Giải Bài Tập Toán Lớp 11 Bài Nhị Thức Newton / Top 12 # Xem Nhiều Nhất & Mới Nhất 3/2023 # Top View | Ictu-hanoi.edu.vn

Nhị Thức Newton Và Phương Pháp Giải Các Bài Tập Về Nhị Thức Newton

, Tra cứu, xem điểm thi vào lớp 10, tốt nghiệp THPT, Đại học – Cao đẳng at Công ty Cổ phần Liên kết giáo dục Việt Nam

Published on

Nhị thức newton và Phương pháp giải các bài tập về Nhị thức newton

1. ĐẠI SỐ 11 NHỊ THỨC NEWTON

3. NHỊ THỨC NEWTON n  (không chứa x khi   0 ) trongTrường hợp riêng: Cho nhị thức P  a ( x )  b ( x) tìm số hạng chứa x khai triển thành đa thức của P   n x m m Phương pháp : Công thức cần lưu ý: x m  xm . n , x m x n  xm n ,  xm n ,n xm xn xn  Giải phương trình tổ hợp (hoặc sử dụng phép tính tổng)để tìm n (nếu giả thuyết chưa cho n) n n  Khai triên: P  a ( x ) n k b ( x ) k  g ( n, k )x f ( n , k ) . k 0 k 0  Do đó số hạng tổng quát trong khai triển là: T  g ( n, k )x f ( n , k ) (số hạng thứ k + 1) k 1  Tk 1  g ( n, k )x f ( n , k )   f ( n, k )    k  k0chứa x Thay k  k 0 vào T  g ( n, k )x f ( n , k ) số hạng cần tìm k 1 Ví dụ 1(A – 2012): Cho n là số nguyên dương thỏa mãn 5C n 1  C3 . Tìm số hạng chứa x5 trong n n  nx 2 1n khai triển nhị thức niu-tơn của P     với x  0 14 x  Bài giải: n  N Điều kiện:  n  3 Ta có: 5C n n 1  Cn 3  5. n !  n! 3!( n  3)!1!( n 1)! 5 1 n  7    n 2  3n  28  0  ( n  3)!( n  2)( n 1) 6.( n  3)!  n 4(loai)  x 2 17 7 k k  x2 n k 1 k 7 ( 1)k k 14 3k Khi n = 7 ta có: P      ( 1) C7       C7 x 2 7k  2 x  k 0  2   x  k 0 Do đó số hạng tổng quát của khai triển là Tk 1  ( 1)k C7k x14 3k27k T chứa x5 14 3k  5  3k  9  k  3 k 1 Vậy số hạng chứa x 5 là T  ( 1) 3 C 3 x 5 35 x 5 27 3 4 7 16 GV:PHAN NHẬT NAM – 0935 334 225 3 www.toanhocdanang.com

4. NHỊ THỨC NEWTON 8 Ví dụ 2( A – 2004)Tìm hệ số của x8 trong khai triển thành đa thức của 1  x 2 1  x . Bài giải: 8 P 1  x 2 8 x 3  (1  x 2 ) 8 ( 1) k C k x3 8k 1 x2  k1  x       8   k 0 8 k 8k    ( 1) k C8 k C k i x 24 3 k x2 i  ( 1)k C8 k C k i x24 3 k 2i k 0 i 0 k 0 i0 Số hạng tổng quát trong khai triển là T  ( 1)k C k C i x24 3 k 2i 8 k 0  k  8  0  i  k T chứa x 8  k , i  N  24  3k  2i  8  0  k  8  3k 16 0   k  2 k , i N  i  3k 16  2 16  k  8  3  k , i  N  3k 16 i  2 k  6  i  1   k  8   i 4 Do đó số hạng chứa x8 là: ( 1) 6 C8 6 C6 1 x 8  ( 1) 8 C8 8 C8 4 x 8  C8 6 C6 1  C8 8 C8 4 x 8  238×8 Vậy hệ số của số hạng chứa x8 là 238 Ví dụ 3: Trong khai triển biể thức F   9 3  3 2 hãy tìm số hạng nguyên. 9 9 9k 3 kTa có: F   3  3 2  C9 k  3 2 có số hạng tổng quát là k 0 T   C k  3 9k 3 2 k k 1 9 Ta thấy bậc của hai căn thức là 2 và 3 là hai số nguyên tố: k  N  6 3  3 3  k  9  k  3  T4  C9  3   2   45360 Do đó Tk 1 là một số nguyên    0 9 9  k 2  9  T  C9 k 3   3 2   8 k 3  10 9   Vậy trong khai triển có hai số hạng nguyên là: T4  4536 và T 10  8 Ví dụ 4: Cho đa thức P(x) = (1 + x) + 2(1 + x)2 + 3(1 + x)3 + … + 20(1 + x)20 Viết lại P(x) dưới dạng : P(x)  a 0  a x  a 2 x2  …  a x19 a 20 x20 . 1 19 Tìm hề số a15 4

6. NHỊ THỨC NEWTON Bài giải Ta có : (1  x) n  Cn 0  Cn 1 x Cn 2 x 2 …  Cn k x k … Cn n 1 x n 1  Cn n xn (1) đúng với x  R Do đó (1) cũng đúng với x = 2. Xét x = 2 khi đó ta có: 1  (1  2) n  Cn 0  2Cn 1  2 2 Cn 2  23 Cn 3 …  2n Cn n Từ giả thuyết ta có: (1  2) n  243  3n  35  n  5 ĐS: n = 5 Ví dụ 3(A – 2005) Tìm số nguyên dương n sao cho: C1  2.2C 2  3.22 C 3  4.23 C 4 …  (2n 1)2 2 n C2 n1  2005 2 n 1 2 n 1 2 n 1 2 n 1 2 n1 Bài giải k k (2 n 1)! (2 n 1)(2 n)! k 1 Ta có: kC 2 n 1    (2 n 1)C2n ( k 1)!(2 n  k 1)!k !(2 n  k 1)! Do đó ta có: C1  2.2C 2  3.22 C 3  4.23 C 4 …  (2n 1)22 n C2 n1 2 n 1 2 n 1 2 n 1 2 n 1 2 n1  (2n 1)C2 0 n  (2n 1)2C2 1 n  (2n 1)2 2 C2 2 n (2n 1)23 C2 3 n …  (2n 1)22 n C2 2 n n    (2 n 1) C2 0 n  2C2 1 n  2 2 C 2 2 n  23 C 2 3 n  …  22 n C2 2 n n    (2 n 1) 1  2 2n  2 n 1  Từ giả thuyết ta có: 2n 1  2005  n 1002 ĐS: n 1002 Ví dụ 4(B – 2003) Cho n là số nguyên dương. Tính tổng sau theo n: S  C 0  2 2 1 C 1  2 3 1 C 2  2 4 1 C 3  …  2n1 1C n n 2 n 3 n 4 n n 1 n Bài giải 1 C k  n !  1 ( n 1)!  1 Ck 1 k 1 n ( k 1) k !( n  k )! n 1 ( k 1)!( n  k )! n 1 n1 S  C 0  2 2 1C 2  2 3 1C 3 2 4 1 C 4  …  2n1 1 C n1 n 1n n 1 n 1 n 1 n1 n 1 n 1 n1 0 1 2 2 3 2 n 1 n 1 1 2 2 n1  C n  2 C n 1  2 C n 1  …  2 C n 1  C n 1  Cn 1  …  Cn1 n 1 n 1 6

7. NHỊ THỨC NEWTON  C 0  1 (1 2)n 1  C 0  C 1 2 1 (11)n1  C 0  C1  n n 1  n 1 n 1  n 1  n 1 n1   1 3n 1 1  2( n 1)  2n 1 1  ( n 1)  3n 1 2n1 n 1 n 1 n 1 ĐS: S  3n 1 2n1 n 1 Ví dụ 5(A – 2007) Với n là số nguyên dương, Ck là số tổ hợp chập k của n phần tử. n Chứng minh rằng : 1 C 2 1 n  1 C 2 3 n  1 C 2 5 n  …  1 C2 2 n n1  2 2n 1 2 4 2 n 2 n 16 Bài giải Ta có : 1 C 2 k n  2 n !  1 (2 n 1)! 1)!(2 n  k )!k 1 ( k 1) k !(2 n  k )! 2 n 1 ( k Do đó : VT  1 C 2 1  1 C 2 3 n  1 C 2 5 n  …  1 C2 2 n n1 2 n 4 6 2n 1 0 2 4 6 2n  C2 n 1  C2 n 1  C2 n 1  C2 n 1  …  C2 n1 2n 1 Ta lại có: C 0 C2 n 1 , C 2 C2 n 1 , C 4 C2 n 3 , 2 n 1 2 n 1 2 n 1 2 n 1 2 n 1 2 n 1  1 Ck 1 2 n 1 2 n1 1  S 1 (1) 2n 1 2n 1 ,C 2 n  C1 2 n 1 2 n1 Suy ra 0 2 2 n  2 n 1 2 n1 1 2 S  C2 n 1  C2 n 1  …  C2 n 1  C 2 n 1 C 2 n 1  …  C2 n1 0 1 2 2 n 2 n 1 2 n1 2 2 n 1  2.2 2n C 2 n 1 C 2 n 1 C 2 n 1  …  C2 n 1  C2 n1  1 1  S  22n Thay vào (1) ta có: VT  2 2n 1 (đpcm) 2 n 1 Ví dụ 5 Tìm hệ số của x7 trong khai triển thành đa thức của (2 – 3x)2n biết rằng : C1  C 3  C 5  …  C 2n1 1024 2n1 2n1 2n1 2n1 Ví dụ 6:Cho m, n, p nguyên dương sao cho p  n, p  m p 0p 1 p1 2 p2 p1 1 p 0 Chứng minh rằng : Cnm  Cn Cm  Cn Cm  Cn Cm  …  Cn Cm  Cn Cm  1 n Ví dụ 7: Biết rằng trong khai triển  x   ,Tổng các hệ số của 2 số hạng đầu tiên là 24. x  Cmr : tổng các hệ số của lũy thừa nguyên dương của x là một số chình phương ? GV:PHAN NHẬT NAM – 0935 334 225 7 www.toanhocdanang.com

8. NHỊ THỨC NEWTON Ví dụ 8: Rút gọn tổng sau , từ đó tìm số hạng chứa x: S ( x )  1  x  2(1  x ) 2  3(1  x ) 3  4(1  x ) 4 …  n(1  x)n 3. Xác định xác định hệ số lớn nhất trong khai triển: Phương pháp : n n  Khai triển nhị thức và biến đổi về dạng P   f ( n, k ).x g ( n , k )  ak xk k 0 k 0 từ đó suy ra hệ số ak  f ( n, k) (thông thường giả thuyết cho trước n hoặc k nên trong ak chỉ có một biến)  ak a k 1  k0  ak là hệ số lớn nhấtak là hệ số lớn nhất   k ak  ak 1 0 Ví dụ 1(A- 2008) Cho khai triển 1  2 x n  a0  a1 x  a2 x 2  …  a n xn , trong đó n  N * và các hệ số a0 , a1 , a2 ,…, an thỏa mãn hệ thức : a0 a 1 a 2 an    …   40962 4 2n Tìm số lớn nhất trong các số a0 , a1 , a2 ,…, an Bài giải 1  2 x n  Cn 0  Cn 1 x  C n 2 x 2 …  C n n x n  a0  a1 2 x  a2 2 2 x 2 …  a n 2 n x n  a k  2k Cn k với k 1, n a a a  C 0  2C 1 2 2 C 2 2n C n  C 0  C 1  C 2  …  C n  (1 1) n  2n Do đó: a  1  2 …  n n  n  …  n 2 n 2n 0 24 n 2 4 n n n n Kết hợp giả thuyết ta có: 2 n  4096  2 n  212  n 12 Khi đó : a  2k Ck k 12 ak a k 1  kk k 1 k 1 2 C12  2 C12 ak là số lớn nhất   a k 1  2 k C k  2k 1 Ck 1 a k   12 12  2.12!  12!  2  1   k )! ( k 1)!(13  k )! kk !(12  13  k  12! 2.12!  1 2     k !(12  k )! ( k 1)!(11  k )!   k k 1 12 Mà k là số nguyên nên ta có: k  8 Vậy hệ số lớn nhất trong khai triển là: a8  28 C12 8 126720  23  k  26  3 3  GV:PHAN NHẬT NAM – 0935 334 225 8 www.toanhocdanang.com

9. NHỊ THỨC NEWTON BÀI TẬP TỰ GIẢI Bài 1:(ĐH BK Hà Nội – 1999) Tính tổng : S  C1 n  2Cn 2  3Cn 3  4Cn 4  …  (1)n1.nCn n Trong đó n là số tự nhiên lớn hơn 2 Bài 2:(ĐH QG Hà Nội – 1999) Tìm số hạng không chứa x trong khai triển của biểu thức sau : 17  1  P(x)    4 x 3  , x ≠ 0  3 x2     28  n  Bài 3:(ĐH SP Hà Nội K A – 2000) Trong khai triển nhị thức  x 3 x  x 15    n n1 n 2  79Hãy tìm số hạng không phụ thuộc vào x, biết rằng Cn  Cn  Cn Bài 4:(ĐH SP Hà Nội K D – 2000) Biết tổng tất cả các hệ số của khai triển nhị thức  x2 1n  bằng 1024, Hãy tìm hệ số của số hạng chứa x12 trong khai triển trên Bài 5:(ĐH SP chúng tôi K A – 2000) Tính tổng : S = Cn 0  1 C 1 n  1 Cn 2  …  1 Cn n 2 3 n  1 Bài 6:(ĐH KTQD K A -2000) Chứng minh :2 n1 C 1 n  2 n1 Cn 2  2 n 3 Cn 3  2 n 4 Cn 4  …  nCn n  n.3 n1 Bài 7:(ĐH Nông nghiêp I K A – 2000)Tìm hệ số của số hạng chứa x31 trong khai triển của  1  40 f (x )  x  x 2   Bài 8:(ĐH Nông nghiêp I K A – 2000) Cho biểu thức: P ( x )  1  x 9  1  x 10  1  x 11 …  1 x14 có khai triển là : P( x )  a0  a1 x  a2 x 2 …  a14 x14 . Hãy tìm hệ số a9 GV:PHAN NHẬT NAM – 0935 334 225 9 www.toanhocdanang.com

10. NHỊ THỨC NEWTON Bài 9:(ĐH Y Dược chúng tôi – 2000) Với n là số nguyên dương, hãy chứng minh các hệ thức sau: 1. Cn 0  C 1 n  Cn 2  …  C n n = 2n 1 3 5  2n1 0 2 4  2n 2. C2n  C2n  C2n  C2n = C2n  C2n  C2n  C2n Bài 10:(ĐH An ninh nhân dân KDG – 2000) Tính tổng : S  C2000 0  2C2000 1  3C2000 2  4C2000 3 …  2001C2000 2000 Bài 11:(HV Kỹ thuật quân sự – 2000) Khai triển nhị thức: P ( x )  1  2x12 thành đa thức ta có: P( x )  a0  a1 x  a2 x 2 …  a12 x12 Tìm Max  a0 , a1 , a2 ,…, a12  Bài 12:(ĐH CSND KA – 2000) Tìm hệ số của số hạng chứa x5 trong khai triển của biểu thức P ( x )  1  x 4  1  x 5  1  x 6  1 x7 Bài 13: Tính tổng : S  2 16 C0 6  2 25 C1 6  2 34 C6 2  2 43 C6 3  2 52 C6 4  6 2 C6 5  7 1 C6 6 1 n Bài 14:( ĐH luật khối D 2001) Chứng minh rằng với mọi số x ta đều có: xn   Ck n (2x  1)k n 2 k 0 Bài 15:( ĐH Ngoại thương A – 2001) Với n là số tự nhiên, Tính tổng: 0 1 1 1 2 2 1 3 3 1 n n S  Cn Cn .2  C n .2  C n .2  …  C .2 2 3 4 n  1 n Bài 16: Chứng minh rằng: C 0 2n  C 2 2n .3 2  C 4 2n .3 4  …  C 2n 2n .3 2n  2 2n1 (2 2n  1) Bài 17:( ĐH Luật chúng tôi A – 2001) Chứng minh rằng với mọi số tự nhiên n ≥ 1, ta đều có: C 1 n .3 n1  chúng tôi 2 .3 n 2  chúng tôi 3 .3 n 3  …  n.C n n = n.4n-1  10 Bài 18:( ĐH SP Hà nội A – 2001) Trong khai triển của nhị thức 1 2  thành đa thức:P(x)   x3 3   a  a x  a x 2  a x 3 …  ax10 Hãy tìm hệ số a k lớn nhất ( 0  k  9 ) 01 2 3 10 10

13. NHỊ THỨC NEWTON 1 n 26  7 Bài 38: Tìm hệ số của số hạng chứa x trong khai triển nhị thức Newton của   x  ,4  x  biết rằng: C 1 2n1  C2n 2 1  …  C n 2n1  2 20 1 Bài 39:Tính tổng S = chúng tôi 0  2.C1 n  chúng tôi 2  …  (n 1).Cn n A1 A1 A1 A1 1 2 3 n1 Biết rằng n là số nguyên dương thỏa mãn điều kiện : Cn 0  C 1 n  Cn 2  211 Bài 40:Khai triển biểu thức (1 – 2x)n thành đa thức ta có dạng: P( x )  a  a x  a x 2 …  a xn . Tìm số hạng chứa x5 , biết rằng: a  a  a  71 0 1 2 n 012  2 1 n  Bài 41:Tìm số hạng không chứa x trong khai triển nhị thức x   , x 3   biết rằng: C 1 n  Cn 3  13n (n là số nguyên lớn hơn 2, x  0 ). Bài 42:Tìm n  N sao cho: C 0 4n 2  C4n 2 2 C4n 4 2  … C4n 2n 2  256     20 10  1   3 1 Bài 43:ChoA  x    x   .2 x x    Sau khi khai triển và rút gọn biểu thức A sẽ gồm bao nhiêu số hạng Bài 44:Tìm n  N thỏa mãn: 0 2 2 2k 2k 2n 2 2n 2 2n 2n 15 16 C 2n  C2n 3  …  C2n 3  …  C2n 3  C2n 3  2 (2  1) Bài 45: Chứng minh rằng: Cn 0 3 n  C 1 n 3 n1  …  (1) n C n n  Cn 0  C 1 n  …  C n n Bài 46: Tìm hệ số của số hạng chứa x 29 y8 trong khai triển nhị thức Newton : x 3  xy 15 13

15. NHỊ THỨC NEWTON n Bài 4: Ta có: (x2 + 1) n =  Cnk x2k (1) k 0 Số hạng tổng quát của khai triển là T  C k x2k k 1 n T chứa x12  2k 12  k  6 k 1 n Trong (1) cho x = 1 thì  C n k = 2n k 0 n Theo giả thuyết   Ckn = 1024  2n = 1024  n = 10 k 0 Vậy hệ số cần tìm là: C10 6 = 210. Bài 5: 1 (1 x)n1 1 2n1 1n * Ta có: I = (1 x) dx  n  1 n  1 0 0 1  1 x 2 n xn1  1 * I = 0 1 n n = 0  (Cn Cn x  …  Cn x )dx Cn x  Cn  …  Cn 2 n 1   0   0 0 1 1 1 2 1 n = Cn  Cn  Cn …  Cn = S 2 3 n 1 Vậy: S = 2n1  1. n  1 Bài 6: Ta có: (1 + x)n = Lấy đạo hàm hai vế : n(1 + x)n-1 = C1 n  2Cn 2 x  3Cn 3 x 2  4Cn 4x 3 … nCn nxn 1 Thay x = 2 1 , ta được: 3 n1 n 2n1  C1 n  2Cn 2 .2 1  3Cn 3 2 2  4Cn 4 .2 3  …  nCn n 2 n1  2n1C1n  2n1Cn2  3.2n 3 Cn3  4.2n 4 Cn4  …  nCnn  n.3n1 15 Cn0  C1n x  Cn2 x 2  Cn3 x 3  Cn4 x 4 …  Cnnxn

16. NHỊ THỨC NEWTON Bài 7:  1 40 40 k k  1 40  k 40 k 3k 80  x   =  C40 x .   =  C 40 x 2 2  x  k 0  x  k 0 Số hạng tổng quát của khai triển là T  C k x3 k 80 k 1 40 Tk 1 chứa x31  3k 80  31  k  37 Heä soá cuûa x31 laø Ck40 vôùi k thoaû maõn ñieàu kieän: 3k – 80 = 31  k = 37 Vậy hệ số của số hạng chứa x31 là C 37 40  C 3 40  40.39.38 = 40.13.19 = 9880.1.2.3 Bài 8: a 9  1 C10 9  C11 9  C12 9  C13 9  C14 9 = 1 + C 1 10  C11 2  C12 3  C13 4  C14 5 = 1 + 10 + 11.10 12.11.10  13.12.11.10  14.13.12.11.10 = 3003 2 6 24 120 Bài 9: 1. (1 + x)n = Cn 0  C 1 n x  Cn 2 x 2  …  C n nx n Cho x = 1  Cn 0  C1 n  Cn 2  …  Cn n = 2n 2. (1 – x)2n = C 0 2n  C 1 2n x  C2n 2 x 2  C 3 2n x 3  …  C2n 2n x 2n Cho x = 1  đpcm. Bài 10: Ta có: x  1 2000  2000 Ck2000xk (1)    k 0 2000 Trong (1) cho x = 1 ta được  Ck 2000 = 22000 k 0 2000 Đạo hàm 2 vế của (1) theo x, ta có: 2000.(x + 1)1999 =  i.Ci2000 xi 1 i 1 2000 Cho x = 1 ta được:  chúng tôi 2000 = 2000.21999 = 1000.22000 i 1 2000 2000 Do đó: S =  Ci2000   i.Ci2000 = 1001.2 2000 . i 0 i 1 16

17. NHỊ THỨC NEWTON Bài 11: 12 12 P ( x )  (1  2 x )12  C12 k 2 k x k  a0  a1 x  a2 x 2 …  a12 x12  a k xk  ak  C12 k 2k k 0 k 0 ak a k 1 13 16 ak  Max a0 ; a1 ; a2 ;…; an   a k 1   k   a k 3 3 Max a0 ;a1;a 2 ;…;an  a 8  C128 = 126720   Bài 12: Hệ số của số của số hạng chứa x5 trong khai triển biểu thức là: (x + 1)4 + (x + 1)5 + (x + 1)6 + (x + 1)7 là : C5 5  C6 5  C7 5 = 1 + 6!  7! = 285!1! 5!2! Bài 13: 1 (x  2)7 1 37  27 1. I = (x 6 = 2) dx 7 7 0 0 2. Ta có: 1 I = (x  2)6 dx = 0 1 = C 0 6 .2 6  C 1 6 2 5 x  C 6 2 2 4 x 2  C 3 6 2 3 x 3  C 4 6 2 2 x 4  C 5 6 2x 5  C 6 6x 6 dx 0 26 25 24 23 22 1  0 1 2 2 3 3 4 4 5 2 5 6 1 6 7 =  C6 x  C6 x  C6 x  C6 x  C6 x  C6 x  C6 x 1 2 3 4 5 6 7   0   = 2 1 6 C0 6  2 2 5 C1 6  2 3 4 C6 2  2 4 3 C3 6  2 5 2 C6 4  6 2 C6 5  7 1 C6 6 = S Vậy: S = 37  27 7 Bài 14: Nếu u = 2x – 1, ta được: n n u  1 1 k k (*)      Cnu2 n   2 k 0 n  (u + 1)n =  Ckn uk  điều phải chứng minh. k 0 17

18. NHỊ THỨC NEWTON Bài 15: Có 1 Ck 1 2 1 2 .2k  Cnk .xk 1  Cnk xk dxk 1 n 2(k  1) 0 2 0 1 1 1 10 1 2 2 3 3 n n  S = Cn  Cn .2  Cn .2  Cn .2 …  Cn.2 2 3 4 n 1 n 1 k k n 1 2 k k 1 2 n k k =  Cn .2  Cn x dx    C n x  dx =  2 k 0 k  1 k 02 k 0    0 0    12 n 1(x  1)n1 2 3n1  1 = (x  1) dx  . =2 2 n  1 2(n 1) 0 0 Bài 16: Ta có: (1 + 3)2n = C 0 2n  C 1 2n .3 1  C2n 2 .3 2 …  C2n 2n .3 n (1 – 3)2n = C 0 2n  C 1 2n .3 1  C2n 2 .3 2 …  C2n 2n .3 n Cộng vế theo vế hai đẳng thức trên ta được: 42n + 22n = 2 C 0 2n  C 2 2n .3 2  …  C 2n 2n .3 2n  Từ đó ta có:C0 2n  C2 2n .32  C4 2n .34  …  C2n 2n .32n  22n1(22n  1) Bài 17: Xét hàm số: f(x) = (x + 3)n = Cn 0 3 n  C 1 n .3 n1 x  …  C n n.x n Ta có: f(x) = n(x + 3)n-1 = C1 n .3n1  2Cn 2 .3n 2 x … nCn nxn 1 Cho x = 1, ta được: f(1) = n.4n-1 = C 1 n .3 n1  chúng tôi 2 .3 n 2  3.C 3 n .3 n 3 … n.C n n (đpcm) Bài 18: k 1 k 1 kk Ta có : ak 1  ak  C 10 .2  C10.2  k ≤ 2(11 – k)  k ≤ 1 2  (k  1)!(11 k)! k!(10  k)! 22 3 Vậy hệ số lớn nhất là: a7 = 1 .C10 7.27 .10 3 18

19. NHỊ THỨC NEWTON Bài 19: 2001 Ta có: (x + 1) 2001 =  C k 2001.x k k 0 2001 (-x + 1) 2001 =  Ck2001.(  x)k k 0 Cộng vế theo vế hai đẳng thức trên ta được: (x + 1)2001 + (-x+ 1)2001 = 2 C0 2001  x 2C2 2001  x 4C4 2001  …  x 2000C2000 2001  Cho x = 3 ta được: 42001  C 0 2001  3 2 C 2 2001  3 4 C 4 2001  …  3 2000 C 2000 2001  2 2000 (2 2001 1) Bài 20: 3 1 n! n! n(n 1)(n  2) Từ Cn  5Cn ta có n ≥ 3 và  5   5n3!(n  3)! (n  1)! 6 2 n 4 (loaïi)  n  – 3n – 28 = 0   n  7  x 1 x  3 Với n = 7 ta có:C7 3 2 2 3 = 140  35.22x-2.2-x = 1402  2x-2 = 4  x = 4. Vậy n = 7, x = 4. Bài 21: n Ta có: (x + 1)n =  Ckn xk k 0 n Cho x = 2 ta được: 3n =  Ck n 2k  3n = 243  n = 5. k 0 Bài 22: Ta có: a k 1  ak  a k 1 (1) (1 ≤ k ≤ n – 1) 2 9 24  Cnk 1  Cn k  Cnk 1 2 9 24 1 n! 1n! 1 n!    2 (k  1)!(n  k  1)! 9 k!(n  k)! 24 (k  1)!(n  k  1)! 19 – 2 2001 = 2 C02001  32 C22001  34 C42001  …  32000 C20002001 

20. NHỊ THỨC NEWTON  2.(k – 1)!(n – k + 1)! = 9.k!(n – k)! = 24.(k + 1)!(n – k – 1)!    2.(n – k +1)(n – k) = 9.k(n – k) = 24.(k + 1)k   2n  2 2(n  k  1)  9k k     11  9(n  k)  24(k  1)  3n  8 k   11  Để tồn tại k thỏa mãn (1) thì 3n – 8 = 2n + 2  n = 10. Bài 23: Ta có: (x + 1)10 = x10 + C 1 10 x 9  C10 2 x 8  C10 3 x 7  …  C10 9 x 1  (x + 1)10 (x + 2) = x11 + C1 10 x10  C10 2 x9  C10 3 x8  …  C10 9 x 2  x + 2  x10  C1 10 x 9  C10 2 x 8  C10 3 x 7  …  C10 9x 1 = x11 + C110  2  x10  C102  C110 .2  x 9  C103  C102.2  x 8  …  + C10 9  C10 8.2  x2 +C10 10  C10 9.2  x + 2 = x11 + a1 x10 + a2 x9 + … + a11 Vậy a5 = C10 5  2C10 4 = 672. Bài 24: n1 n  7(n  3) n1 n n  7(n  3)Ta có: C n 4  Cn 3   C n 3  C n 3  C n 3  (n  2)(n  3) = 7(n + 3)  n + 2 = 7.2! = 14  n = 12. 2! Số hạng tổng quát của khai triển là: 5 12k 60 11k C12 k (x 3 )k x   C12 kx2 2 60 11k 60  11k Ta có: x 2 = x8  = 8  k = 4. 2 Do đó hệ số của số hạng chứa x8 là C 12 4 12!  = 495.4!(12  4)! Bài 25: Ta có: (1 + x)n = Cn 0  C 1 n x  Cn 2 x 2  …  C n nx n 2 2  (1  x)n dx  Cn0  C1n x  Cn2 x 2  …  Cnn xn dx  20

21. NHỊ THỨC NEWTON  1 n1 2  0 1 x 2 2 x3 n xn1  2 (1 x) Cn x  Cn  Cn  …  Cn  n  1 1  2 3 n  1 1 0 22 1 1 23 1 2 2n1 1 n = 3n1  2n1  Cn  Cn  Cn …  Cn 2 3 n  1 n  1 2 3 n  1 n  1 Bài 26: Ta có: (x2 + 1)n = (x + 2)n = Dễ dàng kiểm tra được n = 1, n = 2 không thỏa mãn điều kiện bài toán. Với n ≥ 3 thì x3n-3 = x2nxn-3 = x2n-2xn-1 Do đó hệ số của x3n-3 trong khai triển thành đa thức của: (x2 + 1)n(x + 2)n là a = 2 3 .Cn 0 .Cn 3 2.C 1 n.C 1 n 3 n3 2n(2n2  3n  4) n  5  a3 n3 = 26n   26n   73 n  (loaïi) 2  Vậy n = 5. Bài 27: Ta có khai triển : (x + 1) 2n 0 2n 1 2n1 2 2n 2 2n 12n = C2n x  C2nx  C2nx  …  C 2n x  C2n Cho x = -1 ta được: 0 1 2 3 4 2n1 2n 0 = C 2n  C2n  C2n  C2n  C2n  …  C2n  C2n 1 3 2n1 0 2  2n  C2n  C2n  …  C2n  C2n  C2n …  C2n Bài 28: x  1  x  2 x  3 1. Điều kiện :  x  3  x  N  x  N  x! x! = 9×2 – 14xPT  x + 6  6 2!(x  2)! 3!(x  3)!  x + 3x(x – 1) + x(x – 1)(x – 2) = 9×2 – 14x Cn 0 x 2n  C 1 n x 2n 2  Cn 2 x 2n 4  …  C n n Cn0 xn  2C1nxn1  22 Cn2 xn 2  23 C3n xn 3 …  2n Cnn

22. x  0 (loaïi) 2 – 9x + 14) – 0   x  7 (loaïi)  x = 2 x(x x  2  21 GV:PHAN NHẬT NAM

23. NHỊ THỨC NEWTON 2.  Caùch 1: * Ta có: (1 – x) 20 = C020  C120 x  C202 x 2 …  C1920 x19  C2020 x20 Cho x = 1 ta có: C020  C120  C220  …  C1920  C2020 = 0  C 0 20  C20 2  …  C20 20  C 1 20  C 3 20  …  C 19 20 Nên : A = C 0 20  C20 2  …  C20 20 ; B = C 1 20  C 3 20 … C 19 20  A = B (1) * Ta coù: (1 + x)20 = C 0 20  C 1 20 x  C20 2 x 2 …  C 19 20 x 19  C 20 20 x 20 Cho x = 1 ta coù: C 0 20 C 1 20  C20 2  …  C 19 20  C 20 20 = 220  A + B = 220 (2) Từ (1) và (2) suy ra A = 220 = 219 (đpcm). 2 k k 1 k 0  1, ta được: Cách 2: Áp dụng công thức Cn 1  Cn  Cn và Cn  C 1 20  C 3 20  C 5 20  …  C 17 20  C 19 20 = = C19 0  C19 1  C19 2  C19 3  C19 16  C19 17  C19 18  C19 19 = (1 + 1)19 = 219. Bài 29: 0 n 0 1 n 1 2 n1 Do Cn  Cn  1 nên ta có: Cn Cn chúng tôi  chúng tôi Áp dụng BĐT côsi ta có: 1 2 n 1 1 2 n1 n1  Cn  Cn  …  Cn   CnCn chúng tôi   n  1  n Áp dụng khai triển (a + b)n =  Cnk ak bnk với a = b = 1, ta có: k 0 0 1 2 n = 2 n 1 2 n1 = 2 n – 2Cn  Cn  Cn  …  Cn  Cn  Cn  …  Cn 1 2 n 1  n n1 2  2   Suy ra: CnCn chúng tôi   (đpcm). n  1 Cn0  C1n x  Cn2 x 2  Cn3 x 3  …  Cnnxn

24.   Bài 30: 1. Ta có: (1 + x)n = Đạo hàm hai vế , ta được: 22

25. NHỊ THỨC NEWTON n(1 + x)n-1 =C 1 n  2Cn 2 x  3Cn 3 x 2  …  nC n nx n 1 Cho x = -1 0 = Vậy S = 0. 2. Ta có : (1 + x)n = Cn 0  C 1 n x  Cn 2 x 2  Cn 3 x 3  …  C n nx n 1 1  (1  x)ndx  Cn0  C1n x  Cn2 x 2  Cn3 x 3  …  Cnn xn dx  0 0 (1 x)n1 1  0 1 1 2 1 2 3 1 n n 1  1    Cn x  Cn x  Cn x  …  Cn x  n  1 0  2 3 n  1  0  2n1 1 Cn 0  1 C 1 n 1Cn 2  …  1 Cn n n  1 2 3 n  1 Do đó: T = 2n1  1 n  1 n  N, n  2 n n1 n 2  79   n(n  1)  n = 12Ta có: C n  Cn  Cn  1  n   79  2 Vậy: T = 2 13  1. 13 Bài 31: 2003 P(x) = (16x – 15)2003 =  Ck2003(16x)2003  k ( 15)k k 0 2003 =  Ck2003 (16)2003 k ( 15)k x2003 k k 0 Các hệ số trong khai triển P(x) thành đa thức là: ak = C k 2003(16) 2003 k (15) k 2003 2003 Vậy: S =  ak   Ck2003 (16)2003 k ( 15)k = (16 – 15)2003 = 1 k 0 k 0 Bài 32:  1 2 15 15  1 15 k  2  k 15 2k  k  k k Ta có:   x  =  C15    x   C15 x3 3 3 3 15   k 0     k  0 3 Gọi ak là hệ số của số hạng chứa xk trong khai triển: 23 C1n  2Cn2  3Cn3  4Cn4  …  (1)n1nCnn

27. NHỊ THỨC NEWTON điều kiện: 28  7k  0  k = 412 Vậy số hạng không chứa x cần tìm là: C7 4 = 35. Bài 36: Ta có : (1 + x)2n+1 = Đạo hàm hai vế ta có: (2n + 1)(1 + x) 2n 1 2 3 2  …  (2n 2n1 2n = C2n 1  2C2n 1x  3C2n 1x  1)C2n 1x     Thay x = -2, ta có: 1 2 2 3  …  (2n 2n 2n1 = 2n + 1C 2n 1  2.2C2n 1  3.2 C2n 1  1)2 C2n 1     Theo giả thuyết ta có: 2n + 1 = 2005  n = 1002. Bài 37: Ta có: (1 + x) 2n+1 0 1 2 2 3 3 2n1 2n1 = C 2n 1  C2n 1x  C2n 1x  C2n 1x  …  C2n 1x      Cho x = 1 ta có: 2 2n+1 = 0 1 2 3 2n 1 (1)C 2n 1  C2n 1  C2n 1  C2n 1  …  C2n 1      0 1 2 3 2n1 Cho x = -1 ta có: 0 = C2n 1  C2n 1  C2n 1 C2n1  … C2n 1 (2)      Lấy (1) – (2)  2 2n+1 = 1 3 2n1 2  C 2n1  C2n 1  …  C 2n 1   22n 1 3 2n1 = 1024  2n = 10= C 2n 1  C 2n 1  …  C2n 1    10 Ta có: (2 – 3x)10 =  ( 1)k C10k 210  k (3x)k k 0 Suy ra hệ số của x7 là C10 7 3 7 2 3 Bài 38:  Từ giả thuyết ta suy ra: C 0 2n 1  C 1 2n 1  C 2 2n 1  …  C n 2n 1  2 20 (1)     k 2n1k , k, 0 ≤ k ≤ 2n + 1 neân:Vì C2n 1  C2n 1   0 1 2 n 1 0 1 2 2n1 C 2n1  C2n1  C2n1  …  C2n1   C 2n1  C 2n1  C 2n1  …  C2n1 (2)2 Khai triển nhị thức Newton của (1 + 1)2n+1 suy ra: 0 1 2 2n1 2n1  2n1 (3)C 2n 1  C2n 1  C2n 1  …  C2n 1  (1 1) 2     Từ (1), (2), (3) suy ra: 22n = 220  n = 10. 25 C0 C1xC2x2C3x3…C2n1x2n12n1 2n1 2n1 2n1 2n1

28. NHỊ THỨC NEWTON 1 10 10 k 10  7 k 4 10 k 7 k 11k 40 x  Ta có:   x    C10 (x )   C10x4  x  k 0 k 0 Hệ số của số hạng chứa x26 là C10 k với k thỏa mãn: 11k-40 = 26  k = 6 Vậy hệ số của x26 là C10 6 = 210. Bài 39: 0 1 2 n  N,n  2 n  N,n  2     n = 20Cn  Cn  Cn  211   n(n  1)  2 1  n   211 n  n 420  0   2   (k  1).Cn k (k  1)Cn k k (k = 1, 2, …, n)  CnA 1 (k  1)! k 1 k! Do đó: với n =20 ta có: S =C 0 20  C 1 20  …  C20 20 = 220 . Bài 40: Số hạng thứ k + 1 trong khai triển (1 – 2x)n là: Tk+1 = Cn k (2) k .x k Từ đó ta có: a0 + a1 + a2 = 71  Cn 0  2C 1 n  4Cn 2  71 n N, n  2 n  N, n  2    n(n  1)    n = 7  2 1 2n  4  71 n  2n 35  0   2   Với n = 7, ta có hệ số của số hạng chứa x5 trong khai triển (1 – 2x)n là: a = C7 5 (2) 5 = – 672. 5 Bài 41: Ta có: C 1 n  Cn 3  13n  n  n(n 1)(n  2)  13n 6  n 2 – 3n – 70  n  10  n 7 (loaïi) Số hạng tổng quát của khai triển là: Tk 1 = C10 k (x 2 ) 10 k (x 3 ) k  C k 10x 20 5k Tk 1 không chứa x  20 – 5k = 0  k = 4 Vậy số hạng không chứa x là: T5 = C 10 4 = 210.

31. NHỊ THỨC NEWTON Bài 45: Theo khai triển nhị thức Newton : (a + b)n = Cn 0 an  C1 nan1 b  …  Cn nbn  với a = 3, b = – 1  2n = (3 – 1)n = Cn 0 3n  C1 n 3n1  …  ( 1)n Cn n  với a = 1, b = 1  2n = (1 + 1)n = Cn 0  C 1 n  …  Cn n Vậy : Cn 0 3 n  C 1 n 3 n1  …  (1) n C n n  Cn 0  C 1 n  …  C n n k k 45 2k k 45  2k  29 Bài 46: Số hạng tổng quát: C15(1) x  y   k = 8 k  8  Vậy hệ số của số hạng chứa x29y8 là : C15 8 = 6435. GV:PHAN NHẬT NAM GV:PHAN NHẬT NAM

Bt Nhị Thức Newton Cực Hay Có Lời Giải Nhi Thuc Nuiton Doc

Bµi 1 : Tìm các số hạng không chứa trong khai triển nhị thức Niutơn của với .

Bµi 2 : Tìm hệ số của số hạng chứa trong khai triển nhị thức Niutơn của

, biết rằng

Bµi 3 : Trong khai triển của thành đa thức

, hãy tìm hệ số lớn nhất .

Bµi 4 : Tìm số hạng thứ bảy trong khai triển nhị thức: ;

Biết rằng trong khai triển đó và số hạng thứ tư bằng . Tìm .

Bµi 6 : Tìm hệ số của số hạng số hạng chứa trong khai triển nhị thức Niutơn của

, biết rằng:

Bµi 7 : Tìm hệ số của trong khai triển thành đa thức của

Bµi 8 : Khai triển biểu thức ta được đa thức có dạng . Tìm hệ số của , biết .

Bµi 9 : Tìm hệ số của trong khai triển đa thức:

Bµi 10 : Tìm hệ số của số hạng chứa trong khai triển nhị thức Niutơn của , biết:

Bµi 11 : Tìm số hạng không chứa trong khai triển nhị thức , biết rằng

Bµi 1 2 : Tìm hệ số của trong khai triển của thành đa thức.

Bµi 13 : Tìm hệ số của số hạng chứa trong khai triển nhị thức Niutơn của

Bµi 14 : Tìm hệ số của trong khai triển của

Bµi 15 : Trong khai triển thì hệ số của số hạng là:

Bµi 1 6 : Cho khai triển: . Tìm hệ số của số hạng chứa trong khai triển.

Bµi 17 : Cho khai triển: . Tìm số hạng chứa trong khai triển.

Bµi 18 : Cho khai triển sau : . Tìm hệ số của

Bµi 19 : Cho khai triển: . Biết n là số nguyên dương nghiệm đúng phương trình : . Tìm hệ số của số hạng chứa .

Bµi 20 : Có bao nhiêu số hạng hữu tỷ trong khai triển của biểu thức:

Bµi 21 : Có bao nhiêu số hạng hữu tỷ trong khai triển:

Bµi 22 : Cho .Biết hệ số của số hạng thứ 3 trong khai triển là 328. Tìm hệ số của số hạng thứ 5.

Bµi 2 3 : Tìm hệ số của trong khai triển ?

B µi 24 : Xác định n sao cho trong khai triển nhị thức : hạng tử thứ 11 là số hạng có hệ số lớn nhất.

Bµi 25 : Trong khai triển sau có bao nhiêu số hạng hữu tỷ :

Bµi 2 6 : Tìm hệ số của trong khai triển

Bµi 28: Với là số nguyên dương , chứng minh hệ thức sau:

Bµi 29: Tính tổng: + +…..+

Bµi 30: Tính tổng: + +…..

Bµi 31: Tìm sao cho:

Bµi 32: Chứng minh hệ thức sau:

Bµi 37: Tìm số nguyên dương n sao cho

Bµi 38: Tính giá trị của biểu thức :

, biết rằng

a) Tính tích phân :

b) Tính tổng số :

bµ i 43 : CMR

Bµi 1: Từ giả thiết suy ra : (1)

(2)

Tõ suy ra: (3)

Từ (1),(2),(3) suy ra :

Hệ số của là với thỏa mãn: . Vậy hệ số của là .

. Vậy hệ số lớn nhất : .

Bµi 4: Số hạng thứ 7 :

Bµi 5: Từ ta có và

( loại) hoặc .

Bµi 6: Ta có .

Ta có . hệ số của là

Bậc của trong 3 số hạng đầu nhỏ hơn 8; bậc của trong 4 số hạng cuối lớn hơn 8. Vậy chỉ có trong các số hạng thứ tư, thứ năm , với hệ số tương ứng là :

Bµi 8: Từ đó ta có :

Với , ta có hệ số của trong khai triển là

Bµi 9: Số hạng chứa là: hệ số cần tìm là 3320

Bµi 11 :

không chứa . Vậy số hạng không chứa là

Vậy hệ số tương ứng là :

Hệ số của là với k thỏa mãn . Vậy hệ số của là

Bµi 14: Số hạng tổng quát : .

Theo đề bài ta có : 3k +l = 5

Để số hạng là hữu tỷ thì: . Do mà k chia hết cho 4 nên .

Vậy có 31 số hạng hữu tỷ trong khai triển.

Bµi 28 : Ta có:

Cho , ta có:

.

. Vậy có

Bµi 32 : . Vãi .

Với

. §PCM

Bµi 35:

Cộng lại ta được

Cho

Cho

Suy ra :

Bµi 37: Ta có : , cho ta được

Trừ vế với vế của hai đẳng thức trên ta có:

Bµi 40 : Ta có (1)

(2)

Bµi 41: Xét khai triển: .

b)

Bµi 46: Ta có: .

Điều kiện: .

Bµi 47: §iÒu kiÖn

* thỏa mãn phương trình . Vậy phương trình có nghiệm : .

Ta có :

Phương trình đã cho

Vậy phương trình có nghiệm:

Bí Kíp Tìm Hiểu Về Nhị Thức Newton Và Các Dạng Bài Tập Thường Gặp Mà Bạn Không Thể Bỏ Lỡ

Nhị thức Newton là công thức toán học vô cùng nổi tiếng. Công thức là một sự đóng góp lớn lao của Nhà bác học Newton vào sự phát triển của toán học cao cấp, đặc biệt trong các phép tính với các đại lượng vô cùng nhỏ.

Giới thiệu về định lý Nhị thức Newton

Theo các văn bản được lưu giữ từ 200 năm trước Công nguyên cho thấy, từ rất lâu trước đây các nhà toán học Ấn Độ đã rất quen thuộc với một bảng tam giác số học. Trong tác phẩm được viết năm 1303 của nhà toán học Chu Sinh – Trung Quốc, bảng tam giác số học đó cũng được tìm thấy.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 1 0 1 0 5 1

1 6 1 5 2 0 1 5 6 1

1 7 2 1 3 5 3 5 2 1 7 1

1 8 2 8 5 6 7 0 5 6 2 8 8 1

Thực tế, Newton không phải là người đầu tiên tìm ra công thức này. Trước Newton, có rất nhiều nhà toán học khác đã tìm ra nó như nhà toán học người Anh Bô-rít-gôn (1624), nhà toán học người Pháp Fermat (1636), nhà toán học người Pháp Pascal (1654). Newton chỉ mới tìm ra công thức này năm 1665, khi đó ông 22 tuổi.

Công thức nhị thức Newton:

Mặc dù công thức được tìm ra không mới, nhưng người ta vẫn lấy tên Newton để đặt tên cho nhị thức này là do ý nghĩa lớn lao của nó. Khác với những nhà toán học trước đó, Newton đã phát triển công thức này, không chỉ dừng lại ở việc áp dụng công thức này cho các số mũ nguyên dương mà nó còn được áp dụng cho cả các số mũ bất kỳ: số dương, số âm, số nguyên, phân số. Chính nhờ ý nghĩa lớn lao đó, hiện nay, trên bia mộ của Newton được đặt tại tu viện Westminster người ta in hình Newton cùng nhị thức này.

Tại Việt Nam, công thức Nhị thức Newton được áp dụng đưa vào giảng dạy tại chương trình lớp 11 phần đại số và giải tích.

Công thức nhị thức Newton

Số các số hạng của công thức là: n+1

Tổng số mũ của a và b trong mỗi số hạng luôn bằng số mũ của nhị thức:

(n – k) + k = n

Các hệ số nhị thức có cách đều hai số hạng đầu, cuối thì bằng nhau.

Các dạng đặc biệt của nhị thức Newton

Nếu trong trường hợp ta gắn cho a, b những giá trị đặc biệt thì ta sẽ thu được những công thức đặc biệt. Cụ thể:

Từ triển khai này ta có kết quả sau:

Cách giải bài tập nhị thức Newton

Ví dụ 1: Tìm hệ số của trong khai triển đa thức:

Ta có:

Số hạng chứa tương ứng với số hạng chứa k thỏa 10 + k = 15 k = 5

Như vậy, hệ số của số hạng có chứa là

Chọn một khai triển phù hợp, ở đây a là hằng số.

Sử dụng các phép biến đổi đại số hoặc áp dụng lấy đạo hàm, tích phân.

Căn cứ vào điều kiện bài toán, thay x bởi một giá trị cụ thể.

Ví dụ 1: (D-02) Tìm số nguyên dương n thoả mãn hệ thức:

Ví dụ 2. (D-08) Tìm số nguyên dương n thoả mãn hệ thức:

Chọn lần lượt x = 1 và x = -1 ta có.

Các dạng bài tập tương tự

1. Tìm hệ số của trong khai triển thành đa thức của biểu thức:

4. Tìm hệ số của số hạng chứa trong khai triển biểu thức:

5. Cho khai triển:

7. Tính tổng.

Chương Ii. §3. Nhị Thức Niu

Chương II. §3. Nhị thức Niu-tơn

Truong cao dang su pham yen bai – Thanh pho yen bai, Yen bai Trang bìa Trang bìa: TRƯỜNG THPT TRẦN NHẬT DUẬT-YÊN BÌNH Người soạn: Ma ĐÌnh Khải Giáo án: Đại số 11 Tiết 27 Bài 3: Nhị thức Niu Tơn Bài cũ Câu 1: Kiểm tra bài cũ Nhắc lại công thức tổ hợp: Nhắc lại các tính chất của tổ hợp: Câu 2: Áp dụng tính Câu 3: Nhắc lại các hẳng đẳng thức Câu 4 : Viết các hằng đẳng thức dưới dạng tổ hợp Câu 5: Từ đó suy ra trường hợp tổng quát Đó chính là công thức nhị thức Niu Tơn Bài mới I,Công thức nhị thức Niu Tơn: Công thức nhị thức Niu Tơn I, Công thức nhị thức Niu Tơn Chú ý: Trong biểu thức ở vế phải của công thức (1) Số các hạng tử là: ? + Số các hạng tử là: n +1 Các hạng tử có số mũ của a ? + Các hạng tử có số mũ của a giảm dần từ n đến 0 số mũ của b ? số mũ của b tăng từ 0 đến n tổng các số mũ của a và b trong mỗi hạng tử ? tổng các số mũ của a và b trong mỗi hạng tử luôn bằng n (Qui ước ) Các hệ số của mỗi hạng tử cách đều hai hạng tử đầu và cuối ? + Các hệ số của mỗi hạng tử cách đều hai hạng tử đầu và cuối thì bằng nhau Số hạng tổng quát của khai triển ( thứ k+1) có dạng ? + Số hạng tổng quát của khai triển ( thứ k+1) có dạng: Tk+1= Hệ quả: Hệ quả Nếu a=b=1 thì (1) có dạng: ? Nếu a=b=1 thì (1) có dạng: Nếu a=1,b=-1 thì (1) có dạng: ? Nếu a=1,b=-1 thì (1) có dạng: Áp dụng: Tính: Giải: Luỹ thừa của x: ? Luỹ thừa của 2: ? Số các tổ hợp: ? II, Tam giác Pa-Xcan: Tam giác PA – XCAN Khi cho n=0,1,2,… và sắp xếp chúng thành dòng ta có: :1 :1 1 :1 2 1 :1 3 3 1 :1 4 6 4 1 :1 5 10 10 5 1 :1 6 15 20 15 6 1 :1 7 21 35 35 21 7 1 Tam giác Pa-Xcan: Tam giác Pa-Xcan Theo công thức (1) khi cho n=0,1,2,…và sắp xếp các hệ số thành dòng ta được một tam giác gọi là tam giác Pa-Xcan 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Nhận xét: Từ công thức suy ra cách tính các hệ số ở mỗi dòng dựa vào các số ở mỗi dòng trước nó Chẳng hạn: = 4+6 = 10 =6 + 15 = 21 Áp dụng Câu 1: Chọn câu trả lời đúng Số hạng không chứa x trong khai triển: là: A A: B: C: D: 6 1 20 15 Giải: Sử dụng công thức có Vì số hạng không chứa x nên Kq: D Câu 2: Khaỉ triển các công thức sau a, b, Giải: a, b, Củng cố Củng cố bài: Qua bài học cần nắm: + Công thức khai triển Niu Tơn: + Nắm được quy luật trong tam giác Pa-Xcan + Bài tập về nhà: 1,2,3,4,5,6 (SGK-T57,58) Chào Cám ơn: XIN TRÂN TRỌNG CẢM ƠN