Giai Bai Tap Lich Su 7 Sgk / Top 16 Xem Nhiều Nhất & Mới Nhất 9/2023 # Top Trend | Ictu-hanoi.edu.vn

Bai Tap Va Loi Giai Sql

, Trưởng nhóm at Nha Trang University

Published on

1. Software Group Leader SGL By Member: htplasma, Plassma :for Vn-zoom Bài tập tổng hợp SQL -And Đáp án Sử dụng câu lệnh SELECT viết các yêu cầu truy vấn dữ liệu sau đây: 2. 1 Cho biết danh sách các đối tác cung cấp hàng cho công ty. 2. 2 Mã hàng, tên hàng và số lượng của các mặt hàng hiện có trong công ty. 2. 3 Họ tên và điạ chỉ và năm bắt đầu làm việc của các nhân viên trong công ty. 2. 4 địa chỉ và điện thoại của nhà cung cấp có tên giao dch VINAMILK là gì? 2. 5 Cho biết mã và tên của các mặt hàng có giá lớn hơn 100000 và số lượng có ít hn 50. 2. 6 Cho biết mỗi mặt hàng trong công ty do ai cung cấp. 2. 7 Công ty Vit Tin đã cung cp nhng mt hàng nào? 2. 8 Loại hàng thực phẩm do những công ty nào cung cấp và địa chỉ của các công ty đó là gì? 2. 9 Những khách hàng nào (tên giao dịch) đã đặt mua mặt hàng Sữa hộp XYZ của công ty? 2. 10 đơn đặt hàng số 1 do ai đặt và do nhân viên nào lập, thi gian và địa điểm giao hàng là ở đâu? 2. 11 Hãy cho biết số tiền lương mà công ty phải trả cho mỗi nhân viên là bao nhiêu (lương = lương cơ bn + phụ cấp). 2. 12 Trong đơn đặt hàng số 3 đặt mua nhưng mặt hàng nào và số tiền mà khách hàng phải trả cho mỗi mặt hàng là bao nhiêu (số tiền phải trả cho mõi mặt hang tính theo công thức SOLUONG×GIABAN SOLUONG×GIABAN×MUCGIAMGIA/100) 2. 13 Hãy cho bit có những khách hàng nào lại chính là đối tác cung cấp hàng của công ty (tức là có cùng tên giao dịch).

2. Software Group Leader SGL By Member: htplasma, Plassma :for Vn-zoom 2. 19 Những nhân viên nào của công ty có lương cơ bản cao nhất? 2. 20 Tổng số tiền mà khách hàng phải trả cho mỗi đơn đặt hàng là bao nhiêu? 2. 21 Trong nm 2003, những mặt hàng nào chỉ được đặt mua đúng một lần.

5. Software Group Leader SGL By Member: htplasma, Plassma :for Vn-zoom 2.17 SELECT mahang,tenhang FROM mathang WHERE NOT EXISTS (SELECT mahang FROM chitietdathang WHERE mahang=mathang.mahang) 2.18 SELECT manhanvien,ho,ten FROM nhanvien WHERE NOT EXISTS (SELECT manhanvien FROM dondathang WHERE manhanvien=nhanvien.manhanvien) 2.19 SELECT manhanvien,ho,ten,luongcoban FROM nhanvien WHERE luongcoban=(SELECT MAX(luongcoban) FROM nhanvien) 2.20 SELECT dondathang.sohoadon,dondathang.makhachhang, tencongty,tengiaodich, SUM(soluong*giaban-soluong*giaban*mucgiamgia/100) FROM (khachhang INNER JOIN dondathang ON khachhang.makhachhang=dondathang.makhachhang) INNER JOIN chitietdathang ON dondathang.sohoadon=chitietdathang.sohoadon GROUP BY dondathang.makhachhang,tencongty, tengiaodich,dondathang.sohoadon 2.21 SELECT mathang.mahang,tenhang FROM (mathang INNER JOIN chitietdathang ON mathang.mahang=chitietdathang.mahang) iNNER JOIN dondathang ON chitietdathang.sohoadon=dondathang.sohoadon WHERE YEAR(ngaydathang)=2003 GROUP BY mathang.mahang,tenhang HAVING COUNT(chitietdathang.mahang)=1 2.22 SELECT khachhang.makhachhang,tencongty,tengiaodich, SUM(soluong*giaban-soluong*giaban*mucgiamgia/100) FROM (khachhang INNER JOIN dondathang ON khachhang.makhachhang = dondathang.makhachhang) INNER JOIN chitietdathang ON dondathang.sohoadon=chitietdathang.sohoadon GROUP BY khachhang.makhachhang,tencongty,tengiaodich 2.23 SELECT nhanvien.manhanvien,ho,ten,COUNT(sohoadon) FROM nhanvien LEFT OUTER JOIN dondathang ON nhanvien.manhanvien=dondathang.manhanvien GROUP BY nhanvien.manhanvien,ho,ten 2.24 SELECT MONTH(ngaydathang) AS thang, SUM(soluong*giaban-soluong*giaban*mucgiamgia/100) FROM dondathang INNER JOIN chitietdathang ON dondathang.sohoadon=chitietdathang.sohoadon WHERE year(ngaydathang)=2003 GROUP BY month(ngaydathang) Tổng hợp SQL – SGL – Plassma :

7. Software Group Leader SGL By Member: htplasma, Plassma :for Vn-zoom FROM (dondathang AS a INNER JOIN chitietdathang AS b ON a.sohoadon = b.sohoadon) INNER JOIN mathang AS c ON b.mahang = c.mahang ORDER BY a.sohoadon COMPUTE SUM(b.soluong*giaban- b.soluong*giaban*mucgiamgia/100) BY a.sohoadon 2.31 SELECT loaihang.maloaihang,tenloaihang, mahang,tenhang,soluong FROM loaihang INNER JOIN mathang ON loaihang.maloaihang=mathang.maloaihang ORDER BY loaihang.maloaihang COMPUTE SUM(soluong) BY loaihang.maloaihang COMPUTE SUM(soluong) 2.32 SELECT b.mahang,tenhang, SUM(CASE MONTH(ngaydathang) WHEN 1 THEN b.soluong ELSE 0 END) AS Thang1, SUM(CASE MONTH(ngaydathang) WHEN 2 THEN b.soluong ELSE 0 END) AS Thang2, SUM(CASE MONTH(ngaydathang) WHEN 3 THEN b.soluong ELSE 0 END) AS Thang3, SUM(CASE MONTH(ngaydathang) WHEN 4 THEN b.soluong ELSE 0 END) AS Thang4, SUM(CASE MONTH(ngaydathang) WHEN 5 THEN b.soluong ELSE 0 END) AS Thang5, SUM(CASE MONTH(ngaydathang) WHEN 6 THEN b.soluong ELSE 0 END) AS Thang6, SUM(CASE MONTH(ngaydathang) WHEN 7 THEN b.soluong ELSE 0 END) AS Thang7, SUM(CASE MONTH(ngaydathang) WHEN 8 THEN b.soluong ELSE 0 END) AS Thang8, SUM(CASE MONTH(ngaydathang) WHEN 9 THEN b.soluong ELSE 0 END) AS Thang9, SUM(CASE MONTH(ngaydathang) WHEN 10 THEN b.soluong ELSE 0 END) AS Thang10, SUM(CASE MONTH(ngaydathang) WHEN 11 THEN b.soluong ELSE 0 END) AS Thang11, SUM(CASE MONTH(ngaydathang) WHEN 12 THEN b.soluong ELSE 0 END) AS Thang12, SUM(b.soluong) AS CaNam FROM (dondathang AS a INNER JOIN chitietdathang AS b ON a.sohoadon=b.sohoadon) INNER JOIN mathang AS c ON b.mahang=c.mahang WHERE YEAR(ngaydathang)=1996 GROUP BY b.mahang,tenhang 2.33 UPDATE dondathang Tổng hợp SQL – SGL – Plassma :

11. Software Group Leader SGL By Member: htplasma, Plassma :for Vn-zoom Của thủ tục). 5.3 Viết hàm trả về một bảng trong đó cho biết tổng số lượng hàng bán của mỗi mặt hàng. Sử dụng hàm này thống kê xem tổng số lượng hàng (hiện có và đã bán) của mỗi mặt hàng là bao nhiêu. 5.4 Viết trigger cho bảng CHITIETDATHANG theo yêu cầu sau: · Khi một bản ghi mới được bổ sung vào bảng này thì giảm số lượng hàng hiện có nếu số lượng hàng hiện có lớn hơn hoặc bằng số lượng hàng được bán ra. Ngược lại thì huỷ bỏ thao tác bổ sung. · Khi cập nhật lại số lượng hàng đươc bán, kiểm tra số lượng hàng được cập nhật lại có phù hợp hay không (số lượng hàng bán ra không Được vượt quá số lượng hàng hiện có và không được nhỏ hơn 1). Nếu dữ liệu hợp lệ thì giảm (hoặc tăng) số lượng hàng hiện có trong công ty, ngượ lại thì huỷ bỏ thao tác cập nhật. 5.5 Viết trigger cho bảng CHITIETDATHANG sao cho chỉ chấp nhận giá hàng bán ra phải nhỏ hơn hoặc bằng giá gốc (giá của mặt hàng trong bảng MATHANG) 5.6 quản lý các bản tin trong một Website, người ta sử dụng hai bảng sau: Bảng LOAIBANTIN (loại bản tin) CREATE TABLE loaibantin ( maphanloai INT NOT NULL PRIMARY KEY, tenphanloai NVARCHAR(100) NOT NULL , bantinmoinhat INT DEFAULT(0) ) Bng BANTIN (bn tin) CREATE TABLE bantin ( maso INT NOT NULL PRIMARY KEY, ngayduatin DATETIME NULL , tieude NVARCHAR(200) NULL , noidung NTEXT NULL , maphanloai INT NULL FOREIGN KEY REFERENCES loaibantin(maphanloai) ) Trong bng LOAIBANTIN, giá trị cột BANTINMOINHAT cho biết mã số của bản tin thuộc loại tương ứng mới nhất (dược bổ sung sau cùng). Hãy viết các trigger cho bảng BANTIN sao cho: · Khi một bản tin mới được bổ sung, cập nhật lại cột BANTINMOINHAT Của dòng tương ứng với loại bản tin vừa bổ sung. · Khi một bản tin bị xoá, cập nhật lại giá trị của cột BANTINMOINHAT trong bảng LOAIBANTIN của dòng ứng với loại bản tin vừa xóa là mã số của bản tin trước đó (dựa vào ngày đưa tin). Nếu không còn bản tin nào cùng loại thì giá trị của cột này bằng 0. Tổng hợp SQL – SGL – Plassma :

12. Software Group Leader SGL By Member: htplasma, Plassma :for Vn-zoom · Khi cập nhật lại mã số của một bản tin và nếu nó là bản tin mới nhất thì cập nhật lại giá trị cột BANTINMOINHAT là mã số mới. Lời giải 5.1 CREATE PROCEDURE sp_insert_mathang( @mahang NVARCHAR(10), @tenhang NVARCHAR(50), @macongty NVARCHAR(10) = NULL, @maloaihang INT = NULL, @soluong INT = 0, @donvitinh NVARCHAR(20) = NULL, @giahang money = 0) AS IF NOT EXISTS(SELECT mahang FROM mathang WHERE mahang=@mahang) IF (@macongty IS NULL OR EXISTS(SELECT macongty FROM nhacungcap WHERE macongty=@macongty)) AND (@maloaihang IS NULL OR EXISTS(SELECT maloaihang FROM loaihang WHERE maloaihang=@maloaihang)) INSERT INTO mathang VALUES(@mahang,@tenhang, @macongty,@maloaihang, @soluong,@donvitinh,@giahang) 5.2 CREATE PROCEDURE sp_thongkebanhang(@mahang NVARCHAR(10)) AS SELECT mathang.mahang,tenhang, SUM(chitietdathang.soluong) AS tongsoluong FROM mathang LEFT OUTER JOIN chitietdathang ON mathang.mahang=chitietdathang.mahang WHERE mathang.mahang=@mahang GROUP BY mathang.mahang,tenhang 5.3 nh ngha hàm: CREATE FUNCTION func_banhang() RETURNS TABLE AS RETURN (SELECT mathang.mahang,tenhang, CASE WHEN sum(chitietdathang.soluong) IS NULL THEN 0 ELSE sum(chitietdathang.soluong) END AS tongsl Tổng hợp SQL – SGL – Plassma :

Giai Bai Tap Tieng Anh Mai Lan Huong Lop 7

Đang xem: Giai bai tap tieng anh mai lan huong lop 7

Đáp án sách tiếng Anh Mai Lan Hương lớp 8 Đáp án sách tiếng Anh Mai Lan Hương lớp 8 26 64,888 108

Đáp án sách tiếng Anh Mai Lan Hương lớp 9 33 70,296 127

Đáp án sách tiếng Anh Mai Lan Hương lớp 7 45 47,093 38

Đáp án sách tiếng anh mai lan hương lớp 12 33 12,326 9

Đáp án sách Tiếng Anh Mai Lan Hương lớp 10 34 16,884 17

Dap an Ks Tieng Anh 10 -lan 4 1 2,084 0

bài tập trắc nghiệm tiếng anh mai lan hương 68 5,541 1

ngữ pháp tiếng anh mai lan hương bản đẹp 118 4,026 3

NGỮ PHÁP TIẾNG ANH MAI LAN HƯƠNG 118 2,869 0

Ngữ pháp tiếng anh mai lan hương (tái bản 2012) 121 3,286 1

NGỮ PHÁP TIẾNG ANH MAI LAN HƯƠNG 118 1,446 10

5 ĐỀ KIỂM TRA HỌC KỲ II VÀ ĐÁP ÁN MÔN TIẾNG ANH (ĐỀ 1-5) LỚP 8 THAM KHẢO 16 10,046 270

sách bài tập Mai Lan Hương lớp 10 122 17,402 40

đề và đáp án thi tiếng anh hsg khu vực lớp 10 (4) 14 1,517 0

dap an giai thich ngu phap TIENG ANH MAI LAN HUONG 2014 33 1,537 0

Ngu phap tieng anh mai lan huong TOEIC BOOK STORE 119 757 0

ma tran de va dap an hkii tieng anh 8 lan 2 11690 3 221 0

Ngu phap tieng anh mai lan huong 118 148 0

10 đáp án e8 UNIT10 (MLH) MAI LAN HƯƠNG 4 284 4

12 đáp án e8 UNIT 12 MAI LAN HƯƠNG 5 110 0

giai sach tieng anh mai lan huong lop 7 sach tieng anh mai lan huong lop 12 co dap an dap an sach bai tap mai lan huong lop 8 đáp án sách bài tập mai lan hương lớp 9 đáp án sách bài tập mai lan hương lớp 6 sach tieng anh mai lan huong lop 8 dap an sach bai tap mai lan huong lop 6 unit 12 dap an sach bai tap mai lan huong lop 8 unit 10 dap an sach bai tap mai lan huong lop 8 co dap an giai bai tap tieng anh mai lan huong lop 7 đáp án sách bài tập tiếng anh mai lan hương lop 11 bài tập tiếng anh mai lan hương lớp 8 có đáp án dap an bai tap tieng anh mai lan huong lop 12 dap an bai tap tieng anh mai lan huong lop 10 dap an bai tap tieng anh mai lan huong lop 6 xác định các nguyên tắc biên soạn khảo sát các chuẩn giảng dạy tiếng nhật từ góc độ lí thuyết và thực tiễn khảo sát chương trình đào tạo gắn với các giáo trình cụ thể tiến hành xây dựng chương trình đào tạo dành cho đối tượng không chuyên ngữ tại việt nam điều tra đối với đối tượng giảng viên và đối tượng quản lí nội dung cụ thể cho từng kĩ năng ở từng cấp độ sự cần thiết phải đầu tư xây dựng nhà máy phần 3 giới thiệu nguyên liệu từ bảng 3 1 ta thấy ngoài hai thành phần chủ yếu và chiếm tỷ lệ cao nhất là tinh bột và cacbonhydrat trong hạt gạo tẻ còn chứa đường cellulose hemicellulose chỉ tiêu chất lượng theo chất lượng phẩm chất sản phẩm khô từ gạo của bộ y tế năm 2008

bocdau.com.org Yahoo Skype Giúp đỡ Câu hỏi thường gặp Điều khoản sử dụng Quy định chính sách bán tài liệu Hướng dẫn thanh toán Giới thiệu chúng tôi là gì?

Bai Tap Anken Hd Giai Nhanh

CHUYÊN ĐỀ ANKEN ( CTPT: CnH2n n ≥ 2 )I. Lí THUYẾT ANKEN: I- Tính chất vật lí: – Tương tự ankan, nhiều tính chất vật lí của anken biến đổi tương tự ankan theo độ dài của mạch cũng như sự phân nhánh.– Ơ các đồng phân hình học, dạng trans có điểm nóng chảy cao hơn và điểm sôi thấp hơn so với dạng Cis.II- Tính chất hoá họC. – Tính chất đặc trưng nhất của anken là khuynh hướng đi vào phản ứng cộng, ở các phản ứng này liên kết đứt ra để hai nhóm mới gắn vào và cho một hợp chất no: – Một đặc điểm nổi bật của anken là mật độ electron tập trung tương đối cao giữa hai nguyên tử cacbon của nối đôi C = C và trải rộng ra theo hai phía của liên kết ( .Vì vậy các tác nhân mang điện dương tác dụng đặc biệt dễ dàng vào nối đôi C = C. .Phản ứng cộng vào nối đôi chủ yếu là tác nhân mang điện dương và sau nữa là cộng theo cơ chế gốc1. Các phản ứng cộng. A. Phản ứng công tác nhân đối xứng (H2 , X2 …) + Cộng H2 : Tạo thành ankan tương ứng (Anken có mạch C dàng nào thì ankan có dạng mạch đó) CnH2n + H2 ( CnH2n+2 Chú ý dạng : + Cộng X2 : CnH2n + Br2 ( CnH2nBr2 Chú ý phải viết dạng công thức cấu tạo Phản ứng này được dùng để nhận biệt các hợp chất có liên kết đôi.+) Cộng tác nhân bất đối xứng HX ( Với X là Halozen, – OH ….) Nếu anken đối xứng thì sản phẫm chỉ có 1 sản phẫm ( Khi 1 anken cộng HX thu được 1 sản phẫm thì anken có cấu tạo đối xứng + Nếu anken bất đối xứng R1 – CH = CH – R2 Khi cộng tác nhân bất đối xứng vào anken bất đối xứng thì tuân theo quy tắc Maccopnhicop:Khi cộng tác nhân bất đối xứng vào anken bất đối xứng thì phần mang điện tích dương (H+) ưu tiên cộng vào cacbon bậc thấp ( nhiều hiđro hơn) còn tác nhân mang điện tích âm ưu tiên cộng vào cacbon còn lại của liên kết đôi ( ít hiđro hơn). * Cộng nước:

* Cộng axit HX

* Cộng axit HXO : Axit hipohalogenơ cộng hợp vào nối đôi C = C của anken cho ta ankylclohiđrin

2. Phản ứng trùng hợp. Đn: Là quá trình cộng hợp liên tiếp nhiều phân tử nhỏ (monome) tạo thành chất có khối lượng phân tử rất lớn (polime) Với n là hệ số trùng hợp hay hệ số polime hóa n CH2=CH2 (- CH2 – CH2 -)n ( Mpolime = 28n n R1 – CH =CH – R2 ( Viết phương trình chỉ quan tâm nguyên tử C mang liên kết đôi n H=H (-H2 -H -)n R1 R2 R1 R2 3- Phản ứng oxi hoá:* Phản ứng với dung dịch KMnO4 loãng tạo thành điol: Làm mất màu dung dịch KMnO4

Phản ứng làn đứt liên kết đôi: * Phản ứng với dung dịch KMnO4 nóng: Sản phẩm phụ thuộc vào anken (mức độ thế anken) mà tạo thành axit, xeton hay CO2

Phản ứng tạo thành anken oxit ( phản ứng epoxyl hoá). * Oxi không khí, xúc tác Ag, thời gian tiếp xúc 1 – 4 giây.

* Phản ứng cháy : CnH2n + 1,5n O2 ( n CO2 + n H2O ta có: = . III. Điều chế. 1. Tách HX từ dẫn xuất halozen CnH2n+1X CnH2n + HX Phản ứng tách này xảy ra theo quy tắc tách Zaixep.

2. Tách phân tử halogen từ dẫn xuất gemđihalogen ankan. R1 – CHX – CHX – R2 + Zn ( R1 – CH=CH – R2 + ZnCl2 3. Đề hiđrat hoá ancol.CnH2n+1OH CnH2n + H2O Chú ý: CH3OH không có phản ứng này (Khi tách H2O của hỗn hợp 2 ancol chỉ thu được 1 qnken) Tuân theo quy tắc tách HX ( Khi tách HX chỉ thu được 1 anken thì vị trí của X ?) 4. Hi®ro ho¸ ankin. CnH2n-2 + H2 CnH2n

II. PHƯƠNG PHÁP GIẢI BÀI TẬP: 1. Phản ứng đốt cháy: CnH2n + 1,5 n O2 ( n CO2 + n H2O * = và mX = mC + mH ; Khi lập công thức cần thông qua mX hoặc Ví dụ 1: Đốt cháy hoàn toàn agam hỗn hợp eten,propen,but-1-en thu được 52,8g CO2 và 21,6g nước. Giá trị của a là:

A. 18,8g B. 18,6g C. 16,8g* D. 16,4gVí dụ 2: Đốt cháy hoàn toàn agam hỗn hợp eten,propen,but-2-en cần dùng vừa đủ b lít oxi ở đktc thu được 53.76 lit CO2 và 43,2g nước. Giá trị của b là:

A. 92,4 B. 94,2 C. 80,64 * D. 24,9 Hướng dẫn : Bảo toàn cho O ta có: = = 115,2 ( = 3,6 ( V = 80,64Ví dụ 3:Trôn 400 Cm3 hỗn hợp gồm hiđrocacbon X và N2 với 900Cm3 oxi (dư) ,đốt cháy hoàn toàn hỗn hợp thu được 1300Cm3 hỗn hợp khí và hơi.Nếu dẫn hỗn hợp qua CaCl2 còn lại 900Cm3 ,cho qua dung dịch Ca(OH)2 dư còn lại 500 Cm3.Công thức phân tử của X là : A. C2H2 B. C3H6 C. C2H6 D. C2H4Hướng dẫn : = 1300 – 900 = 400 và = 900 – 500 = 400 ( = ( X là anken phản ứng = 400 + 200 = 600 ( Dư 300 ( = 500 – 300 = 200 ( VX = 400 – 200 = 200 ( n = 2Ví dụ 4. Đem đốt cháy hoàn toàn 0,1 mol hỗn hợp X gồm 2 anken là đồng đẳng kế tiếp nhau thu được CO2 và nước có khối lượng hơn kém nhau 6,76 gam. Vậy 2 công thức phân tử của 2 anken đó là: A. C2H4 và C3H6 * B. C3H6 và C4H8 C. C4H8 và C5H10 D. C5H10 và C6H12.Hướng dẫn : = ( 44x – 18x = 6,76 ( x = 0,26 ( = 2,6 ( C2H4 và C3H6Ví dụ 5. Đốt cháy hoàn toàn hỗn hợp gồm 1 ankan và 1 anken. Cho sản phẩm cháy lần lượt đi qua bình 1 đựng P2O5 dư và bình 2 đựng KOH rắn, dư thấy bình I tăng 4,14g, bình II tăng 6,16g. Số mol ankan có trong hỗn hợp là:A. 0,06 B. 0,09 C. 0,03 D. 0,045Hướng dẫn : Với anken = ( (n là do ankan gây ra = 0,23 và = 0,14 ( a = 0,09Ví dụ 6: Hỗn hợp A gồm 1 ankan và 1 anken. Số nguyên tử H trong ankan bằng số nguyên tử C trong anken. Đốt cháy 3 g hỗn hợp A thu được 5,4g H2O. CTPT và % khối lượng các chất trong A là:A. CH4: 46,67%; C4H8 : 53,33% B. CH4: 53,33%; C4H8: 46,67%*C. C2H6: 33,33%; C6H12: 66,67% D. C2H6: 66,67%; C6H12: 33,33%Hướng dẫn : = 0,3 với mA = 3 = 12. + 2. ( = = 0,2 ( nAnkan = 0,3 – 0,2 = 0,1 với mAnkan < 3 ( MAnkan < 30 chọn 16 là CH4 ( Anken C4H8 ( %CH4 = 0,1.16/3 = 0,533Ví dụ 7: Chia hỗn hợp 3 anken: C2H4, C3H6, C4H8 thành 2 phần bằng nhau: – Đốt cháy phần 1 sinh ra 5,4g H2O– Phần 2 cho tác dụng với hiđro (có Ni xúc tác), đốt cháy sản phẩm sau phản ứng rồi dẫn sản phẩm cháy vào bình đựng nước vôi trong dư thì khối lượng kết tủa thu đựơc là:A. 29g B. 30g C. 31g D. 32gHướng dẫn : Với anken = = 0,3 ( Khi đốt thành phần CO2 không đổi ( m↓= 30g 2. Phản ứng với dung dịch Br2: CnH2n + Br2 → CnH2nBr2 Tỷ lệ : nAnken : = 1: 1 Khối lượng tăng của bình bằng khối lượng của anken hoặc hỗn hợp anken Ví dụ 1. Cho hỗn hợp 2 anken liên tiếp trong dãy đồng đẳng đi qua dung dịch Br2, thấy có 80g Br2 phản ứng và khối lượng bình Br2 tăng 19,6g. A. Hai anken đó là:A. C3H6; C4H8 B. C4H8, C5H10 C. C2H4; C3H6 * D. C5H10, C6H12 B. %thể tích của mỗi anken trong hỗn hợp là:A. 20%, 80%* B. 25%, 75% C. 40%, 60% D. 50%, 50%Hướng dẫn : manken = 19,6 g ( = 0,5 = nAnken ( 14 = 19,6 : 0,5 ( = 2,8 ( C2H4 và C3H6 Gọi số mol: x + y = 0,5 và 2x + 3y = 2,8.05 ( x = 0,1 ( %C2H4 = 20% Ví dụ 2: Cho 5,1g hỗn hợp X gồm CH4 và 2 anken đồng đẳng liên tiếp qua dung dịch brom dư thấy khối lượng bình tăng 3,5g, đồng thời thể tích hỗn hợp X giảm một nửA. Hai anken có công thức phân tử là: A. C3H6 và C4H8 B. C2H4 và C3H6 C. C4H8 và C5H10 D. C5H10 và C6H12Hướng dẫn : V giảm ½ ( nAnken = nAnkan = = 0,1 ( Anken = 35 ( = 2,5 ( C2H4 và C3H6 Ví dụ 3: Hỗn hợp A gồm 2 anken đồng đẳng liên tiếp. Đốt cháy hoàn toàn V lít A thu được 13,44 lít CO2 ở đkC. Mặt khác A làm mất màu vừa hết 40g nước Br2. A. CTPT của 2 anken là:A. C2H4, C3H6 * B. C2H4, C4H8 C. C3H6, C4H8 D. C4H8, C5H10 B. Xác định % thể tích mỗi anken tương ứng là. A. 60% và 40%* B. 50% và 50% C. 40% và 60% D. 65% và 35%Hướng dẫn : nAnken = = 0,25 với = 0,25= 0,6 ( = 2,4 ( C2H4, C3H6 Gọi số mol: x + y = 0,25 và 2x + 3y = 2,4.0025 ( x = 0,15 ( %C2H4 = 60%Ví dụ 4: Hỗn hợp khí X gồm 1 ankan và 1 anken. Cho 1,68 lit khí X cho qua dung dịch brom làm mất màu vừa đủ dung dịch chứa brom thấy còn lại 1,12 lit khí. Mặt khác nếu đốt cháy hoàn toàn 1,68 lit khí X rồi cho sản phẩm cháy đi qua bình đựng dung dịch nước vôi trong dư thu được 12,5g kết tủA. Công thức phân tử của các hiđrocacbon lần lượt là:A. CH4, C2H4 B. CH4, C3H6 * C. CH4, C4H8 D. C2H6, C3H6Hướng dẫn : Theo bài ra ta có nhổn hợp = 0,075 mol ( nankan = 0,05 mol ( nanken = 0,025 mol = 0,125 = ( = = 1,67 ( Ankan là CH4 ( n = = 3 Ví dụ 5. Cho 10g hỗn hợp khí X gồm etilen và etan qua dung dịch Br2 25% có 160g dd Br2 phản ứng. % khối lượng của etilen trong hỗn hợp là:A. 70% * B. 30% C. 35,5% D. 64,5%Hướng dẫn : = 0,25 = ( %C2H4 = = 0,7 = 70% Ví dụ 6: Một hỗn hợp gồm một ankan X và một anken Y có cùng số nguyên tử cacbon trong phân tử và số mol. m gam . Hỗn hợp này làm mất màu vừa đủ 80g dung dịch brom 20%. Đốt cháy hoàn toàn m gam hỗn hợp trên thu được 0,6 mol CO2. X và Y có công thức phân tử là:A. C2H4, C2H6 B. C3H6, C3H8 C. C5H10, C5H12 D. C4H8, C4H10 Hướng dẫn : = 0,1 = ( nhổn hợp = 0,2 mol ( số C = = 3 3. Phản ứng cộng H2: CnH2n + H2 ( CnH2n + 2 ( nanken = nankan ( Vì m không đổi ( (n = số mol anken (H2) tham giaVí dụ 1: Hỗn hợp khí X gồm H2 và một anken có khả năng cộng HBr cho sản phẩm hữu cơ duy nhất. Tỉ khốicủa X so với H2 bằng 9,1. Đun nóng X có xúc tác Ni, sau khi phản ứng xảy ra hoàn toàn, thu được hỗn hợp khí Y không làm mất màu nước brom; tỉ khối của Y so với H2 bằng 13. Công thức cấu tạo của anken là A. CH2=CH2. B. CH2=CH-CH2-CH3. C. CH3-CH=CH-CH3. D. CH2=C(CH3)2.Hướng dẫn : = 26 ( Dư H2 ( Dùng công thức ( Chọn n1 = 1 ( n = 0,7 ( (n = 0,3 = nanken = nankan ( = 0,7 dư

Bai Tap Kinh Te Vi Mo Co Loi Giai

Published on

1. Bài 1: Trong những năm 2005, sản xuất đường ở Mỹ: 11,4 tỷ pao; tiêu dùng 17,8 tỷ pao; giá cả ở Mỹ 22 xu/pao; giá cả thế giới 8,5 xu/pao…Ở những giá cả và số lượng ấy có hệ số co dãn của cầu và cung là Ed = -0,2; Es = 1,54. Yêu cầu: 1. Xác định phương trình đường cung và đường cầu về đường trên thị trường Mỹ. Xác định giá cả cân bằng đường trên thị trường Mỹ. 2. Để đảm bảo lợi ích của ngành đường, chính phủ đưa ra mức hạn ngạch nhập khẩu là 6,4 tỷ pao. Hãy xác định số thay đổi trong thặng dư của người tiêu dung, của người sản xuất, của Chính phủ, và số thay đổi trong phúc lợi xã hội. 3. Nếu giả sử chính phủ đánh thuế nhập khẩu 13,5 xu/pao. Điều này tác động đến lợi ích của mọi thành viên ra sao? So sánh với trường hợp hạn ngạch, theo bạn chính phủ nên áp dụng biện pháp gì? Bài giải Qs = 11,4 tỷ pao Qd = 17,8 tỷ pao P = 22 xu/pao PTG = 805 xu/pao Ed = -0,2 Es = 1,54 1. Phương trình đường cung, đường cầu? Pcb? Ta có: phương trình đường cung, đường cầu có dạng như sau: QS = aP + b QD = cP + d Ta lại có công thức tính độ co dãn cung, cầu: ES = (P/QS).(∆Q/∆P) ED = (P/QD). (∆Q/∆P) (1) Trong đó: ∆Q/∆P là sự thay đổi lượng cung hoặc cầu gây ra bởi thay đổi về giá, từ đó, ta có ∆Q/∆P là hệ số gốc của phương trình đường cung, đường cầu  ES = a.(P/QS) ED = c. (P/QD)  a = (ES.QS)/P c = (ED.QD)/P  a = (1,54 x 11,4)/22 = 0,798 c = (-0,2 x 17,8)/22 = – 0,162

4. P S D 22 a t c b d Pw 8..5 0.627 11.4 17.8 19.987 Q Khi chính phủ đánh thuế nhập khẩu thì tác động cũng giống như trường hợp trên. Tuy nhiên nếu như trên chính phủ bị thiệt hại phần diện tích hình c +d do thuộc về những nhà nhập khẩu thì ở trường hợp này chính phủ được thêm một khoản lợi từ việc đánh thuế nhập khẩu ( hình c + d ). Tổn thất xã hội vẫn là 87,487 * So sánh hai trường hợp : Những thay đổi trong thặng dư tiêu dùng và thặng dư sản xuất là như nhau dưới tác động của hạn ngạch và của thuế quan. Tuy nhiên nếu đánh thuế nhập khẩu chính phủ sẽ thu được lợi ích từ thuế. Thu nhập này có thể được phân phối lại trong nền kinh tế ( ví dụ như giảm thuế, trợ cấp …). Vì thế chính phủ sẽ chọn cách đánh thuế nhập khẩu bởi vì tổn thất xã hội không đổi nhưng chính phủ được lợi thêm một khoản từ thuế nhập khẩu.

5. Bài 2: Thị trường về lúa gạo ở Việt Nam được cho như sau: – Trong năm 2002, sản lượng sản xuất được là 34 triệu tấn lúa, được bán với giá 2.000 đ/kg cho cả thị trường trong nước và xuất khẩu; mức tiêu thụ trong nước là 31 triệu tấn. – Trong năm 2003, sản lượng sản xuất được là 35 triệu tấn lúa, được bán với giá 2.200 đ/kg cho cả thị trường trong nước và xuất khẩu, mức tiêu thụ trong nước là 29 triệu tấn. Giả sử đường cung và đường cầu về lúa gạo của Việt Nam là đường thẳng, đơn vị tính trong các phương trình đường cung và cầu được cho là Q tính theo triệu tấn lúa; P được tính là 1000 đồng/kg. 1. Hãy xác định hệ số co dãn của đường cung và cầu tương ứng với 2 năm nói trên. 2. Xây dựng phương trình đường cung và đường cầu lúa gạo của Việt Nam. 3. Trong năm 2003, nếu chính phủ thực hiện chính sách trợ cấp xuất khẩu là 300 đ/kg lúa, hãy xác định số thay đổi trong thặng dư của người tiêu dùng, của người sản xuất, của chính phủ và phúc lợi xã hội trong trường hợp này. 4. Trong năm 2003, nếu bây giờ chính phủ áp dụng hạn ngạch xuất khẩu là 2 triệu tấn lúa mỗi năm, mức giá và sản lượng tiêu thụ và sản xuất trong nước thay đổi như thế nào? Lợi ích của mọi thành viên thay đổi ra sao? 5. Trong năm 2003, giả định chính phủ áp dụng mức thuế xuất khẩu là 5% giá xuất khẩu, điều này làm cho giá cả trong nước thay đổi ra sao? Số thay đổi trong thặng dư của mọi thành viên sẽ như thế nào? 6. Theo các bạn, giữa việc đánh thuế xuất khẩu và áp dụng quota xuất khẩu, giải pháp nào nên được lựa chọn. Bài giải 2002 2003 P 2 2,2 QS 34 35 QD 31 29 1. Xác định hệ số co dãn của đường cung và cầu tương ứng với 2 năm nói trên. Hệ số co dãn cung cầu được tính theo công thức: ES = (P/Q) x (∆QS/∆P) ED = (P/Q) x (∆QD/∆P) Vì ta xét thị trường trong 2 năm liên tiếp nên P,Q trong công thức tính độ co dãn cung cầu là P,Q bình quân. ES = (2,1/34,5) x [(35 – 34)/(2,2 – 2)] = 0,3 ED = (2,1/30) x [(29 – 31)/(2,2 – 2)] = 0,7 2. Xây dựng phương trình đường cung và đường cầu lúa gạo của Việt Nam.

6. Ta có : QS = aP + b QD = cP + d Trong đó: a = ∆QS/∆P = (35 – 34) / (2,2 – 2) = 5 b = ∆QD/∆P = (29 -31) / (2,2 – 2) = -10 Ta có: QS = aP + b  b = QS – aP = 34 – 5.2 = 24 và QD = cP + d  d = QD – cP = 31 +10.2 = 51 Phương trình đường cung, đường cầu lúa gạo ở Việt Nam có dạng: QS = 5P + 24 QD = -10P + 51 3. trợ cấp xuất khẩu là 300 đ/kg lúa, xác định số thay đổi trong thặng dư của người tiêu dùng, của người sản xuất, của chính phủ và phúc lợi xã hội Khi thực hiện trợ cấp xuất khẩu, thì: PD1 = PS1 – 0,3 Tại điểm cân bằng: QD1 = QS1  5PS1 + 24 = -10 (PS1 – 0,3) + 51  PS1 = 2 PD1 = 1,7 QD1 = 34 4. Quota xuất khẩu là 2 triệu tấn lúa mỗi năm, mức giá và sản lượng tiêu thụ và sản xuất trong nước thay đổi như thế nào? Lợi ích của mọi thành viên thay đổi ra sao? Khi chưa có quota , điểm cân bằng thị trường: QS = Q D  5P + 24 = -10P + 51  15P = 27  PO = 1,8 QO = 33 Khi có quota xuất khẩu, phương trình đường cầu thay đổi như sau: QD’ = QD + quota = -10P + 51 + 2 = -10P + 53 Điểm cân bằng mới khi có quota xuất khẩu:

7. QS = QD’  5P + 24 = -10P +53  15P = 29  P = 1,93 Q = 5P + 24 = 33,65 * P S D P = 2,2 P = 2,09 1,93 1,8 D +quota 29 33 33,65 Thặng dư: – ∆ CS = + a + b là phần diện tích hình thang ABCD SABCD = 1/2 x (AB + CD) x AD Trong đó : AD = 2,2 – 1,93 = 0,27 AB = QD(P=2,2) = -10 x 2,2 +51 = 29 CD = QD(P=1,93) = -10 x 1,93 + 51 = 31,7  SABCD = 1/2 x (29 + 31,7) x 0,27 = 8,195  ∆ CS = a + b = 8,195 – ∆ PS = -(a + b + c + d + f) là phần diện tích hình thang AEID SAEID = 1/2 x (AE + ID) x AD Trong đó: AE = QS(P=2,2) = 5 x 2,2 + 24 = 35 ID = QS(P=1,93) = 5 x 1,93 + 24 = 33,65  SAEID = 1/2 x (35 + 33,65) x 0,27 = 9,268 Q

8.  ∆ PS = -(a + b + c + d +f) = -9,268 – Người có quota XK: ∆ XK = d là diện tích tam giác CHI SCHI = 1/2 x (CH x CI) Trong đó: CH =AD = 0,27 CI = DI – AH = 33,65 – QD(P=2,2) = 33,65 – (-10 x 2,2 +53) = 33,65 -31 =2,65  S CHI = 1/2 x (0,27 x 2,65) = 0,358  ∆ XK = d = 0,358 – ∆ NW = ∆ CS + ∆ PS + ∆ XK = 8,195 – 9,268 + 0,358 = -0,715 5. chính phủ áp dụng mức thuế xuất khẩu là 5% giá xuất khẩu, giá cả trong nước thay đổi ra sao? Số thay đổi trong thặng dư của mọi thành viên sẽ như thế nào? Khi chính phủ áp đặt mức thuế xuất khẩu bằng 5% giá xuất khẩu thì giá của lượng xuất khẩu sẽ giảm: 2,2 – 5% x 2,2 = 2,09. – ∆ CS = 1/2 x (29 + QD(P=2,09)) x (2,2 – 2,09) = 1/2 x [29 + (-10 x 2,09 + 51)] x 0,11 = 1/2 x (29 + 30,1) x 0,11 = 3,25 – ∆ PS = – { 1/2 x (AE + QS(P=2,09)) x (2,2 – 2,09) = – {1/2 x [35 + (5 x 2,09 +24)] x 0,11 = – [1/2 x (35 + 34,45) x 0,11)] = -3,82 – Chính phủ: ∆ CP = 1/2 x (2,2 – 2,09) x (QS(P=2,09) – QD(P=2,09)) = 1/2 x 0,11 x (34,45 – 30,1) = 0,239 – ∆ NW = ∆ CS + ∆ PS + ∆ CP = 3,25 -3,82 + 0,239 = -0,33 6. Giữa việc đánh thuế xuất khẩu và áp dụng quota xuất khẩu, giải pháp nào nên được lựa chọn Theo tính toán của câu 4,5 (quota = 2 và TXK = 5% giá xuất khẩu) thì Chính phủ nên chọn giải pháp đánh thuế xuất khẩu. Vì rõ ràng khi áp dụng mức thuế này phúc lợi xã hội bị thiệt hại ít hơn khi áp dụng quota = 2, đồng thời chính phủ thu được 1 phần từ việc đánh thuế (0,39).

10. 3. giải pháp nào có lợi nhất Giải pháp 1: P max = 8đ/đvsp & PNkhẩu lượng sp thiếu hụt = 11đ/đvsp P Toån thaát voâ ích P =14.74 S B P0=9. 8 C D Pmax =8 Thieáu huït Q1s=1.1 4 Q 0 D Q1D = 1.89 Ta có : Pmax = 8đ/đvsp (S) : P = 4 + 3,5Q  8 = 4 + 3,5Q  Q1S = 1,14 Tương tự : thế P = 8đ/đvsp vào (D) (D) : P = 25 – 9Q  8 = 25 – 9Q  Q1D = 1,89 Vậy tổng sản lượng thiếu hụt trong trường hợp này là: Q1D – Q1S = 1,89 – 1,14 = 0,75 Vậy số tiền chính phủ phải bỏ ra để nhập khẩu sản lượng thiếu hụt là: P x ( Q1D – Q1S ) = 11 x 0,75 = 8,25 tỷ Người tiêu dùng tiết kiệm được là: ΔCS = C-B = 1.14*(9.8-8) – (1.68-1.14)*(14.74-9.8) = – 0.616 tỷ Q

15. P S PS1 A C s B P0 =PD1 D Q0 Q1 3. Chính sách nào nên được lựa chọn thích hợp? Chính sách trợ giá sẽ được ưu tiên lựa chọn, vì chính sách này đảm bảo được quyền lợi của người sản xuất và người tiêu dùng. Cả hai chính sách đều làm cho chính phủ chi tiêu nhiều hơn để hỗ trợ cho người sản xuất, và người tiêu dùng. Nhưng nếu dùng chính sách giá tối thiểu, người nông dân sẽ có xu hướng tạo ra càng nhiều sản phẩm dư thừa càng tốt, vì chính phủ cam kết mua hết sản phẩm thừa, thiệt hại không cần thiết cho chính phủ. Để giới hạn sản xuất và đảm bảo được quyền lợi cả hai, chính phủ sẽ chọn giải pháp trợ giá. Q

16. Bài 1: Giả sử độ co dãn của cầu theo thu nhập đối với thực phẩm là 0,5 ; và độ co dãn của cầu theo giá là -1,0. Một người phụ nữ chi tiêu 10.000$ một năm cho thực phẩm và giá thực phẩm là 2$/đv, thu nhập của bà ta là 25.000$. 1. Chính phủ đánh thuế vào thực phẩm làm giá thực phẩm tăng gấp đôi, tính lượng thực phẩm được tiêu dùng và chi tiêu vào thực phẩm của người tiêu dùng này. 2. Giả sử người ta cho bà ta số tiền cấp bù là 5.000$ để làm nhẹ bớt ảnh hưởng của thuế. Lượng thực phẩm được tiêu dùng và chi tiêu vào thực phẩm của phụ nữ này sẽ thay đổi như thế nào? 3. Liệu khoản tiền này có đưa bà ta trợ lại được mức thỏa mãn ban đầu hay không? Hãy chứng minh (minh họa bằng đồ thị) Bài giả i 1. Chính phuû ñaùnh thueá vaøo thöïc phaåm laøm giaù thöïc phaåm taêng gaáp ñoâi, tính löôïng thöïc phaåm ñ öôïc tieâu duøng vaø chi tieâu vaøo thöïc phaåm cuûa ngöôøi tieâu duøng naøy Ta coù coâng thöùc tính ñoä co giaûn cuûa caàu theo giaù E(P)= (Q/ P)x (P/Q) ( 1) do ñeà baøi cho giaù thöïc phaàm taêng gaáp ñoâi töø 2 leân 4 neân ta giaû söû ñoä co giaûn laø co giaûn hình cung vôùi: * Q= (Q+(Q+Q))/2 * P=(P+(P+P))/2 Theá vaøo (1) ta coù: E(P)= (Q/ P) x (2P+P)/(2Q+Q) Theo ñeà baøi ta coù: * E(P)=-1 * P=2 * P=2 * Q=10.000/2 =5000 Theá vaøo ( 2 ) ta tính ñöôïc Q (Q/ 2) x (2×2+2)/(2×5.000+Q) =-1 (2)

18. Theo số liệu bài này, ta thấc C vẫn nằm dưới đường ngân sách ban đầu  nên ta kết luận khoaûn tieàn trợ cấp naøy vẫn không ñöa baø ta trôû laïi ñöôïc möùc thoaû maõn ban ñaàu. Y (I=30.0 00) (I=25.0 00) U 1 100 0 500 750 0 0 U 2 X

19. Bài 4: An có thu nhập ở kỳ hiện tại là 100 triệu đồng và thu nhập ở kỳ tương lai là 154 triệu đồng. Nhằm mục đích đơn giản hóa tính toán, giả định rằng An có thể đi vay và cho vay với cùng 1 lãi suất 10% trong suốt thời kỳ từ hiện tại đến tương lai. 1. Hãy vẽ đường ngân sách, thể hiện rõ mức tiêu dùng tối đa trong hiện tại cũng như trong tương lai. 2. Giả sử An dang sử dụng những khoản thu nhập của mình đúng với thời gian của chúng, hãy biểu diễn bằng đồ thị điểm cân bằng tiêu dùng của anh ta 3. Nếu lãi suất tăng đến 40% thì An có thay đổi quyết định tiêu dùng của mình không? Minh họa bằng đồ thị. 4. Từ câu số 1, giả sử hiện An đang vay 50 triệu đồng để tiêu dùng, anh ta sẽ còn bao nhiêu tiền để tiêu dùng trong tương lai?Nếu lãi suất tăng từ 10% lên 20% thì anh ta có thay đổi mức vay này không?Biễu diễn trên đồ thị. Bài giải 1. Hãy vẽ đường ngân sách, thể hiện rõ mức tiêu dùng tối đa trong hiện tại cũng như trong tương lai. X: thu nhập hiện tại : 100triệu Y: thu nhập tương lai : 154 triệu Lãi suất : r = 10% Ta có : * số tiền mà An có thể tiệu dùng tối đa trong hiện tại là : 100 + 154/(1+r) = 100 + 154 /(1 +0.1) = 240 triệu * số tiền mà An có thể dùng tối đa trong tương lai là: 154 + 100(1+0.1) = 264 triệu Thu nhập tương lai BC1 26 4 15 4 E1 I1 100 Thu nhập hiện tại Đường giới hạn ngân sách của An là đường gấp khúc BC. Khi đó, nếu An sử dụng hết khoản thu nhập hiện tại là 100 triệu thì trong tương lai thu nhập của An sẽ là

22. Thu nhập tương lai 20 9 15 4 99 100 150 Thu nhập hiện tại

23. Bài 5: Một người tiêu dùng điển hình có hàm thỏa dụng U = f(X,Y) trong đó X là khí tự nhiên và Y là thực phẩm. Cả X và Y đều là các hàng thông thường. Thu nhập của người tiêu dùng là $100,00. Khi giá của X là $1 và giá của Y là $1, anh ta tiêu dùng 50 đv hàng X và 50 đv hàng Y. 1. Hãy vẽ đường giới hạn ngân quỹ và trên đường bàng quan tương ứng với tình thế này. Chính phủ muốn người tiêu dùng này giảm tiêu dùng khí tự nhiên của mình từ 50 đv còn 30 đv và đang xem xét 2 cách làm việc này: i. không thay đổi giá khí đốt, nhưng không cho phép người tiêu dùng mua nhiều hơn 30 đv khí đốt ii. Tăng giá khí tự nhiên bằng cách đánh thuế cho tới khi người tiêu dùng mua đúng 30 đv Hãy chỉ ra bằng đồ thị các tác động của 2 đề xuất này lên phúc lợi của cá nhân này. 2. Phương án nào trong 2 phương án này sẽ được người tiêu dùng ưa thích hơn? Hãy giải thích vì sao? Bài giải 1. Vẽ đường giới hạn ngân quỹ và trên đường bàng quan tương ứng với tình thế này. i.Không thay đổi giá khí đốt nhưng không cho phép người tiêu dùng mua nhiều hơn 30 đơn vị khí đốt. Y 100 C B 85 70 A 50 15 30 50 100 X Khi không thay đổi giá khí đốt, đường thu nhập I không thay đổi. Người tiêu dùng chỉ mua khí đốt ở mức cho phép ( không vượt quá 30 đơn vị ) và tăng mua thực phẩm. Ta thấy sự kết hợp tối ưu từ điểm A di chuyển đến điểm B, điểm C,… 20 30 X 50 100

28. P = 31 ngàn USD Sản lượng bán trên từng thị trường: QE = 18.000 – 400 x 31 = 5.600 QU = 5.500 – 100 x 31 = 2.400 Lợi nhuận của BMW khi định giá giống nhau trên 2 thị trường: π = TR – TC Trong đó: TR = Q x P = 8.000 x 31 = 248.000 ngàn USD TC = C + V = 20.000 + (8.000 x 15) = 140.000 ngàn USD  π = TR – TC = 248.000 – 140.000 = 108.000 ngàn USD = 108 triệu USD

29. Bài 5: Với tư cách là chủ một câu lạc bộ tennis duy nhất ở 1 cộng đồng biệt lập giàu có, bạn phải quyết định lệ phí hội viên và lệ phí cho mỗi buổi tối chơi. Có hai loại khách hàng. Nhóm “nghiêm túc” có cầu: Q 1 = 6 – P trong đó Q là thời gian chơi/tuần và P là lệ phí mỗi giờ cho mỗi cá nhân. Cũng có những khách chơi không thường xuyên với cầu Q2 = 3 – (1/2)P Giả sử rằng có 1000 khách hàng chơi mỗi loại. Bạn có rất nhiều sân, do đó chi phí biên của thời gian thuê sân bằng không. Bạn có chi phí cố định là 5000USD/tuần. Những khách hàng nghiêm túc và khách hàng chơi không thường xuyên trông như nhau và như vậy bạn phải định giá giống nhau: 1. Giả sử để duy trì không khí chuyên nghiệp, bạn muốn hạn chế số lượng hội viên cho những người chơi nghiêm túc. Bạn cần ấn định phí hội viên hang năm và lệ phí cho mỗi buổi thuê sân như thế nào?(giả sử 52 tuần/năm) để tối đa hóa lợi nhuận, hãy lưu ý sự hạn chế này chỉ áp dụng cho những người chơi nghiêm túc. Mức lợi nhuận mỗi tuần sẽ là bao nhiêu? 2. Một người nói với bạn rằng bạn có thể thu được nhiều lợi nhuận hơn bằng cách khuyến khích cả hai đối tượng tham gia. Ý kiến của người đó đúng không?Mức hội phí và lệ phí thuê sân là bao nhiêu để có thể tối đa hóa lợi nhuận mỗi tuần? Mức lợi nhuận đó là bao nhiêu? 3. Giả sử sau vài năm số nhà chuyên môn trẻ tài năng chuyển đến cộng đồng của bạn. Họ đều là những khách chơi nghiêm túc. Ban tin rằng bây giờ có 3.000 khách chơi nghiêm túc và 1.000 khách chơi không thường xuyên. Liệu còn có lợi nếu bạn còn tiếp tục phục vụ những khách chơi không thường xuyên?Mức hội phí hang năm và phí thuê sân là bao nhiêu để có thể tối đa hóa lợi nhuận? Mức lợi nhuận mỗi tuần là bao nhiêu?

Download Bai Tap Co Loi Giai Mon Ky Thuat So

Nguyễn Trọng Luật – BM Điện Tử – Khoa Điện-Điện Tử – ĐH Bách Khoa TP. HCM BÀI TP CÓ LI GII – PHN 1 MÔN K THUT S B môn in t i H c Bách Khoa chúng tôi Câu 1 Cho 3 s A, B, và C trong h thng s c s r, có các giá tr: A = 35, B = 62, C = 141. Hãy xác nh giá tr c s r, nu ta có A + B = C. 2 nh ngha giá tr: A = 3r + 5, B = 6r +2, C = r + 4r + 1 2 A + B = C (3r + 5) + (6r + 2) = r + 4r + 1 2 PT bc 2: r – 5r – 6 = 0 r = 6 và r = – 1 (loi) H thng c s 6 : tuy nhiên k t qu cng không hp lý vì B = 62: không ph i s c s 6 Câu 2 S dng tiên và nh lý: a. Chng minh ng thc: A B + A C + B C + A B C = A C VT: A B + A C + B C + A B C = B ( A + A C) + A C + B C = B ( A + C ) + A C + B C ; x + x y = x + y = A B + B C + A C + B C = A B + A C + C ( B + B ) = A B + A C + C = A B + A + C = A ( B + 1) + C = A + C = A C : VP b. Cho A B = 0 và A + B = 1, chng minh ng thc A C + A B + B C = B + C VT: A C + A B + B C = (A + B) C + A B ; A + B = 1 = C + A B = C + A B + A B ; A B = 0 = C + ( A + A ) B = B + C : VP 1 Nguyễn Trọng Luật – BM Điện Tử – Khoa Điện-Điện Tử – ĐH Bách Khoa TP. HCM Câu 3 a. Cho hàm F(A, B, C) có s logic như hình v. Xác nh biu thc ca hàm F(A, B, C). A B . F C . Chng minh F có th thc hin ch bng 1 cng logic duy nht. F = (A + B) C ⊕⊕ B C = ((A + B) C) (B C) + ((A + B) C) (B C) ⊕⊕ = (A + B) B C + ((A + B) + C) (B + C) = A B C + B C + (A B + C) ( B + C) = B C (A + 1) + A B + B C + A BC + C = B C + A B + C (B + A B + 1) = A B + B C + C = A B + B + C = A + B + C : Cng OR b. Cho 3 hàm F (A, B, C), G (A, B, C), và H (A, B, C) có quan h logic vi nhau: F = G ⊕⊕ H ⊕⊕ Vi hàm F (A, B, C) = (0, 2, 5) và G (A, B, C)= (0, 1, 5, 7). Hãy xác nh d ng hoc ca hàm H (A, B, C) (1,0 im) A B C F G H F = G ⊕⊕ H = G H + G H = G ⊕⊕ H ⊕⊕ ⊕⊕ 0 0 0 0 1 0 F = 1 khi G ging H 0 0 1 1 1 1 F = 0 khi G khác H 0 1 0 0 0 1 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 1 H (A, B, C) = (1, 2, 7) = ∏∏ (0, 3, 4, 5, 6) ∏∏ Câu 4 Rút g n các hàm sau bng bìa Karnaugh (chú thích các liên k t) (3, 4, 11, 12) a. F1 (W, X, Y, Z) = theo d ng P.O.S (tích các tng) F1 WX YZ 00 01 11 10 (X + Y) 00 0 0 F1 = ( X + Y ) ( X + Z ) ( Y + Z ) 01 0 0 0 0 (X + Z) Hoc F1 = ( X + Z ) ( Y + Z ) ( X + Y ) 11 0 0 (Y + Z) 10 0 0 0 0 2 Nguyễn Trọng Luật – BM Điện Tử – Khoa Điện-Điện Tử – ĐH Bách Khoa TP. HCM b. F2 (A, B, C, D, E) = (1, 3, 5, 6, 7, 8, 12, 17, 18, 19, 21, 22, 24) + d (2, 9, 10, 11, 13, 16, 23, 28, 29) F2 A 0 1 BC 00 01 11 10 10 11 01 00 DE 00 1 1 1 X X B D E 01 1 1 X X X 1 1 B E F2 = B D E + B D + B E 11 1 1 X X 1 B D 10 X 1 X 1 1 c. Thc hin hàm F2 ã rút g n câu b ch bng IC Decoder 74138 và 1 cng logic F2 (B, D, E) = B D E + B D + B E = ( 1, 2, 3, 4) IC 74138 B C (MSB) Y0 D B Y1 E A (LSB) Y2 F2 Y3 Y4 1 G1 Y5 0 G2A Y6 0 G2B Y7 Câu 5 A B C D F A B C D F Ch s dng 3 b MUX 4 →→ 1, →→ 0 0 0 0 IN0 0 1 0 1 IN5 hãy thc hin b MUX 10 →→ 1 0 0 0 1 IN1 0 1 1 0 IN6 →→ 0 0 1 0 IN2 0 1 1 1 IN7 có b ng hot ng: 0 0 1 1 IN3 1 0 0 0 IN8 0 1 0 0 IN4 1 0 0 1 IN9 Sp x p li b ng hot ng: MUX 4 1 A D B C F IN0 D0 0 0 0 0 IN0 IN2 D1 0 0 0 1 IN2 IN4 D2 Y 0 0 1 0 IN4 IN6 D3 MUX 4 1 0 0 1 1 IN6 C S0 (lsb) D0 0 1 0 0 IN1 B S1 0 1 0 1 IN3 D1 MUX 4 1 0 1 1 0 IN5 IN8 D2 Y F 0 1 1 1 IN7 IN1 D0 IN9 D3 1 0 0 0 IN8 IN3 D1 D S0 (lsb) 1 1 0 0 IN9 IN5 D2 Y A S1 IN7 D3 Ngõ vào IN8 và IN9 c chn C S0 (lsb) ch ph thuc vào A và D B S1 3 Nguyễn Trọng Luật – BM Điện Tử – Khoa Điện-Điện Tử – ĐH Bách Khoa TP. HCM Câu 6 Mt hàng gh gm 4 chic gh ư!c xp theo s như hình v: G1 G2 G3 G4 Nu chic gh có ngư”i ngi thì Gi = 1, ngư!c l i nu còn trng thì bng Gi = 0 (i = 1, 2, 3, 4). Hàm F (G1, G2, G3, G4) có giá tr 1 ch khi có ít nht 2 gh k nhau còn trng trong hàng. Hãy thc hin hàm F ch bng các cng NOR 2 ngõ vào. G1 G2 F G G Lp b ng hot ng: 1 2 GG 3 4 00 01 11 10 G1 G2 G3 G4 F 00 1 1 1 1 0 0 0 0 1 G3 G4 0 0 0 1 1 01 1 0 0 1 G2 G3 0 0 1 0 1 0 0 1 1 1 11 1 0 0 0 0 1 0 0 1 10 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 F = G1 G2 + G2 G3 + G3 G4 1 0 0 0 1 1 0 0 1 1 = G1 + G2 + G2 + G3 + G3 + G4 1 0 1 0 0 1 0 1 1 0 G1 1 1 0 0 1 F 1 1 0 1 0 G2 1 1 1 0 0 1 1 1 1 0 G3 G4 4