm quỹ tích trung điểm I của đoạn thẳng AB. Giải Phần thuận: Nối OI. Tam giác AOB vuông mà OI là trung tuyến nên 22 1 l ABOI  = không đổi. Điểm O cố định, điểm I cách điểm O một đoạn không đổi 2 l nên I nằm trên đường tròn tâm O bán kính 2 l . O I0 I1 A B A’ B’ I’ I A0 B0 y x Giíi h¹n: V× ®iÓm A chØ ch¹y trªn Ox, ®iÓm B chØ ch¹y trªn Oy vµ ®o¹n th¼ng AB chØ di chuyÓn trong gãc xOy nªn ta ph¶i giíi h¹n quü tÝch. – Khi ®iÓm A ®Õn trïng víi ®iÓm O th× ®iÓm B ®Õn vÞ trÝ Bo vµ ®iÓm I ®Õn vÞ trÝ I1trung ®iÓm cña ®o¹n th¼ng OB0. – Khi ®iÓm B ®Õn trïng víi ®iÓm O th× ®iÓm A ®Õn vÞ trÝ Ao vµ ®iÓm I ®Õn vÞ trÝ I0 trung ®iÓm cña ®o¹n th¼ng OA0.

14. Trường THCS Việt đoàn Tổ khoa học tự nhiên Giáo viên: Trần Thị Thanh Hường – 14 – – VËy khi ®o¹n th¼ng AB di chuyÓn trong gãc xOy th× ®iÓm I n”m trªn cung trßn I0I1 thuéc ®­êng trßn t©m O b¸n kÝnh 2 l , tức là cung phần tư đường tròn nằm trong góc xOy. Phần đảo: Lấy điểm I’ thuộc cung phần tư I0I1. Quay cung tròn tâm I’, Bán kính 2 l , cắt Ox ở A và Oy ở B’. Ta có ” AOI cân nên OAIOAI ””  Do vậy ”2180” 0 OAIAOI  Tương tự ”2180” 0 OBIBOI  000 18090.2360””  BOIAOI Suy ra ba điểm A’, I’, B’ thẳng hàng. Ta lại có lBA l AIAI  ” 2 ”” và I’ là trung điểm của A’B’.  Kết luận: Quỹ tích trung điểm I của đoạn thẳng AB là cung I0I1 thuộc đường tròn tâm O, bán kính 2 l (phần nằm trong góc xOy). Ví dụ 13: Cho một góc vuông xOy, hai điểm A, B cố định trên cạnh Ox và một điểm M di động trên cạnh Oy. Đường thẳng vuông góc với MA kẻ từ A cắt đường thẳng vuông góc với MB kẻ từ B tại điểm N. Tìm tập hợp các điểm N. Giải Phần thuận. – Kẻ NH Ox. Gọi I là trung điểm đoạn thẳng MN. Do IA=IB(= 2 1 MN) nên I nằm trên trung trực của đoạn thẳng AB. Nếu gọi K là trung điểm của AB thì IK  AB. O M A B N I K H y x z Ta l¹i cã IK//OM//NH mµ I lµ trung ®iÓm cña MN nªn K lµ trung ®iÓm cña

15. Trường THCS Việt đoàn Tổ khoa học tự nhiên Giáo viên: Trần Thị Thanh Hường – 15 – OH OH=2OK=kh”ng ®æi. VËy ®iÓm N di chuyÓn trªn tia Hz vu”ng gãc víi c¹nh Ox t¹i ®iÓm H sao cho OH=2OK. PhÇn ®¶o. LÊy ®iÓm M’ trªn Oy, nèi M’A. §­êng vu”ng gãc víi M’A kÎ tõ A c¾t tia Hz t¹i N’. Nèi N’B vµ M’b. Ta cÇn chøng minh: N’B  M’B Gäi I’ lµ trung ®iÓm cña M’N’. Ta cã: ” 2 1 ‘ NMAI  (1) (I’A lµ trung tuyÕn øng víi c¹nh huyÒn M’N’ cña tam gi¸c vu”ng M’AN’) MÆt kh¸c I’ lµ trung ®iÓm cña M’N’, K lµ trung ®iÓm cña OH nªn I’K//M’O I’K AB mµ K lµ trung ®iÓm cña AB nªn I’K lµ ®­êng trung trùc cña AB, cho ta I’A=I’B (2) Từ (1) và (2) suy ra ” 2 1 ‘ NMBI  =I’M’=I’N’ Hay tam giác M’BN’ vuông góc tại B. Vậy N’B M’B O M’ A B N’ I’ K H y x z  Kết luận: Tập hợp các điểm N là tia Hz nằm trong góc xOy, vuông góc với cạnh Ox tại điểm H, sao cho OH=2OK (K là trung điểm của đoạn thẳng AB). Lưu ý: Trong bài toán này, liên hệ giữa hai điểm M và N phải thông qua các giả thiết: vMBNvMANOyM 1,1,  và N là giao điểm của hai đường vuông góc kẻ từ A với MA, kẻ từ B với MB. Do vậy ta phải chọn một trong ba phương hướng sau đây để chứng minh phần đảo:  Chứng minh M’ Oy  Chứng minh 0 90”  ANM

16. Trường THCS Việt đoàn Tổ khoa học tự nhiên Giáo viên: Trần Thị Thanh Hường – 16 –  Chứng minh 0 90”  ANM – Nếu chú ý rằng cách dựng các điểm M, N là như nhau thì ngay từ đầu ta đã có thể dự đoán tập hợp của N phải là một tia tương tự như Oy và trong khi chứng minh phần đảo, sau khi lấy một điểm N’Hz, và dựng lại điểm M’, giao điểm của các đường vuông góc với N’A kẻ từ A với đường vuông góc với N’B kẻ từ B, thì việc chứng minh M’Oy có thể được lặp lại y hệt như phần thuận. Như vậy, việc lựa chọn giả thiết để xây dựng “kế hoạch” chứng minh phần đảo là rất quan trọng. Nếu khéo chọn, nhiều khi sẽ giảm bớt được các khó khăn trong việc chứng minh và có thể cho ta những lời giải hay. Tổng quát: khi chứng minh phần đảo của bài toán quỹ tích, sau khi lấy điểm M bất kì thuộc hình vừa tìm được, ta phải chứng minh rằng điểm M có tính chất T nêu trong đề bài. Tính chất T này thường được tách làm hai nhóm tính chất T1 và T2. Ta dựng các điểm chuyển động còn lại thoả mãn tính chất T1 rồi chứng minh M và các điểm ấy thoả mãn tính chất T2. Như thế, tuỳ theo cách chia nhóm T1 và T2 mà có nhiều cách chứng minh đảo đối với cùng một bài toán.

Sáng Kiến Kinh Nghiệm Ôn Luyện Giải Toán Về Đoạn Thẳng Trong Hình Học Lớp 6

Khi học về đoạn thẳng, sau khi học sinh nắm được khái niệm đoạn thẳng, cách vẽ đoạn thẳng, giáo viên cần khắc sâu cho học sinh về đoạn thẳng cắt đoạn thẳng, cắt tia, cắt đường thẳng, để cuối cùng học sinh vẽ và nhận dạng được.

Khi dạy về độ dài đoạn thẳng, giáo viên cần lưu ý phân biệt đoạn thẳng với độ dài đoạn thẳng: Đoạn thẳng là một hình, còn độ dài đoạn thẳng là một số, tuy nhiên đoạn thẳng AB và độ dài đoạn thẳng AB đều được ký hiệu là AB. Hai cách nói “độ dài đoạn thẳng AB” và “khoảng cách giữa hai điểm A và B” cũng có sự phân biệt tế nhị: Đoạn thẳng AB có độ dài lớn hơn 0, nhưng khoảng cách giữa hai điểm A và B bằng 0 khi điểm A trùng với điểm B.

động trực quan (Quan sát, phát hiện, gấp hình, đo, vẽ, kiểm tra, thực hành) với hoạt động suy luận, kỹ năng sử dụng các dụng cụ đo, vẽ, vẽ hình đúng kích thước (Độ dài đoạn thẳng) ước lượng, kỹ năng chuyển đổi ngôn ngữ hình học (Ngôn ngữ nói, viết,ngôn ngữ hình vẽ, sơ đồ, ngôn ngữ ký hiệu,..). - Tháng 10: Triển khai sáng kiến trong các tiết học, áp dụng với từng đối tượng học sinh, đánh giá kết quả bước đầu. - Tháng 11, 12: Triển khai sáng kiến, đánh giá kết quả thông qua từng đối tượng học sinh về mặt nhận thức và kỹ năng. Thông qua việc kiểm tra đánh giá kết quả nhận thức và kỹ năng làm bài của học sinh, tôi đã nhận ra một số vấn đề khi rèn kỹ năng giải bài tập chương I Hình học 6. 3.1. Những sai lầm học sinh thường mắc phải trong việc sử dụng ngôn ngữ nói, viết, ký hiệu. Hình học lớp 6 là phần chuyển tiếp từ giai đoạn học hình học bằng quan sát, thực nghiệm ở bậc tiểu học sang giai đoạn tiếp thu kiến thức bằng suy diễn ở cấp Trung học cơ sở, ở Tiểu học mỗi hình là một chỉnh thể, bây giờ mỗi hình là một số "bộ phận" có liên hệ với nhau và ngay giữa các hình cũng có mối quan hệ nào đó. Trước hết "Hình" được hiểu theo nghĩa khái quát và thống nhất "Hình là một tập hợp điểm" từ đó suy ra "điểm là một hình" và "Toàn bộ mặt phẳng cũng là một hình", đường thẳng là một hình, nó là một "bộ phận" của mặt phẳng, đường thẳng là một tập hợp vô hạn điểm. Một cách tổng quát, mỗi hình phẳng là một tập hợp con của mặt phẳng và mặt phẳng là một tập hợp điểm cho trước, nên khi nói đến các khái niệm điểm, đường thẳng, đoạn thẳng, tia . Học sinh thường không cho nó là một hình do đó khi định nghĩa nêu khái niệm giáo viên cũng cần phải nhấn mạnh cho các em, trước hết nó là "một hình được tạo bởi ". Hơn thế cách hiểu "Mỗi hình học là một tập hợp điểm" là cách hiểu hiện đại về hình học. Từ đó quan hệ "thuộc", ký hiệu Î giữa phần tử và tập hợp, đã biết trong lý thuyết tập hợp trở thành quan hệ được thừa nhận trong hình học. Mệnh đề thông thường "điểm M là một phần tử của tập hợp d", ký hiệu M Î d và đọc là "Điểm M thuộc đường thẳng d", từ các điểm ta xây dựng các hình, từ các hình này ta xây dựng nên các hình khác, đó là lôgic phát triển của hình học phẳng. Chẳng hạn: "đoạn thẳng MN là hình gồm điểm M, điểm N và các điểm nằm giữa M và N". Tuy nhiên cũng có thể không ít học sinh coi thường cách ký hiệu, có lẽ đây là chỗ học sinh hay mắc phải nhất, trong sách giáo khoa khi nêu khái niệm đoạn thẳng AB thì các em nhầm viết là đoạn thẳng ab nhưng nếu giáo viên yêu cầu học sinh vẽ đoạn thẳng AB thì có thể học sinh viết nhầm là đoạn ab. Khi đó giáo viên cần chú ý nhấn mạnh và chỉ rõ cho học sinh khi viết, nói cần phải hiểu: Điểm thì ký hiệu bằng chữ cái in hoa, đoạn thẳng thì ký hiệu bằng hai chữ cái in hoa viết liền nhau. Nhưng cũng phải phân biệt được giữa đường thẳng với đoạn thẳng. Chẳng hạn đường thẳng ta thường ký hiệu bằng chữ cái in thường nhưng cũng có khi đường thẳng đi qua hai điểm A, B ta nói là đường thẳng AB hoặc nếu đường thẳng chứa ba điểm A, B, C thì được gọi tên như thế nào? Từ các cách gọi tên khác nhau của đường thẳng trên (có sáu cách: Đường thẳng AB, đường thẳng AC, ). Khi cho học sinh học về đường thẳng giáo viên phải chú ý cho học sinh đọc tên đường thẳng, nói cách viết tên đường thẳng, diễn đạt quan hệ giữa các điểm A, B với đường thẳng d bằng cách khác nhau; viết ký hiệu AÎ d, B Ï d. Đối với bài "Ba điểm thẳng hàng" học sinh đã có biểu tượng "Nhiều điểm thuộc đường thẳng" thì dễ cho học sinh thấy nhiều điểm cùng thuộc một đường thẳng thì thẳng hàng, nhiều điểm không thuộc bất kỳ đường thẳng nào thì không thẳng hàng. Nhưng khi xét ba điểm thẳng hàng giáo viên có thể mô tả vị trí tương đối của chúng nhờ các thuật ngữ "nằm cùng phía", "nằm khác phía", "nằm giữa" để học sinh dễ tiếp nhận vì chúng gần gũi với ngôn ngữ thông thường trong cuộc sống hằng ngày. Tóm lại: Để giúp học sinh học tốt môn hình học thì trước hết phải hướng dẫn học sinh để học sinh có kỹ năng nói, viết, ký hiệu một cách chính xác, không được nhầm lẫn giữa các khái niệm này với các khái niệm khác, giữa hình này với hình khác, đối với mỗi bài của chương giáo viên cần chú trọng cách viết ký hiệu, cách sử dụng ngôn ngữ ký hiệu. 3.2. Kỹ năng vẽ hình, đọc tên phân biệt các hình và một số chú ý khi dạy: Nói đến hình học là phải nói đến hình vẽ vì vậy khâu vẽ hình là vô cùng quan trọng, nó là đặc trưng của bộ môn hình học và có vị trí vô cùng quan trọng trong việc dạy và học môn hình học. Muốn học tốt hình học trước hết phải biết vẽ hình. Câu nói này không chỉ nhấn mạnh tầm quan trọng của việc sử dụng công cụ vẽ hình và thao tác vẽ hình, mà còn yêu cầu phân biệt hình học với hình vẽ của nó. Các khái niệm hình học như điểm, đường thẳng là sản phẩm của sự trừu tượng hoá các đối tượng hiện thực, các hình học chỉ có trong ý thức của con người. Chấm chì để lại trên giấy là hình ảnh của điểm, vết chì vạch theo cạnh thước là hình ảnh của đường thẳng. Chấm chì, vạch đường thẳng là hình vẽ cho ta hình ảnh trực quan của điểm, đường thẳng có thể nói mỗi khái niệm, mỗi định nghĩa, mỗi nhận xét muốn đúng phải vẽ hình chính xác, nếu vẽ không chính xác sẽ dẫn đến việc hiểu sai và rất khó cho việc học tập sau này. Ví dụ 1: Vẽ ba điểm A, B, C thẳng hàng. (hình a) Muốn vẽ ba điểm A, B, C thẳng hàng thì phải thoả mãn điều kiện ba điểm A, B, C cùng thuộc đường thẳng (hình a) còn nếu ba điểm A, B, C không cùng thuộc đường thẳng thì ba điểm A, B, C không thẳng hàng (hình b). (hình b) Ví dụ 2: Vẽ hai tia đối nhau Ox, Oy Hai tia đối nhau thoả mãn đồng thời hai điều kiện: - Chung gốc. - Cùng tạo thành một đường thẳng. Nếu vi phạm một trong hai điều kiện trên thì không phải là hai tia đối nhau: (hình a) (hình b) (hình c) Ở hình (a) vẽ hai tia Ox, Oy là hai tia đối nhau là chính xác. Ở hình (b) vẽ hai tia Ox, Oy không tạo thành một đường thẳng. Ở hình (c) vẽ hai tia Ax, By là hai tia không chung gốc. Như vậy ở hình (b), (c) không có hai tia đối nhau được. Ví dụ 3: Vẽ hai tia trùng nhau OA và Ox Ở hình (a) vẽ hai tia Ox, Ax tuy có nhiều điểm chung chúng không trùng nhau, chúng là hai tia phân biệt. Có thể hiểu các tia trùng nhau theo phương diện khác, đó là các khả năng đặt tên khác nhau cho cùng một tia (ở hình b) tia Ox còn được gọi là tia OA, tia OB, OC. Về việc giải bài tập, học sinh cần vẽ hình, quan sát, nhận xét quan trọng nhất là khâu vẽ hình, thầy phải thường xuyên nhắc nhở những kỹ năng vẽ hình cần thiết, yêu cầu học sinh phải vẽ chính xác, có thể dùng bút màu để phân biệt hình cần phân biệt. Khi học sinh đã được học đến hai đoạn thẳng bằng nhau, phải lưu ý cho học sinh đánh ký hiệu trên hình vẽ giống nhau. Khi học sinh đã bước đầu có kỹ năng vẽ hình rồi, thì việc làm bài tập của các em sẽ đỡ vất vả, sau này các em còn có thể chứng minh một bài toán hình học mà nhìn vào hình vẽ ta có thể tận dụng được triệt để các yếu tố của đầu bài đã cho. Ví dụ : Để vẽ ba điểm thẳng hàng, trước hết ta dùng thước vẽ một đường thẳng rồi lấy ba điểm thuộc đường thẳng ấy, để vẽ ba điểm không thẳng hàng ta chỉ cần vẽ một đường thẳng rồi lấy hai điểm thuộc đường thẳng và một điểm không thuộc đường thẳng ấy. Khi phát biểu điểm C nằm giữa hai điểm A, B. Giáo viên dùng phấn màu tô đậm điểm C để học sinh nhận biết rõ hơn. Khi dạy hình học, giáo viên cần lưu ý cho học sinh từng thao tác vẽ hình sao cho chính xác, cẩn thận, tránh những thao tác vẽ ẩu, vẽ sai hình. Một điều quan trọng hơn hết đó là trong mỗi tiết hình học, mỗi bài cụ thể, giáo viên phải cân nhắc kỹ càng, tìm hiểu sâu và rút ra những điểm chú ý nhất, từ đó khơi dậy cho các em trí tưởng tượng, cách sử dụng ngôn ngữ diễn đạt, cách vẽ hình, cách suy luận logic để sau mỗi bài học các em hiểu sâu và nắm chắc kiến thức cơ bản hơn: Khi dạy ba điểm thẳng hàng, xét đến điểm nằm giữa hai điểm, ta có thể mô tả vị trí tương đối của chúng nhờ các thuật ngữ "nằm cùng phía", "nằm khác phía", "nằm giữa" để học sinh tiếp nhận một cách dễ dàng và khi nhận xét ba điểm thẳng hàng, cần chú ý nhận xét tính chất ba điểm thẳng hàng: Có một và chỉ có một điểm nằm giữa hai điểm còn lại, không có khái niệm " điểm nằm giữa" khi "ba điểm không thẳng hàng". Để khắc sâu điểm "điểm nằm giữa" giáo viên cần có bảng phụ thể hiện các hình vẽ khác nhau sau, không thể nói điểm nào nằm giữa hai điểm còn lại. Khi dạy bài đường thẳng đi qua hai điểm giáo viên cần chú ý cho học sinh cách vẽ đường thẳng, cách đặt tên cho đường thẳng. Khi học về tia, học sinh đã được học đường thẳng điểm thuộc đường thẳng, một cách tự nhiên là từ nhận xét: "Điểm O trên đường thẳng chia đường thẳng thành hai phần đường thẳng riêng biệt" từ đó giới thiệu khái niệm tia bằng mô tả trực quan "Một phần đường thẳng bị chia ra bởi điểm O và tất cả các điểm cùng phía với điểm O được gọi là một tia gốc O". Nhấn mạnh nhóm từ "Tia gốc O" để khêu gợi trí tưởng tượng là tia được giới hạn về phía gốc và không giới hạn về phía kia. Việc diễn tả "phần đường thẳng riêng biệt" bằng ngôn ngữ toán học làm rõ dần về sau qua bài tập. Sau khi giới thiệu cho học sinh khái niệm "hai tia đối nhau", cần cho học sinh củng cố, đưa ra tình huống: Có hai điểm A, B trên đường thẳng xy, xét xem có mấy tia được thành lập, hãy đọc tên các tia đối nhau. Đây là hoạt động nhận dạng khái niệm, nhằm khắc sâu kiến thức về tia và hai tia đối nhau, hai tia đối nhau phải thoả mãn hai điều kiện: + Chung gốc. + Cùng tạo thành một đường thẳng. Nhấn mạnh: Nếu vi phạm một trong hai điều kiện trên thì không phải là hai tia đối nhau. Khi học về đoạn thẳng, sau khi học sinh nắm được khái niệm đoạn thẳng, cách vẽ đoạn thẳng, giáo viên cần khắc sâu cho học sinh về đoạn thẳng cắt đoạn thẳng, cắt tia, cắt đường thẳng, để cuối cùng học sinh vẽ và nhận dạng được. Khi dạy về độ dài đoạn thẳng, giáo viên cần lưu ý phân biệt đoạn thẳng với độ dài đoạn thẳng: Đoạn thẳng là một hình, còn độ dài đoạn thẳng là một số, tuy nhiên đoạn thẳng AB và độ dài đoạn thẳng AB đều được ký hiệu là AB. Hai cách nói "độ dài đoạn thẳng AB" và "khoảng cách giữa hai điểm A và B" cũng có sự phân biệt tế nhị: Đoạn thẳng AB có độ dài lớn hơn 0, nhưng khoảng cách giữa hai điểm A và B bằng 0 khi điểm A trùng với điểm B. Sau khi học sinh học xong bài 8: Khi nào AM + MB = AB ? Thì giáo viên cần mở rộng cho việc cộng nhiều đoạn thẳng ở hình bên ta có: AM + MN + NP + PB = AB. Thật vậy vì N là một điểm của đoạn thẳng AB nên: AN + NB = AB. Vì M nằm giữa A, N nên: AM + MN = AN. Vì P nằm giữa N, B nên: NP + PB = NB. Từ đó suy ra: AM + MN + NP + PB = AB. Khi dạy về "Trung điểm của đoạn thẳng" bằng quan sát trực quan về trung điểm của đoạn thẳng, ta có thể diễn tả trung điểm của đoạn thẳng AB bằng các cách khác nhau: Cách 1: M là trung điểm của đoạn thẳng AB. Cách 2: Nếu MA+ MB = AB và MA = MB thì M là trung điểm của đoạn thẳng AB. Cách 3: Nếu thì M là trung điểm của đoạn thẳng AB. 3.3. Kỹ năng thực hành: Đối với hình học lớp 6, về kỹ năng thực hành của học sinh cũng rất là quan trọng, qua lý thuyết, giáo viên có thể lồng ghép yêu cầu học sinh thực hành để một lần nữa khẳng định kiến thức vừa lĩnh hội một cách chắc chắn. Chẳng hạn sau khi học về đường thẳng, giáo viên có thể yêu cầu học sinh thực hành ngay tại lớp thông qua bài tập: (Sách giáo khoa - trang 105). Yêu cầu mỗi học sinh gấp giấy để có hình ảnh đường thẳng hoặc là khi dạy "Trung điểm của đoạn thẳng", giáo viên yêu cầu học sinh dùng sợi dây, hai mút của đoạn thẳng là hai đầu sợi dây. Yêu cầu học sinh xác định trung điểm của đoạn thẳng sợi dây đó như thế nào? Hoặc cách vẽ trung điểm M của đoạn thẳng AB được nêu dưới dạng bài tập, yêu cầu học sinh giải bằng hai cách: Cách 1: Vẽ điểm M trên tia AB sao cho Cách 2: Gấp giấy. Như vậy học sinh sẽ thông qua thực hành đề phát hiện được tính chất của trung điểm:M là trung điểm của AB: Tóm lại: Qua những kiến thức của hình học lớp 6 về điểm, đoạn thẳng, tia, đường thẳng, điểm nằm giữa hai điểm,độ dài đoạn thẳng, khi nào thì AM + MB = AB, vẽ đoạn thẳng cho biết độ dài, trung điểm của đoạn thẳng. Sau mỗi bài học thì học sinh đều được rèn kỹ năng thực hành, có thể nói rèn kỹ năng thực hành là khâu quan trọng, để học sinh vận dụng kiến thức áp dụng thực tế, biết gióng các điểm thẳng hàng để có cọc rào, trồng cây thẳng hàng biết xác định trung điểm đoạn thẳng, biết so sánh hai đoạn thẳng bằng đo độ dài của chúng Chính vì vậy mà sau mỗi bài học, giáo viên có thể hướng dẫn học sinh thực hành đo tính 3.4. Kỹ năng suy luận chặt chẽ: Đối với hình học 6, tính chất nổi bật là trực quan, đây là giai đoạn xây dựng cơ sở ban đầu của hình học phẳng chuẩn bị cho việc chứng minh suy diễn trong các chương trình sau: Học sinh học tập hình học thông qua các hoạt động hình học: Kết hợp hoạt động trực quan (quan sát, phát hiện, gấp hình, đo, vẽ, kiểm tra, thực hành) là chủ yếu, rồi tới hoạt động suy luận (quy nạp, suy diễn). Khi dạy đến bài khi nào thì AM + MB = AB thì học sinh bước đầu tập suy luận dạng: "nếu có a + b = c và biết hai trong ba số a, b, c thì suy ra số thứ ba". Trước hết cho điểm M nằm giữa hai điểm A và B, đo AM, MB và AB rồi so sánh AM + MB với AB rồi nhận xét kết quả, ta có mệnh đề: Nếu điểm M nằm giữa hai điểm A và B thì AM + MB = AB. Sau đó lại thử nghiệm để tìm mệnh đề phản của mệnh đề trên: Lấy điểm M không nằm giữa hai điểm A, B nhưng A, B, M vẫn thẳng hàng. Đo AM, MB, AB rồi so sánh AM + MB với AB rồi đi đến nhận xét: Nếu điểm M không nằm giữa hai điểm A và B thì: AM + MB # AB kết hợp hai nhận xét ta có mệnh đề: Điểm M nằm giữa hai điểm A và B khi và chỉ khi AM + MB = AB. Khi học xong bài này, giáo viên cho học sinh làm bài tập thì cần lưu ý cách lập luận chặt chẽ: Ví dụ 1: Bài tập 47 - SGK-T121: Gọi M là một điểm của đoạn thẳng HK. Biết HM = 4 cm, HK = 8cm. So sánh hai đoạn thẳng HM và MK. Học sinh có thể lập luận như sau: Vì M là thuộc đoạn thẳng HM nên: HM + MK = HK thay MH = 4cm, HK = 8cm ta có: 4 + MK = 8. Hai đoạn thẳng MK và HM có độ dài bằng nhau nên HM = MK. Ví dụ 2: Bài tập 49 - SGK-T121: Gọi M và N là hai điểm nằm giữa 2 mút của đoạn thẳng AB. Biết rằng AN = BM. So sánh AM và BN. Xét cả hai trường hợp. (a) (b) Hình a: Vì N nằm giữa A và M nên: AM = AN + NM. Vì M nằm giữa N và B nên: NM + MB = NB. Theo giả thiết AN = BM, lại vì NM = MN nên suy ra AM = BN. Hình b: Vì M nằm giữa A và N nên: AM + MN = AN. Vì N nằm giữa B và M nên: BN + NM = BM. Theo giả thiết thì AN = BM nên suy ra: AM + MN = BN + MN. Khi học xong bài "Vẽ đoạn thẳng cho biết độ dài", qua bài tập, học sinh bước đầu biết suy luận chặt chẽ. Ví dụ 3: Bài 54 (SGK-T124): Trên tia Ox vẽ ba đoạn thẳng OA, OB, OC sao cho OA = 2cm, OB = 5cm, OC = 8cm. So sánh BC và BA. Vì A, B thuộc tia Ox, OA < OB nên điểm A nằm giữa O và B. Ta có: OA + AB = OB. Vì B, C thuộc tia Ox, OB < OC nên điểm B nằm giữa O và C. Ta có OB + BC = OC Hai đoạn thẳng BA và BC có cùng độ dài là 3 cm nên chúng bằng nhau. Ví dụ 4: Bài 59 (SGK-T124). Trên tia Ox cho ba điểm M, N, P biết OM = 2cm, ON = 3cm, OP = 3,5cm. Hỏi trong ba điểm M, N, P thì điểm nào nằm giữa hai điểm còn lại? Vì sao?. Có thể hướng dẫn học sinh lập luận một cách chặt chẽ như sau: Trên tia Ox có OM < ON (Vì 2 cm < 3 cm) nên M nằm giữa O và N, suy ra: MN = ON - OM = 3 - 2 = 1 (cm). Vì OM < OP (Vì 2 cm < 3,5cm) nên M nằm giữa O và P suy ra: MP = OP - OM = 3,5 - 2 = 1,5 (cm). Trên tia Mx có: MN < MP (vì 1cm < 1,5 cm) nên N nằm giữa hai điểm M và P. Khi học về trung điểm của đoạn thẳng, học sinh nắm được: M là trung điểm của đoạn thẳng Nói tóm lại khi dạy những phần này, giáo viên cần phải hướng dẫn cho học sinh cách trình bày một bài tập hình học, biết cách lập luận chặt chẽ, lô gíc dựa trên nền tảng kiến thức các em lĩnh hội được. 3.5. Giải một số bài toán nâng cao: Do đặc thù của nhà trường, học sinh đa phần là con em nông dân điều kiện kinh tế khó khăn, việc nhận thức của các em còn chưa được mở rộng, một số em cần được nâng cao hơn về kiến thức để làm hạt nhân cho phong trào mũi nhọn sau này điều đó làm cho bản thân tôi có phần nào trăn trở, chính vì vậy khi giảng dạy tôi cũng cố gắng lồng ghép những bài toán khó, những bài toán nâng cao vào giờ dạy để các em được mở rộng kiến thức nhiều hơn. Ví dụ 1: Vẽ 5 điểm A, B, C, D, E thoả mãn điều kiện sau: - Điểm C ở giữa A và B. - C, B, E thẳng hàng. - A, B cùng phía đối với E. - Điểm D thuộc đường thẳng BC. a. Có bao nhiêu đường thẳng (phân biệt) kẻ qua các điểm đã cho. b. Chỉ rõ rằng A, B, E thẳng hàng. c. Có bao nhiêu cách đặt tên cho đường thẳng đi qua hai điểm A, E (dùng các chữ cái A, B, C, E). d. Chỉ rõ các điểm cùng phía đối với B, khác phía đối với B. Giải: a. Có 5 đường thẳng AB, AD, BD, CD, ED. b. Điểm C ở giữa A và B suy ra B, C, A thẳng hàng tức là A Î BC. Vậy A, B, C, E cùng thuộc BC tức là A, B, E thẳng hàng. c. Dùng các chữ A, B, C, E thì có 12 cách đặt tên cho đường thẳng đi qua A, E tức là các đường thẳng AC, CA, AB, BA, AE, EA, CB, BC, CE, EC, BE, EB. d. A, C là hai điểm cùng phía đối với B. Các điểm A và E khác phía đối với B. Các điểm C và E cùng khác phía đối với B. Ví dụ 2: Trên đường thẳng xy cho ba điểm A, B, C theo thứ tự đó. a. Liệt kê tất cả các tia được xác định trên đường thẳng đó. b. Liệt kê tất cả các cặp tia đối nhau. c. Liệt kê tất cả các tia có gốc A trùng nhau. Giải: a. Ax, Ay, Bx, By, Cx, Cy. b. Ax và Ay, Bx và By, Cx và Cy là các cặp tia đối nhau. c. AB, AC, Ay là các tia trùng nhau. Ví dụ 3: Cho bố

Sáng Kiến Kinh Nghiệm Toán Lớp 3 Một Số Biện Pháp Nhằm Giúp Học Biết Giải Toán Có Lời Văn

ĐỀ TÀI

I./ Lý do hình thành sáng kiến: Bước vào năm học, sau khi nhận học sinh một vài tuần, các nề nếp đang được ổn định dần, song song tiến hành ôn tập Toán, ôn luyện lại các kiến thức đã học, nhanh chóng giúp các em củng cố sau ba tháng hè.– Qua kiểm tra ôn tập hằng học, lớp tôi có một số học sinh chưa thực sự ham học môn toán giải có lời văn, vào tiết học thụ động, lười , ít chú ý môn học. Vì vậy, tôi đã áp dụng một số biện pháp mà những năm qua tôi thực hiện có kết qua.û Trăn trở trước đối tượng học sinh chưa ham học toán có lời văn. Vì các em không những thụ động trong học tập mà còn ham chơi làm ảnh hưởng lớn đến chỉ tiêu lớp. Trong khi phương pháp học mới của chương trình tiểu học hiện nay lại coi trọng việc phát huy tính tích cực chủ động của học sinh trong học tập, cần tổ chức nhiều hình thức học tập thu hút học sinh. Cũng như những năm trước, năm nay lớp tôi cũng tiếp nhận một số học sinh chưa thực sự ham học toán có lời văn, khiến tôi ưu tư lo lắng làm thế nào giúp các em thấy việc học toán là nhu cầu cần thiết, giúp các em ham học và chịu khó học bài, làm bài. II/. Nội dung và biện pháp giúp đỡ học sinh yếu khi giải toán có lời văn:1/. Quá trình phát triển kiểm nghiệm: – Dạy toán nhằm giúp học sinh: Việc dạy học giải toán nhằm giúp học sinh biết vận dụng những kiến thức về toán, được rèn luyện thực hành với những yêu cầu thể hiện một cách đa dạng, phong phú. Nhờ việc dạy học giải toán mà học sinh có điều kiện rèn luyện và phát triển năng lực tư duy, rèn luyên phương pháp suy luận và những phẩm chất cần thiết của người lao động mới.Giải toán là một hoạt động bao gồm những thao tác : Xác lập được mối quan hệ giữa các dữ liệu , giữa cái đã cho và cái phải tìm trong điều kiện của bài toán: chọn được phép tính thích hợp trả lời đúng câu hỏi của bài toán.Các bài toán số học được phân chia thành các bài toán đơn và khối các bài toán hợp. Bài toán được giải bằng một bước tính gọi là bài toán đơn; bài toán được giải bằng một số bước được gọi là bài toán hợp.Hình thành và rèn luyện kỹ năng: thực hành, đọc, viết, đếm, so sánh các số, giải một số dạng bài toán đơn về cộng trừ, bước đầu diễn đạt bằng lời… Những nội dung có quan hệ đến đời sống thực tế của học sinh.Giáo dục học sinh: chăm chỉ, tự tin, cẩn thận, ham hiểu biết và hứng thú trong học tập toánThông qua các hoạt động dạy học giải toán có lời văn , giáo viên tiếp tục giúp học sinh : Phát triển các năng lực tư duy ( so sánh, lựa chọn, phân tích , tổng hợp, trừ tượng hoá, khái quát hoá); Pháp triển trí tưởng tượng không gian, tập nhận xét các số liệu thu thập được, diễn đạt gọn, rõ, đúng các thông tin , cẩn thận, chăm chỉ, tự tin, hứng thú trong học tập và thực hành toán . 2/. Thực trạng ban đầu: Thực tế qua giảng dạy, tôi thấy các em còn chưa ham học trong việc giải toán có lời văn. Trong các lý do dẫn đến học sinh khi giải toán có nhiều nguyên nhân:( Giáo viên:– Kế hoạch bài soạn của giáo viên còn sơ sài hoặc bỏ qua khâu hướng dẫn. Giáo viên chỉ soạn qua loa. Hay chỉ truyền thụ những kiến thức sẵn có để cung cấp cho học sinh. – Giáo viên còn lúng túng khi đặt câu hỏi để hướng dẫn học sinh giải. – Truyền đạt của giáo viên khi hướng dẫn giải không rõ ràng, khó hiểu. – Chưa đúc kết được kinh nghiệm hướng dẫn giải. Mà cứ hướng dẫn theo bài bản sư phạm của môn toán ở Tiểu học. Làm học sinh trung bình, yếu, kém, không thể tiếp thu được để giải bài toán.( Học sinh:Học sinh đọc cho qua loa, không cần suy nghĩ giải như thế nào?Đưa ra đề toán cho học sinh rất lười, không đọc đề để hiểu yêu cầu bài tập làm gì? – Giải toán có lời văn học sinh chưa biết cách để thể hiện bài giải, khó nhận ra đâu là đơn vị , lời giải của bài toánHọc sinh không cảm thụ được đề toán yêu cầu làm gì ? và phải làm như thế nào? ( Tóm lại học sinh không nhận ra được yêu cầu cốt lỏi ở bài toán có lời văn và nếu thể hiện thì còn nhiều yếu tố như : trình

Sáng Kiến Kinh Nghiệm Một Số Biện Pháp Giúp Học Sinh Giải Bài Toán Có Lời Văn Lớp 2

CHƯƠNG I TỔNG QUAN "Một số biện pháp giúp học sinh giải bài toán có lời văn lớp 2" 1. Cơ sở lý luận : Môn toán là một trong những môn học có nhiệm vụ rất quan trọng ở tiểu học. Học toán giúp các em bước đầu hình thành khả năng trừu tượng hóa, khái quát hóa, kích thích trí tưởng tượng, óc sáng tạo đa dạng và phong phú. Với sự hướng dẫn, gợi mở đúng mức, đúng lúc của các thầy cô, học sinh tự phát hiện và tự giải quyết các vấn đề của bài học, tự chiếm lĩnh nội dung học tập, thực hành. Trong các bài học của môn Toán thì dạng bài giải toán có lời văn giữ một vai trò rất quan trọng. Thông qua việc giải toán ở tiểu học các em bắt đầu làm quen với nhiều khái niệm toán học cơ bản ban đầu, biết được mối quan hệ giữa các sự kiện, giữa cái đã cho và cái phải tìm. Qua việc giải toán, rèn luyện cho học sinh năng lực tư duy, ý thức vượt khó khăn, đức tính cẩn thận, thói quen làm việc có kế hoạch, xét đoán có căn cứ, thói quen tự kiểm tra kết quả công việc mình làm. Đồng thời qua việc giải toán của học sinh mà giáo viên có thể dễ dàng phát hiện những ưu điểm, thiếu sót của các em về kiến thức, kĩ năng, tư duy để giúp học sinh phát huy những ưu điểm và khắc phục những mặt còn hạn chế trong học tập và trong các hoạt động giáo dục khác. Ở lớp 2, các em còn nhỏ, ham chơi, vừa học, vừa chơi, chưa chú ý tập trung học tập. Với đặc điểm tâm sinh lý học sinh tiểu học là dễ nhớ nhưng mau quên, các em ham chơi và chơi nhiều hơn học, sự tập trung chú ý trong giờ học toán chưa cao, trí nhớ chưa bền vững thích học nhưng chóng chán. Vì vậy giáo viên phải làm thế nào để khắc sâu kiến thức cho học sinh và tạo ra không khí sẵn sàng học tập, chủ động tích cực trong việc tiếp thu kiến thức. Nếu không được hướng dẫn phương pháp học tập đúng mức, hợp lý, nhất là đối với những dạng bài toán có lời văn, thì các em không hoàn thành được bài tập hoặc làm bài không đúng với dạng toán được học. Nếu không hiểu cách làm hoặc thường làm bài sai các em sẽ chán nản dẫn tới kết quả học tập sẽ ngày càng sút kém. Các em không hiểu bài dẫn đến mất gốc kiến thức. Không xác định được cách học, cách làm, các em thường chán dẫn tới lì lợm, dửng dưng, không hợp tác học tập trong các tiết học. 2. Phương pháp tiếp cận tạo ra sáng kiến : Để nâng cao chất lượng học tập thì đổi mới phương pháp dạy học là thực sự cần thiết. Đòi hỏi người giáo viên phải luôn luôn tìm tòi sáng tạo, tìm ra phương pháp dạy học tốt nhất để đạt kết quả cao nhất. Là giáo viên giảng dạy trực tiếp ở lớp 2, tôi nhận thấy chưa có nhiều học sinh giỏi môn toán, còn có nhiều học sinh học yếu môn toán so với chuẩn kiến thức, kĩ năng quy định. Có nhiều em chưa giải được các dạng toán có lời văn trong chương trình học, tính toán chậm, hay nhầm lẫn. Vậy làm thế nào để giúp đỡ học sinh giài tốt các bài toán có lời văn để nâng cao hơn chất lượng học môn Toán? Đó là băn khoăn suy nghĩ của tôi. Qua một năm tìm tòi, áp dụng những phương pháp dạy học các dạng toán cần thiết trong môn Toán, tôi thấy bước đầu đã thu được kết quả. Tôi xin mạnh dạn trình bày, trao đổi cùng đồng nghiệp một số kinh nghiệm nhỏ của tôi trong việc giúp đỡ học sinh giải bài toán có lời văn lớp 2 ở trường Tiểu học và THCS Lập Chiệng để đồng nghiệp tham khảo. 3. Mục tiêu cần đạt được : Học sinh biết giải và trình bày bài giải đúng các dạng toán: - Bài toán về nhiều hơn. - Bài toán về ít hơn. - Giải bài toán có một phép nhân. - Giải bài toán có một phép chia. - Tính chu vi hình tam giác, hình tứ giác. CHƯƠNG II MÔ TẢ SÁNG KIẾN 1. Vấn đề của Sáng kiến : Từ đầu năm học, qua khảo sát và giảng dạy thực tế thấy rằng: số học sinh ham học toán và học giỏi môn toán còn hạn chế. Số học sinh học yếu môn toán so với chuẩn kiến thức kĩ năng còn nhiều. Có em có kết quả học tập môn toán thất thường, lúc lên, lúc xuống. Học sinh chưa thực sự thích học môn toán. Còn có em lười suy nghĩ khi làm bài nhất là giải các bài toán có lời văn... Để khắc phục tình trạng học sinh học yếu môn toán ở tiểu học là vấn đề quan tâm không những của giáo viên mà còn là sự quan tâm của các cấp các ngành, cha mẹ học sinh. Thực tế ở lớp, qua kết quả quan sát học sinh học môn toán đầu năm : - Nhiều em tính toán chậm. chưa giải được các bài toán, dạng toán đơn giản trong chương trình học. - Chưa biết trình bày cách giải một bài toán cho đúng, đẹp và khoa học. - Có đến 70% học sinh trong lớp còn lúng túng khi gặp bài toán có lời văn. Đa số các em chưa nắm được đầy đủ quy trình các bước tiến hành giải một bài toán. Nhiều em mới chỉ biết bắt chước dạng bài làm mẫu giáo viên đã hướng dẫn. Các em chưa tích cực suy nghĩ, chưa tự giác làm bài. Vì vậy nên khi gặp bài toán khác với mẫu một chút là các em lúng túng, không biết làm phép tính gì, không biết cách tìm câu lời giải phù hợp với bài toán, dạng toán. 2. Giải pháp thực hiện sáng kiến : 2.1. Nguyên nhân : 2.1.1. Nhận thức chậm, tư duy kém. Những học sinh này không thuộc được bảng cộng trừ hoặc nhân chia đã học. Không vận dụng được các bảng tính đã học vào làm tính, giải toán. Tính toán phải đếm bằng tay mất nhiều thời gian mà kết quả vẫn sai. Không nhớ được cách thực hiện các phép tính, vừa làm bài xong đã quên, nhất là cộng trừ có nhớ. Đây là những đối tượng học sinh có kết quả học tập chưa đạt so với chuẩn kiến thức kĩ năng. Trong các bài toán các em chỉ lấy hai số có trong bài toán rồi cộng hoặc trừ. Các em không đọc bài toán hoặc đọc một lần không hiểu gì là ngồi chơi hoặc làm bừa phép tính. 2.1.2 Chưa có phương pháp học tập đúng. Với đối tượng này, các em thường lơ đãng trong giờ học. Giờ này làm việc khác, giờ toán lại giở tập đọc ra đọc. Giờ thầy cô hướng dẫn thì cắm cúi làm bài vào vở hoặc ngồi vẽ bậy để chơi. Có những em tay lúc nào cũng để trong ngăn bàn để nghịch một cái gì đó. Cả buổi học tìm kiếm trong cặp sách lúc thì cái bút, lúc thì quyển sách, lúc tìm thước kẻ Đây thường là những học sinh bướng bỉnh, mải chơi nên kết quả làm bài thường kém hoặc không hiểu cách làm, không hoàn thành hết bài tập. Về nhà không xem lại bài, không chuẩn bị bài và sách vở đồ dùng học tập trước khi đến lớp. Chưa có thói quen gọn gàng ngăn nắp, học xong bỏ sách vở không đúng nơi quy định nên hay quên. Đến lớp thiếu sách vở, thiếu phương tiện học tập và có kết quả học tập chưa tốt. Các đối tượng này cũng thường xuyên không học bài, thiếu sách vở, đồ dùng học tập, sách vở bẩn, nhàu nát. Gia đình chưa quan tâm nhắc nhở con em học tập ở nhà, chưa tạo điều kiện cho các em học tập. Học sinh chưa có góc học tập riêng. 2.1.3. Không đọc kĩ bài toán, lười phân tích, suy luận tìm ra cách giải. Những học sinh này thường hay làm bài ẩu dẫn tới sai sót hoặc chỉ đọc bài qua loa nên không biết làm thế nào cho đúng. Có trường hợp ngồi chờ cô giáo chữa bài hoặc bạn giải trên bảng để chép và rồi bài tập sau vẫn không làm được bài. 2.2. Hiệu quả của sáng kiến : Qua một năm học tìm hiểu, thấy được một số nguyên nhân cơ bản trên, nên tôi đã tiến hành các biện pháp giúp các em làm tốt hơn các dạng bài toán có lời văn như sau: 2.2.1. Đối với đối tượng học sinh nhận thức chậm, tư duy kém: Với những học sinh yếu này giáo viên cần lên kế hoạch giúp đỡ các em vào các tiết học chính khóa và vào các tiết buổi 2, các tiết ôn tập thêm cho học sinh yếu. Lúc nào cũng để mắt đến các em, nhắc nhở, hướng dẫn các em kịp thời. Sử dụng thường xuyên đồ dùng trực quan (Que tính, các hình vuông, hình tròn) nhắc đi nhắc lại cách tính hoặc cách làm một dạng toán để các em ghi nhớ được cách làm. Giáo viên cần phải hướng dẫn học sinh ôn lại một số kiến thức, kỹ năng đã biết để tìm hiểu kiến thức cần học mới. Để hiểu được biện pháp mới, học sinh đã biết gì, cần ôn lại kiến thức nào, điều gì là mới cần dạy kỹ. Các kiến thức, kỹ năng cũ sẽ hỗ trợ cho kiến thức, kỹ năng mới, hay ngược lại dễ gây nhầm lẫn cần giúp học sinh phân biệt. Cách củng cố tốt nhất, không phải là yêu cầu học sinh nhắc lại bằng lời mà cần tạo điều kiện để học sinh vận dụng biện pháp. Qua giải các bài toán, để học sinh độc lập chọn phép tính và làm tính. Lúc này không nên cho những bài toán quá phức tạp, mà chỉ nên chọn bài toán đơn giản dùng đến phép tính hay quy tắc vừa học. Việc ôn luyện, củng cố những biện pháp tính khác, quy tắc khác sẽ làm trong giờ luyện tập, ôn tập. 2.2.2. Đối với đối tượng học sinh chưa có phương pháp học tập đúng: Giáo viên tạo cho các em có nề nếp học tập từ đầu năm học như: Sử dụng các kí hiệu trong giờ học yêu cầu học sinh thực hiện như: N: nghe và nhìn; S: mở sách giáo khoa; V: ghi bài, làm bài vào vở ghi; VBT: làm bài vào vở bài tập. Lấy đủ đồ dùng, sách vở cần dùng của môn học để trước mặt theo thứ tự cần dùng. Ví dụ: Giờ toán cần có bút, thước kẻ, bút chì, bảng con, phấn, vở ghi, sách giáo khoaGiáo viên yêu cầu các em xếp theo thứ tự dùng trước sau như: Vở ghi dùng sau để dưới cùng, rồi đến sách giáo khoa, bảng phấn để trên cùng vì được sử dụng trước, hộp bút để bên cạnh. Giáo viên thường xuyên bao quát lớp, nhắc nhở tư thế ngồi học và sự tập trung chú ý học tập của học sinh. Cho học sinh thi đua thực hiện các nề nếp học tập giữa các tổ trong lớp. Tuyên dương và tặng thưởng những đồ vật nhỏ như: cái bút, quả bóng baycác em rất phấn khởi và tạo được phong trào thi đua giữa các tổ nhómPhong trào học tập được thúc đẩy, kết quả học tập được nâng lên. 2.2.3. Đối với những học sinh không đọc kĩ bài toán, lười phân tích, suy luận tìm ra cách giải: Mỗi bài toán có lời văn là một tình huống có vấn đề buộc các em phải tư duy, suy luận và phân tích tổng hợp để giải quyết vấn đề. Nếu các em không đọc kĩ bài toán sẽ không hiểu được bài toán thuộc dạng nào, bài toán yêu cầu làm gì, cần làm phép tính gì để có đáp số đúng. Các em không hiểu hết các từ quan trọng trong bài toán để phân tích, suy luận tìm ra cách giải. Vì muốn giải được bài toán có lời văn thì các em phải hiểu lời văn thì mới làm được phép tính đúng. Khi làm phép tính thì phải hiểu lời giải này trả lời cho câu hỏi nào. Để khắc phục được tình trạng trên tôi tôi tiến hành hướng dẫn các em giải các bài toán theo các bước như sau: Bước 1: Tìm hiểu nội dung bài toán Tập trung chú ý đến yêu cầu của bài toán. Trước hết giáo viên cần hướng dẫn cho học sinh đọc kỹ đề bài, xác định cho được bài thuộc dạng toán nào, đâu là cái đã cho, đâu là cái phải tìm. Để giải đúng một bài toán, các em cần đọc thật kỹ đề bài. Bởi đã có rất nhiều học sinh giải toán sai, không phải đề toán khó mà nguyên nhân là do học sinh vừa đọc đề xong đã vội vàng bắt tay vào giải ngay. Trong bất kỳ bài toán nào cũng có hai bộ phận: Bộ phận thứ nhất là những điều đã cho, bộ phận thứ hai là cái phải tìm. Bắt buộc phải xác định cho được, cho đúng những cái đã cho, những cái phải tìm trong bài toán. Cần nắm rõ những gì thuộc về bản chất của đề toán, những gì không thuộc về bản chất đề toán để hướng sự chú ý vào những chỗ cần thiết. Từ nào chưa hiểu hết ý nghĩa thì phải nắm hiểu ý nghĩa của nó. Bước 2: Phân tích, tóm tắt bài toán Dùng câu hỏi gợi mở, giúp học sinh thiết lập mối quan hệ giữa cái đã cho và cái phải tìm bằng cách tóm tắt bài toán dưới dạng sơ đồ, hình vẽ hoặc ngôn ngữ ngắn gọn. Đây là bước quan trọng để thể hiện phần trọng tâm và toát lên những cái phải tìm của đề bài. Khi tóm tắt bài toán cần gạt bỏ những gì là thứ yếu, lặt vặt trong đề toán và hướng học sinh tập trung suy nghĩ vào những thứ chính yếu của đề toán, tìm cách biểu hiện bằng hình vẽ. Trong trường hợp khó vẽ được những điểm chính ấy thì cần dùng ngôn ngữ, kỹ hiệu ngắn gọn để ghi lại thật vắn tắt, thật cô đọng. Bước 3: Tìm cách giải bài toán Cần phân tích các giữ liệu, điều kiện và câu hỏi của bài toán nhằm xác lập mối liên hệ giữa chúng và tìm được các phép tính thích hợp. Lập kế hoạch giải bài toán, có hai hình thức thể hiện: - Đi từ câu hỏi của bài toán đến các số liệu. - Đi từ số liệu đến các câu hỏi của bài toán. Bước 4: Trình bày bài giải Dựa vào kết quả phân tích đề toán ở bước 3, xuất phát từ những điều đã cho trong đề toán, giáo viên giúp học sinh lần lượt viết lời giải và thực hiện các phép tính để tìm ra đáp số, viết danh số, đơn vị phù hợp. Cần chú ý thử lại sau khi làm xong từng phép tính cũng như thử lại đáp số xem có phù hợp với đề toán hay không; cũng cần kiểm tra lại các lời giải của các phép tính xem đã phù hợp, đủ ý và ngắn gọn hay chưa Bước 5: Khai thác bài toán Bước này dành cho học sinh năng khiếu. Sau khi giải xong bài toán cần suy nghĩ xem còn những cách ghi lời giải nào khác nữa không? Cách ghi lời giải đó có phù hợp yêu cầu bài toán, phù hợp với phép tính không, ... 2.3. Kết quả Qua một năm thực hiện một số biện pháp giúp học sinh giải bài toán có lời văn lớp 2, tôi thấy việc áp dụng các biện pháp có hiệu quả. Bước đầu học sinh có sự chuyển biến về ý thức học tập, phương pháp học tập và chất lượng học tập. Học sinh đã nhớ được cách xác định các dạng toán, cách tóm tắt, phân tích và hướng giải các dạng toán, kết quả học môn toán được nâng lên rõ rệt. Nhiều em làm giải toán nhanh, yêu thích học môn toán. Kết quả cuối năm môn toán đạt được như sau: Giỏi: 8 em - 40 % Khá: 8 em - 40 % Trung bình: 4 em - 20 % Không còn học sinh yếu kém về môn toán. Từ kết quả đạt được trên, tôi nhận thấy phương pháp dạy học của tôi phù hợp với học sinh lớp mình phụ trách. Chất lượng học môn toán được nâng lên, cùng với môn học khác giúp các em hoàn thành chương trình lớp học. 3. Khả năng áp dụng nhân rộng sáng kiến : Kinh nghiệm của tôi đơn giản, dễ thực hiện. Tất cả giáo viên trong trường tiểu học Lập Chiệng và các trường vùng khó khăn khác trong huyện đều có thể áp dụng để giúp học sinh giải được các bài toán có lời văn lớp 2, từ đó giúp các em học tốt hơn môn Toán lớp 2. CHƯƠNG III KẾT LUẬN VÀ ĐỀ XUẤT, KIẾN NGHỊ 1. Kết luận : Để đạt được mục tiêu dạy - học và góp phần hoàn thành tốt nhiệm vụ năm học thì việc tìm tòi sáng tạo, đúc rút kinh nghiệm qua thực tế giảng dạy của người giáo viên là thực sự cần thiết. Qua mỗi bài học, mỗi môn học, người giáo viên lại rút được kinh nghiệm thiết thực cho bản thân để bài học sau giảng dạy tốt hơn bài học trước. Thấy được việc nào cần làm, cần hướng dẫn học sinh như thế nào để học sinh hiểu bài, nắm bắt được kiến thức một cách có hệ thống, chính xác và kết quả học tập của học sinh ngày càng tốt hơn. Trong đó, dạy giải toán có lời văn là một bộ phận quan trọng của chương trình toán tiểu học. Nó được kết hợp chặt chẽ với nội dung của các kiến thức về số học, các yếu tố đại số, các yếu tố hình học. Dạy giải toán là một hoạt động khó khăn, phức tạp về mặt trí tuệ, do đó khi giải toán có lời văn đòi hỏi học sinh phải phát huy trí tuệ một cách tích cực linh hoạt, chủ động và sáng tạo. Qua việc giải toán của học sinh, giáo viên dễ dàng phát hiện ra những ưu điểm và thiếu sót để giúp các em khắc phục và phát huy. 2. Đề xuất/kiến nghị : 1. Đối với nhà trường Thường xuyên tổ chức các chuyên đề trong tổ, và toàn trường để cùng nhau bàn biện pháp giảng dạy tốt nhất. Tìm ra các phương pháp hữu hiệu bồi dưỡng, phụ đạo học sinh yếu, đặc biệt là môn toán. Tổ chức cho giáo viên đi thăm và học hỏi kinh nghiệm dạy tốt của các đơn vị tiêu biểu trong và ngoài tỉnh. 2. Đối với giáo viên Soạn bài và chuẩn bị kĩ bài dạy trước khi lên lớp. Bài dạy cần thể hiện rõ nội dung yêu cầu cần đạt đối với từng đối tượng học sinh và phương pháp dạy từng đối tượng học sinh đó. Sáng tạo trong giảng dạy, bài dạy hấp dẫn, lôi cuốn học sinh tham gia các hoạt động học tập. Kích thích học sinh tư duy suy nghĩ xây dựng bài. Tạo không khí học tập vui vẻ, hợp tác giữa các bạn trong nhóm học tập của học sinh. Thường xuyên giữ vững liên lạc hai chiều với gia đình học sinh. Thăm gia đình học sinh để hiểu rõ điều kiện hoàn cảnh của từng học sinh. Kiểm tra việc học bài buổi tối của học sinh đặc biệt là đối tượng học sinh yếu. 3. Đối với học sinh Xác định rõ mục đích và nhiệm vụ học tập của từng môn học. Xây dựng cho mình tói quen học hỏi và phương pháp học tập đúng đắn, nghiêm túc. Có đủ sách vở, đồ dùng học tập của từng môn học. Giữ gìn, bảo quản đồ dùng sách vở sạch đẹp, bền lâu. Mạnh dạn, tự tin hợp tác cùng các bạn trong các hoạt động học tập. Tôi xin cảm ơn. Lập Chiệng, ngày 3 tháng 5 năm 2024 XÁC NHẬN CỦA ĐƠN VỊ TÁC GIẢ SÁNG KIẾN Bùi Thị Khuyến ĐÁNH GIÁ, XẾP LOẠI CỦA HỘI ĐỒNG SÁNG KIẾN CÁC CẤP

Cập nhật thông tin chi tiết về Sáng Kiến Kinh Nghiệm Một Số Kinh Nghiệm Giải Các Bài Toán Điển Hình Lớp 4 Bằng “Phương Pháp Dùng Sơ Đồ Đoạn Thẳng” trên website Ictu-hanoi.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!