Bài 5 Ôn Tập Chương 1 Giải Tích 12

Bài 8 ôn Tập Chương 1 Giải Tích 12, Bài 5 ôn Tập Chương 1 Giải Tích 12, Bài 9 ôn Tập Chương 1 Giải Tích 12, Bài 4 ôn Tập Chương 3 Giải Tích 12, Bài 6 ôn Tập Chương 1 Giải Tích 12, Bài 3 ôn Tập Chương 3 Giải Tích 12, Đề Kiểm Tra Chương 2 Giải Tích 12, Tài Liệu ôn Tập Chương 1 Giải Tích 12, Hãy Phân Tích ưu Nhược Điểm Và Phạm Vi ứng Dụng Của Pp Giải Tích Và Pp Mô Ph, Phân Tích Những Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Trong Giai Đoạn Hiện Nay, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Hộp Chữ Nhật, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Lập Phương, Phân Tích Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Trong Sạch Vững Mạnh Trong Giai Đoạn Hiện Nay, Chương 5 Phân Tích Chi Phí Lợi ích, Bài Tập Chương 2 Phân Tích Báo Cáo Tài Chính, Chương 3 Phân Tích Tài Chính, Chương 6 Phân Tích Tài Chính, Chương 5 Phân Tích Báo Cáo Tài Chính, Chương 4 Phân Tích Và Thiết Kế Dữ Liệu, Chương 3 Phân Tích Công Việc, Giải Bài Tập ôn Tập Chương 3 Đại Số 9, Giải Bài Tập ôn Tập Chương 2, Giải Bài Tập ôn Tập Chương 3 Đại Số 12, Giải Bài Tập ôn Tập Chương 4 Đại Số 12, Giải Bài Tập ôn Tập Chương 3 Lớp 7, Giải Bài Tập ôn Tập Chương 4, Giải Bài Tập ôn Tập Chương 3, Giải Bài Tập ôn Tập Chương 4 Đại Số 10, Giải Bài Tập ôn Tập Chương 6, Giải Bài Tập ôn Tập Chương Iii Đại Số 9, Giải Bài Tập Lý 11 Chương 4, Giải Bài ôn Tập Chương 2 Lớp 6, Giải Bài ôn Tập Chương 1 Đại Số 8, Giải Bài Tập Chương 5 Vật Lý 12, Giải Bài Tập Chương 4 Vật Lý 12, Giải Bài Tập Chương 4 Vật Lý 10, Giải Bài Tập Hóa 9 Chương 4, Giải Bài Tập ôn Tập Chương 4 Đại Số Lớp 11, Giải Bài ôn Tập Chương 1 Đại Số 7, Chương 3 Phân Tích Tài Chính Doanh Nghiệp, Chương 2 Phân Tích Kết Quả Sản Xuất Kinh Doanh, Chương 2 Phân Tích Và Thiết Kế Công Việc, Chương 5 Phân Tích Hành Vi Khách Hàng, Chương 2 Phân Tích Môi Trường Bên Ngoài Của Starbucks, Giải Bài ôn Tập Chương 1 Hình Học 8, Giải Bài ôn Tập Chương 1 Hình Học 7, Giải Bài Tập ôn Tập Chương 4 Toán 9, Giai Bai Tap Toan Roi Rac Chuong 1, Giải Bài ôn Tập Chương 1 Hình Học 10, Bài Giải Kinh Tế Vi Mô Chương 2, Giải Bài 2 ôn Tập Chương 1 Hình Học 11, Giải Bài Tập Toán Lớp 6 Chương 2, Giải Bài Tập Kinh Tế Vĩ Mô Chương 4, Giải Bài Tập Chương 2 Sinh Học 12, Giải Bài Tập Kinh Tế Vĩ Mô Chương 2, Giải Bài Tập Chương Halogen, Giải Bài Tập ôn Tập Chương 1 Hình Học 10, Giải Bài Tập ôn Tập Chương 2 Hình Học 11, Giải Bài Tập ôn Tập Chương 2 Hình Lớp 10, Giải Bài Tập Chương 5 Kinh Tế Vĩ Mô, Giải Bài Tập Kinh Tế Vĩ Mô Chương 3, Bài Tập Kinh Tế Vi Mô Chương 3 Có Giải, Bài Giải ôn Tập Chương 1 Hình Học 12, Giải Bài Tập ôn Tập Chương 3 Hình 8, Giải Bài Tập Chương 3 Kinh Tế Vĩ Mô, Giải Bài Tập Chương 2 Sinh Học 12 Cơ Bản, Giải Bài Tập ôn Tập Chương 3 Toán Đại 12, Giải Bài Tập Xử Lý Tín Hiệu Số Chương 1, Giải Toán 11 Bài 1 Chương 4, Giải Bài Tập ôn Tập Chương 3 Hình Học 12, Giải Bài Tập ý Nghĩa Văn Chương, Giải Bài Tập Xác Suất Thống Kê Đại Học Chương 1, Bài Giải Xác Suất Thống Kê Chương 3, Bài Giải Xác Suất Thống Kê Chương 1, Bài Giải Kế Toán Quản Trị Chương 4 Ueh, Giải Bài Tập Chương 2 Sinh Học 12 Nâng Cao, Giải Bài Tập Chương 1 Sinh Học 12 Nâng Cao, Giải Bài Tập Xác Suất Thống Kê Chương 1, Bài Giải Xác Suất Thống Kê Chương 2, Bài Giải Xác Suất Thống Kê Chương 4, Bài Giải Xác Suất Thống Kê Chương 5, Giải Bài Tập Nguyên Lý Kế Toán Chương 5, Giải Bài Tập Nguyên Lý Kế Toán Chương 4, Giải Bài Tập Nguyên Lý Kế Toán Chương 3, Giải Bài Tập Nguyên Lý Kế Toán Chương 1, Giải Bài 20 Tổng Kết Chương 1 Điện Học, Giải Bài Tập Xác Suất Thống Kê Chương 5, Giải Bài Tập Chương 7 Euh Kế Toán Quản Trị, Bài Giải Kế Toán Quản Trị Ueh Chương 3, Giải Bài Tập Kinh Tế Lượng Chương 2, Giải Nghĩa Từ Bảng Cửu Chương, Giải Bài Tập Xác Suất Thống Kê Chương 2, Giải Bài Tập Quản Trị Tài Chính Chương 2, Bài Tập Giải Tích 1, Đại Số Và Giải Tích 11, Bài 4 Giải Tích 12, Giải Tích – Tập 1, Giải Tích 1 7e, Giải Tích 1, Giải Tích,

Bài 8 ôn Tập Chương 1 Giải Tích 12, Bài 5 ôn Tập Chương 1 Giải Tích 12, Bài 9 ôn Tập Chương 1 Giải Tích 12, Bài 4 ôn Tập Chương 3 Giải Tích 12, Bài 6 ôn Tập Chương 1 Giải Tích 12, Bài 3 ôn Tập Chương 3 Giải Tích 12, Đề Kiểm Tra Chương 2 Giải Tích 12, Tài Liệu ôn Tập Chương 1 Giải Tích 12, Hãy Phân Tích ưu Nhược Điểm Và Phạm Vi ứng Dụng Của Pp Giải Tích Và Pp Mô Ph, Phân Tích Những Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Trong Giai Đoạn Hiện Nay, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Hộp Chữ Nhật, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Lập Phương, Phân Tích Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Trong Sạch Vững Mạnh Trong Giai Đoạn Hiện Nay, Chương 5 Phân Tích Chi Phí Lợi ích, Bài Tập Chương 2 Phân Tích Báo Cáo Tài Chính, Chương 3 Phân Tích Tài Chính, Chương 6 Phân Tích Tài Chính, Chương 5 Phân Tích Báo Cáo Tài Chính, Chương 4 Phân Tích Và Thiết Kế Dữ Liệu, Chương 3 Phân Tích Công Việc, Giải Bài Tập ôn Tập Chương 3 Đại Số 9, Giải Bài Tập ôn Tập Chương 2, Giải Bài Tập ôn Tập Chương 3 Đại Số 12, Giải Bài Tập ôn Tập Chương 4 Đại Số 12, Giải Bài Tập ôn Tập Chương 3 Lớp 7, Giải Bài Tập ôn Tập Chương 4, Giải Bài Tập ôn Tập Chương 3, Giải Bài Tập ôn Tập Chương 4 Đại Số 10, Giải Bài Tập ôn Tập Chương 6, Giải Bài Tập ôn Tập Chương Iii Đại Số 9, Giải Bài Tập Lý 11 Chương 4, Giải Bài ôn Tập Chương 2 Lớp 6, Giải Bài ôn Tập Chương 1 Đại Số 8, Giải Bài Tập Chương 5 Vật Lý 12, Giải Bài Tập Chương 4 Vật Lý 12, Giải Bài Tập Chương 4 Vật Lý 10, Giải Bài Tập Hóa 9 Chương 4, Giải Bài Tập ôn Tập Chương 4 Đại Số Lớp 11, Giải Bài ôn Tập Chương 1 Đại Số 7, Chương 3 Phân Tích Tài Chính Doanh Nghiệp, Chương 2 Phân Tích Kết Quả Sản Xuất Kinh Doanh, Chương 2 Phân Tích Và Thiết Kế Công Việc, Chương 5 Phân Tích Hành Vi Khách Hàng, Chương 2 Phân Tích Môi Trường Bên Ngoài Của Starbucks, Giải Bài ôn Tập Chương 1 Hình Học 8, Giải Bài ôn Tập Chương 1 Hình Học 7, Giải Bài Tập ôn Tập Chương 4 Toán 9, Giai Bai Tap Toan Roi Rac Chuong 1, Giải Bài ôn Tập Chương 1 Hình Học 10, Bài Giải Kinh Tế Vi Mô Chương 2,

Giải Toán Lớp 12 Ôn Tập Chương 3 Giải Tích 12

Bài 1 (trang 126 SGK Giải tích 12):

a) Phát biểu định nghĩa nguyên hàm của hàm số f(x) trên một khoảng.

b) Nêu phương pháp tính nguyên hàm từng phần. Cho ví dụ minh họa.

Lời giải:

a) Cho hàm số f(x) xác định trên K ( k là nửa khoảng hay đoạn của trục số). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F‘(x)=f(x) với mọi x thuộc K.

Định lý: Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì:

– Với mỗi hằng số C, F(x) + C cũng là một nguyên hàm của hàm số trên f(x) trên K.

– G(x) cũng là một nguyên hàm của hàm số f(x) trên K thì tồn tại một hằng số C sao cho G(x) = F (x) +C

b)

*Đổi biên số:

Nếu ∫f(u)du=F(u)+C va u(x) là hàm số có đạo hàm liên tục thì:

∫f(ux) u‘(x)dx=F(u(x))+C

*Tính nguyên hàm từng phần:

Nếu hai hàm số u= u(x) và v = v(x) có đạo hàm liên tục trên K thì:

Hay ∫udv=uv- ∫vdv.

Bài 2 (trang 126 SGK Giải tích 12):

a) Phát biểu định nghĩa tích phân của hàm số f(x) trên một đoạn.

b) Nêu các tính chất của tích phân. Cho ví dụ minh họa.

Lời giải:

Cho hàm số y= f(x) liên tục trên [a; b], F(x) là một nguyên hàm của f(x) trên [a; b]. Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu là ∫ ab f(x)dx.

Ta gọi ∫ ab là dấu tích phân, a là cận dưới, b là cận trên, f(x)dx biểu thức dưới dấu tích phân, f(x) là hàm số dưới dấu tích phân.

2.Các tính chất

Bài 3 (trang 126 SGK Giải tích 12): Tìm nguyên hàm của các hàm số sau:

Xét hình phẳng D giới hạn bởi y=2√(1-x 2 ) và y=2(1-x)

a) Tính diện tích hình D

b) Quay hình D xung quanh trục Ox. Tính thể tích khối tròn xoay được tạo thành.

Lời giải:

(A). 0

(B). -π

(C). π

(D). π/6

Lời giải:

Bài 6 Ôn Tập Chương 1 Giải Tích 12

Bài 8 ôn Tập Chương 1 Giải Tích 12, Bài 5 ôn Tập Chương 1 Giải Tích 12, Bài 9 ôn Tập Chương 1 Giải Tích 12, Bài 4 ôn Tập Chương 3 Giải Tích 12, Bài 6 ôn Tập Chương 1 Giải Tích 12, Bài 3 ôn Tập Chương 3 Giải Tích 12, Đề Kiểm Tra Chương 2 Giải Tích 12, Tài Liệu ôn Tập Chương 1 Giải Tích 12, Hãy Phân Tích ưu Nhược Điểm Và Phạm Vi ứng Dụng Của Pp Giải Tích Và Pp Mô Ph, Phân Tích Những Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Trong Giai Đoạn Hiện Nay, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Hộp Chữ Nhật, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Lập Phương, Phân Tích Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Trong Sạch Vững Mạnh Trong Giai Đoạn Hiện Nay, Chương 5 Phân Tích Chi Phí Lợi ích, Bài Tập Chương 2 Phân Tích Báo Cáo Tài Chính, Chương 3 Phân Tích Tài Chính, Chương 6 Phân Tích Tài Chính, Chương 5 Phân Tích Báo Cáo Tài Chính, Chương 4 Phân Tích Và Thiết Kế Dữ Liệu, Chương 3 Phân Tích Công Việc, Giải Bài Tập ôn Tập Chương 3 Đại Số 9, Giải Bài Tập ôn Tập Chương 2, Giải Bài Tập ôn Tập Chương 3 Đại Số 12, Giải Bài Tập ôn Tập Chương 4 Đại Số 12, Giải Bài Tập ôn Tập Chương 3 Lớp 7, Giải Bài Tập ôn Tập Chương 4, Giải Bài Tập ôn Tập Chương 3, Giải Bài Tập ôn Tập Chương 4 Đại Số 10, Giải Bài Tập ôn Tập Chương 6, Giải Bài Tập ôn Tập Chương Iii Đại Số 9, Giải Bài Tập Lý 11 Chương 4, Giải Bài ôn Tập Chương 2 Lớp 6, Giải Bài ôn Tập Chương 1 Đại Số 8, Giải Bài Tập Chương 5 Vật Lý 12, Giải Bài Tập Chương 4 Vật Lý 12, Giải Bài Tập Chương 4 Vật Lý 10, Giải Bài Tập Hóa 9 Chương 4, Giải Bài Tập ôn Tập Chương 4 Đại Số Lớp 11, Giải Bài ôn Tập Chương 1 Đại Số 7, Chương 3 Phân Tích Tài Chính Doanh Nghiệp, Chương 2 Phân Tích Kết Quả Sản Xuất Kinh Doanh, Chương 2 Phân Tích Và Thiết Kế Công Việc, Chương 5 Phân Tích Hành Vi Khách Hàng, Chương 2 Phân Tích Môi Trường Bên Ngoài Của Starbucks, Giải Bài ôn Tập Chương 1 Hình Học 8, Giải Bài ôn Tập Chương 1 Hình Học 7, Giải Bài Tập ôn Tập Chương 4 Toán 9, Giai Bai Tap Toan Roi Rac Chuong 1, Giải Bài ôn Tập Chương 1 Hình Học 10, Bài Giải Kinh Tế Vi Mô Chương 2, Giải Bài 2 ôn Tập Chương 1 Hình Học 11, Giải Bài Tập Toán Lớp 6 Chương 2, Giải Bài Tập Kinh Tế Vĩ Mô Chương 4, Giải Bài Tập Chương 2 Sinh Học 12, Giải Bài Tập Kinh Tế Vĩ Mô Chương 2, Giải Bài Tập Chương Halogen, Giải Bài Tập ôn Tập Chương 1 Hình Học 10, Giải Bài Tập ôn Tập Chương 2 Hình Học 11, Giải Bài Tập ôn Tập Chương 2 Hình Lớp 10, Giải Bài Tập Chương 5 Kinh Tế Vĩ Mô, Giải Bài Tập Kinh Tế Vĩ Mô Chương 3, Bài Tập Kinh Tế Vi Mô Chương 3 Có Giải, Bài Giải ôn Tập Chương 1 Hình Học 12, Giải Bài Tập ôn Tập Chương 3 Hình 8, Giải Bài Tập Chương 3 Kinh Tế Vĩ Mô, Giải Bài Tập Chương 2 Sinh Học 12 Cơ Bản, Giải Bài Tập ôn Tập Chương 3 Toán Đại 12, Giải Bài Tập Xử Lý Tín Hiệu Số Chương 1, Giải Toán 11 Bài 1 Chương 4, Giải Bài Tập ôn Tập Chương 3 Hình Học 12, Giải Bài Tập ý Nghĩa Văn Chương, Giải Bài Tập Xác Suất Thống Kê Đại Học Chương 1, Bài Giải Xác Suất Thống Kê Chương 3, Bài Giải Xác Suất Thống Kê Chương 1, Bài Giải Kế Toán Quản Trị Chương 4 Ueh, Giải Bài Tập Chương 2 Sinh Học 12 Nâng Cao, Giải Bài Tập Chương 1 Sinh Học 12 Nâng Cao, Giải Bài Tập Xác Suất Thống Kê Chương 1, Bài Giải Xác Suất Thống Kê Chương 2, Bài Giải Xác Suất Thống Kê Chương 4, Bài Giải Xác Suất Thống Kê Chương 5, Giải Bài Tập Nguyên Lý Kế Toán Chương 5, Giải Bài Tập Nguyên Lý Kế Toán Chương 4, Giải Bài Tập Nguyên Lý Kế Toán Chương 3, Giải Bài Tập Nguyên Lý Kế Toán Chương 1, Giải Bài 20 Tổng Kết Chương 1 Điện Học, Giải Bài Tập Xác Suất Thống Kê Chương 5, Giải Bài Tập Chương 7 Euh Kế Toán Quản Trị, Bài Giải Kế Toán Quản Trị Ueh Chương 3, Giải Bài Tập Kinh Tế Lượng Chương 2, Giải Nghĩa Từ Bảng Cửu Chương, Giải Bài Tập Xác Suất Thống Kê Chương 2, Giải Bài Tập Quản Trị Tài Chính Chương 2, Bài Tập Giải Tích 1, Đại Số Và Giải Tích 11, Bài 4 Giải Tích 12, Giải Tích – Tập 1, Giải Tích 1 7e, Giải Tích 1, Giải Tích,

Bài 8 ôn Tập Chương 1 Giải Tích 12, Bài 5 ôn Tập Chương 1 Giải Tích 12, Bài 9 ôn Tập Chương 1 Giải Tích 12, Bài 4 ôn Tập Chương 3 Giải Tích 12, Bài 6 ôn Tập Chương 1 Giải Tích 12, Bài 3 ôn Tập Chương 3 Giải Tích 12, Đề Kiểm Tra Chương 2 Giải Tích 12, Tài Liệu ôn Tập Chương 1 Giải Tích 12, Hãy Phân Tích ưu Nhược Điểm Và Phạm Vi ứng Dụng Của Pp Giải Tích Và Pp Mô Ph, Phân Tích Những Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Trong Giai Đoạn Hiện Nay, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Hộp Chữ Nhật, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Lập Phương, Phân Tích Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Trong Sạch Vững Mạnh Trong Giai Đoạn Hiện Nay, Chương 5 Phân Tích Chi Phí Lợi ích, Bài Tập Chương 2 Phân Tích Báo Cáo Tài Chính, Chương 3 Phân Tích Tài Chính, Chương 6 Phân Tích Tài Chính, Chương 5 Phân Tích Báo Cáo Tài Chính, Chương 4 Phân Tích Và Thiết Kế Dữ Liệu, Chương 3 Phân Tích Công Việc, Giải Bài Tập ôn Tập Chương 3 Đại Số 9, Giải Bài Tập ôn Tập Chương 2, Giải Bài Tập ôn Tập Chương 3 Đại Số 12, Giải Bài Tập ôn Tập Chương 4 Đại Số 12, Giải Bài Tập ôn Tập Chương 3 Lớp 7, Giải Bài Tập ôn Tập Chương 4, Giải Bài Tập ôn Tập Chương 3, Giải Bài Tập ôn Tập Chương 4 Đại Số 10, Giải Bài Tập ôn Tập Chương 6, Giải Bài Tập ôn Tập Chương Iii Đại Số 9, Giải Bài Tập Lý 11 Chương 4, Giải Bài ôn Tập Chương 2 Lớp 6, Giải Bài ôn Tập Chương 1 Đại Số 8, Giải Bài Tập Chương 5 Vật Lý 12, Giải Bài Tập Chương 4 Vật Lý 12, Giải Bài Tập Chương 4 Vật Lý 10, Giải Bài Tập Hóa 9 Chương 4, Giải Bài Tập ôn Tập Chương 4 Đại Số Lớp 11, Giải Bài ôn Tập Chương 1 Đại Số 7, Chương 3 Phân Tích Tài Chính Doanh Nghiệp, Chương 2 Phân Tích Kết Quả Sản Xuất Kinh Doanh, Chương 2 Phân Tích Và Thiết Kế Công Việc, Chương 5 Phân Tích Hành Vi Khách Hàng, Chương 2 Phân Tích Môi Trường Bên Ngoài Của Starbucks, Giải Bài ôn Tập Chương 1 Hình Học 8, Giải Bài ôn Tập Chương 1 Hình Học 7, Giải Bài Tập ôn Tập Chương 4 Toán 9, Giai Bai Tap Toan Roi Rac Chuong 1, Giải Bài ôn Tập Chương 1 Hình Học 10, Bài Giải Kinh Tế Vi Mô Chương 2,

Giải Bài Tập Sgk Ôn Tập Chương 3 Giải Tích 12

Nội dung bài giảng Bài 1 (trang 126 SGK Giải tích 12):

a) Phát biểu định nghĩa nguyên hàm của hàm số f(x) trên một khoảng.

b) Nêu phương pháp tính nguyên hàm từng phần. Cho ví dụ minh họa.

Lời giải:

a) Cho hàm số f(x) xác định trên K ( k là nửa khoảng hay đoạn của trục số). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F'(x)=f(x) với mọi x thuộc K.

Định lý: Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì:

– Với mỗi hằng số C, F(x) + C cũng là một nguyên hàm của hàm số trên f(x) trên K.

– G(x) cũng là một nguyên hàm của hàm số f(x) trên K thì tồn tại một hằng số C sao cho G(x) = F (x) +C

b)

*Đổi biên số:

Nếu ∫f(u)du=F(u)+C va u(x) là hàm số có đạo hàm liên tục thì:

∫f(ux) u'(x)dx=F(u(x))+C

 *Tính nguyên hàm từng phần:

Nếu hai hàm số u= u(x) và v = v(x) có đạo hàm liên tục trên K thì:

∫u(x) v'(x)dx=u(x)v(x)- ∫v(x) u'(x)dx

Hay ∫udv=uv- ∫vdv.

Ví dụ:

Bài 2 (trang 126 SGK Giải tích 12):

a) Phát biểu định nghĩa tích phân của hàm số f(x) trên một đoạn.

b) Nêu các tính chất của tích phân. Cho ví dụ minh họa.

Lời giải:

a) Cho hàm số y= f(x) liên tục trên [a; b] , F(x) là một nguyên hàm của f(x) trên [a; b]. Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu là ∫abf(x)dx.

Ta có: ∫abf(x)dx=F(x)ab=F(b)-F(a)

Ta gọi ∫ab là dấu tích phân, a là cận dưới, b là cận trên, f(x)dx biểu thức dưới dấu tích phân, f(x) là hàm số dưới dấu tích phân.

b) Các tính chất

1. ∫aaf(x)dx=0

2. ∫abf(x)dx=- ∫baf(x)dx

3. ∫bakf(x)dx=k. ∫baf(x)dx ( k là hằng số)

4. ∫ab[f(x)±g(x)]dx= ∫abf(x)dx± ∫abg(x)dx

5. ∫abf(x)dx= ∫acf(x)dx+ ∫abf(x)dx(a

Bài 3 (trang 126 SGK Giải tích 12):

Tìm nguyên hàm của các hàm số sau:

Lời giải: Bài 4 (trang 126 SGK Giải tích 12):

Tính:

Lời giải:

Bài 5 (trang 127 SGK Giải tích 12):

Tính:

Lời giải:

Bài 6 (trang 127 SGK Giải tích 12):

Tính:

Lời giải:

Bài 7 (trang 127 SGK Giải tích 12):

Xét hình phẳng D giới hạn bởi y=2√(1-x2 ) và y=2(1-x)

a) Tính diện tích hình D

b) Quay hình D xung quanh trục Ox. Tính thể tích khối tròn xoay được tạo thành.

Lời giải:

Trắc Nghiệm Giải Tích 12: Ôn Tập Chương 1

Câu 1: Cho hàm số y = – x 3 + 3x 2 – 3x + 1, mệnh đề nào sau đây là đúng?

A. Hàm số luôn nghịch biến.

B. Hàm số luôn đồng biến

C. Hàm số đạt cực đại tại x = 1

D. Hàm số đạt cực tiểu tại x = 1

Câu 2: Hàm số:

là hàm hằng trên khoảng nào sau đây?

(1) Hàm số trên liên tục trên R

(2) Hàm số trên có đạo hàm tại x = 0

(3) Hàm số trên đạt cực tiểu tại x = 0.

(4) Hàm số trên đạt cực đại tại x = 0.

(5) Hàm số trên là hàm chẵn

(6) Hàm số trên cắt trục hoành tại duy nhất một điểm

Trong các mệnh đề trên, số mệnh đề đúng là

A.1 B. 2 C.3 D. 4

Câu 4: Cho hàm số

và các mệnh đề sau

(1) Hàm số trên nhận điểm I(1;-1) làm tâm đối xứng,

(2) Hàm số trên nhận đường thẳng y = -x làm trục đối xứng.

(3) Hàm số trên nhận y = -1 là tiệm cận đứng.

(4) Hàm số trên luôn đồng biến trên R .

Trong số các mệnh đề trên, số mệnh đề sai là

A. 1 B.2 C.3 D. 4

Câu 5: Trong các khẳng định sau về hàm số

khẳng định nào là đúng?

A. Hàm số có điểm cực tiểu là x = 0

B. Hàm số có hai điểm cực đại là x = ±1

C. Cả A và B đều đúng;

D. Cả A và B đều sai,

Câu 6: Trong các mệnh đề sau, hãy tìm mện đề sai:

A. Hàm số y = -x 3 + 3x 2 – 3 có cực đại và cực tiểu;

B. Hàm số y = x 3 + 3x + 1 có cực trị;

C. Hàm số

không có cực trị;

D. Hàm số

đồng biến trên từng khoảng xác định.

Hướng dẫn giải và Đáp án

Câu 1:

y’ = -3x 2 + 6x – 3 = -3(x – 1) 2 ≤ 0 ∀x ∈ R. Hàm số luôn nghịch biến.

Câu 2:

Hàm số là hàm hằng x ≠ π +2kπ (k ∈ Z)

Câu 3:

Mệnh đề 1, 4, 5 đúng. Mệnh đề 2, 3, 6 sai.

Câu 4:

+ Hàm số có tiệm cận đứng x=1 và tiệm cận ngang y=-1 Mệnh đề 1 đúng, mệnh đề 3 sai.

+ Vì đường thẳng y=-x là một phân giác của góc tạo bởi 2 đường tiệm cận nên đường thẳng y=-x là một trục đối xứng của đồ thị hàm số. Mệnh đề 2 đúng.

+ Hàm số có tập xác định là R{1}, nên hàm số không thể luôn đồng biến trên R.Mệnh đề 4 sai.

Một số bài tập trắc nghiệm Giải Tích 12 Bài ôn tập Chương 1