Cách thực hiện này giúp các em: – Bổ sung kiến thức tính chu vi, diện tích của hình chữ nhật– Biết các dạng bài tính hình chữ nhật
Hình học phân chia ra rất nhiều hình thù, trong đó cách tính chu vi và diện tích hình tròn, cách tính diện tích hình tam giác, hình bình hành, hình thang là những khái niệm cơ bản để bất kỳ ai cũng có thể ứng dụng cho việc giải các bài toán hoặc công việc thiết kế từ đơn giản đến phức tạp.
Cách tính Chu vi hình chữ nhật, diện tích hình chữ nhật
Trong hướng dẫn của bài viết này, chúng tôi sẽ tiếp tục cùng bạn đọc đi tìm hiểu công thức, cách tính chu vi hình chữ nhật và diện tích hình chữ nhật chính xác và đơn giản nhất.
Cách tính chu vi hình chữ nhật và diện tích hình chữ nhật
1. Công thức tính chu vi hình chữ nhật
– Khái niệm tính chu vi hình chữ nhật : bằng giá trị gấp hai lần tổng chiều dài cộng chiều rộng.– Công thức tính chu vi hình chữ nhật: P = (a + b) x 2 Trong đó:+ a: Chiều dài của hình chữ nhật+ b: Chiều rộng của hình chữ nhật+ P: chu vi hình chữ nhật– Ví dụ: Cho một hình chữ nhật ABCD có chiều dài = 6cm và chiều rộng = 3cm. Yêu cầu: Tính chu vi hình chữ nhật ABCD?Với bài toán tính chu vi hình chữ nhật khá đơn giản này, người giải chỉ cần áp dụng công thức tính chu vi hình chữ nhật đã giới thiệu ở trên để giải quyết:Áp dụng công thức tính chu vi hình chữ nhật, ta có: P = (a + b) x 2 = (6 + 3) x 2 = 9×2 = 18 cm .
2. Công thức tính diện tích hình hình chữ nhật
* Trường hợp 1: Biết chiều dài, chiều rộng
– Khái niệm tính diện tích hình chữ nhật : Diện tích hình chữ nhật bằng tích của chiều dài nhân với chiều rộng.– Công thức tính diện tích hình chữ nhật : S = a x b Trong đó:+ a: Chiều dài của hình chữ nhật+ b: Chiều rộng của hình chữ nhật+ S: diện tích hình chữ nhậtVí dụ: Có một hình chữ nhật ABCD với chiều dài = 5cm và chiều rộng = 4cm. Hỏi diện tích hình chữ nhật ABCD bằng bao nhiêu? Khi áp dụng công thức tính diện tích hình chữ nhật, ta có như sau:S = a x b = 5 x 4 = 20cm2 (Xăng-ti-mét vuông)
* Trường hợp 2: Biết 1 cạnh và đường chéo của hình chữ nhật
Đối với trường hợp này, bạn cần phải tính một cạnh còn lại, sau đó bạn dựa vào công thức ở trường hợp 1 để tính diện tích.
Giả sử: Bài toán cho hình chữ nhật ABCD, biết AB = a, đường chéo AD = c. Tính diện tích ABCD.
– Bước 1: Tính cạnh BD dựa theo định lý Pytago khi xét tam giác vuông ABD.– Bước 2: Biết được cạnh BD và AB thì bạn dễ dàng tính được diện tích ABCD = AB x BD.
3. Tính chất và dấu hiệu nhận biết hình chữ nhật
* Tính chất
– Hai đường chéo trong hình chữ nhật bằng nhau, cắt nhau tại trung điểm của mỗi đường.– Có đầy đủ tính chất của hình bình hành và hình thang cân.– Hai đường chéo trong hình chữ nhật cắt nhau tạo ra 4 tam giác cân.
* Dấu hiệu
– Tứ giác có 3 góc vuông – Hình thang cân có một góc vuông– Hình bình hành có một góc vuông hoặc có hai đường chéo bằng nhau
Từ công thức tính diện tích, chu vi hình chữ nhật ở trên, bạn dễ dàng suy ngược công thức tính chiều dài, chiều rộng khi biết được diện tích, chu vi, 1 cạnh:
* Cho diện tích, chiều dài 1 cạnh
– Biết chiều rộng: Chiều dài = Diện tích : Chiều rộng– Biết chiều dài: Chiều rộng = Diện tích : Chiều dài
* Cho chu vi, chiều dài 1 cạnh
– Biết chiều rộng: Chiều dài = P: 2 – chiều rộng– Biết chiều dài: Chiều rộng = P: 2 – chiều dài
5. Lỗi sai hay gặp phải và những lưu ý khi làm bài tính diện tích hình chữ nhật
– Các đại lượng cần phải cùng đơn vị đo lường. Thông thường, các bài toán đơn giản, đề bài sẽ ra đơn vị đo lường giống nhau, còn bài toán khó thì bạn cần chú ý điều này bởi có thể đề bài đánh lừa.– Ghi sai đơn vị tính: Với diện tích, bạn cần viết đơn vị đo lường cùng với mũ 2.
6. Một số bài toán tính diện tích hình chữ nhật
Bài 6 trang 118 sgk toán lớp 8 tập 1
Câu hỏi:Diện tích hình chữ nhật thay đổi như thế nào nếu:a) Chiều dài tăng 2 lần, chiều rộng không đổi?b) Chiều dài và chiều rộng tăng 3 lần?c) Chiều dài tăng 4 lần, chiều rộng giảm 4 lần ?
Lời giải: Công thức tính diện tích hình chữ nhật là S = a.b, như vậy diện tích S của hình chữ nhật vừa tỉ lệ thuận với chiều dài a, vừa tỉ lệ thuận với chiều rộng b của nó.
Bài 7 trang 118 sgk toán lớp 8 tập 1 Câu hỏi:
– Một gian phòng có nền hình chữ nhật với kích thước là 4,2m và 5,4m có một cửa sổ hình chữ nhật kích thước là 1m và 1,6m và một cửa ra vào hình chữ nhật kích thước là 1,2m và 2m.
– Ta coi một gian phòng đạt mức chuẩn về ánh sáng nếu diện tích các cửa bằng 20% diện tích nền nhà. Hỏi gian phòng trên có đạt mức chuẩn về ánh sáng hay không?
Bài 9 trang 119 sgk toán lớp 8 tập 1 Bài 10 trang 119 sgk toán lớp 8 tập 1
Lời giải:
Bài 12 trang 119 sgk toán lớp 8 tập 1
Đo hai cạnh góc vuông, ta được AB= 30mm, AC= 25mm.Áp dụng công thức tính diện tích tam giác vuông, ta được:
Câu hỏi:Cho một tam giác vuông. Hãy so sánh tổng diện tích của hai hình vuông dựng trên hai góc vuông với diện tích hình vuông dựng trên cạnh huyền.
Lời giải:Diện tích hình a là 6 ô vuôngDiện tích hình b ∆ADH = ∆ BCI nên diện tích hình b sẽ bằng diện tích hình a (ABIH).Vậy diện tích hình b là 6 ô vuôngDiện tích hình c: ∆ KLN = ∆ NMO nên diện tích hình c sẽ bằng diện tích hình a (KMCB).Vậy diện tích hình c là 6 ô vuông
Câu hỏi: Vẽ hình chữ nhật ABCD có AB = 5cm, BC = 3cm.a) Hãy vẽ một hình chữ nhật có diện tích nhỏ hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD. Vẽ được mấy hình như vậy.b) Hãy vẽ hình vuông có chu vi bằng chu vi hình chữ nhật ABCD. Vẽ được mấy hình vuông như vậy? So sánh diện tích hình chữ nhật với diện tích hình vuông có cùng chu vi vừa vẽ. Tại sao trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.
Thông qua công thức tính chu vi hình chữ nhật và công thức tính diện tích hình chữ nhật trên, đồng thời các ví dụ khá trực quan và dễ tiếp cận sẽ giúp bạn đọc có thể hình dung dễ dàng hơn về cách tính chu vi và diện tích hình chữ nhật của các bài toán từ cơ bản đến phức tạp.
Bên cạnh đó, với những bài toán có sự kết hợp nhiều hình và yêu cầu áp dụng công thức tính chu vi và diện tích hình tròn, công thức tính diện tích hình thang , hình tam giác, người giải cần chú ý tới các đối số trong công thức tính chu vi, diện tích hình chữ nhật cũng như các công thức tương quan tính diện tích hình thang, tính diện tích hình tam giác … để giải quyết bài toán các bài toán một cách hiệu quả nhất.