Giải Toan 9 Sbt / Top 17 Xem Nhiều Nhất & Mới Nhất 9/2023 # Top Trend | Ictu-hanoi.edu.vn

Bai Tap Toan Lop 3

bai tap toan lop 3

Để học tốt Toán lớp 3, loạt bài Giải vở bài tập Toán 3 (VBT Toán 3) Tập 1 và Tập 2 được biên soạn bám sát theo nội dung Vở bài tập Toán lớp 3 Tập 1, Tập 2 giúp bạn học tốt môn Toán 3 hơn.

Giải bài tập sgk Toán lớp 3 hay, chi tiết Top 20 Đề kiểm tra Toán lớp 3 có đáp án Bài tập cuối tuần Toán lớp 3 Học kì 1 có đáp án Bài tập cuối tuần Toán lớp 3 Học kì 2 có đáp án

Giải Vở Bài Tập Toán Lớp 3 Tập 2

https://giaibaitap123.com

 › Lớp 3 › Giải Toán Lớp 3

Giải Vở Bài Tập Toán Lớp 3 Tập 2.

Giải Vở Bài Tập Toán Lớp 3 Tập 1

https://giaibaitap123.com

 › Lớp 3 › Giải Toán Lớp 3

Giải Vở Bài Tập Toán Lớp 3 Tập 1. Giải Vở Bài Tập Toán Lớp 3 Tập 1. Bài 1: Đọc, viết so sánh …

‎Giải Vở Bài Tập Toán Lớp 3… · ‎Giải Toán Lớp 3 · ‎Tính giá trị của biểu thức (tiếp…

https://vietjack.com

 › giai-vo-bai-tap-toan-3

Mọi người cũng tìm kiếm

Vở bài tập Toán lớp 3 Tập 1Vở Bài tập Toán lớp 3 tập 1 Bài 11Giải Vở bài tập Toán lớp 3 tập 2 Bài 126

Vở bài tập Toán lớp 3 Bài 12Bài tập Toán lớp 3 học kỳ 1Giải vở bài tập Toán nâng cao lớp 3 tập 2

Hoa Tulip – Shop hoa tươi Tây Ninh Hoa cúc vàng – Hoa tươi Tây Ninh giá rẻ

Bộ đề ôn tập Toán lớp 3 – Bài tập Toán lớp 3 – VnDoc.com

https://vndoc.com

 › Học tập › Toán lớp 3

 Xếp hạng: 3 · ‎1.205 phiếu bầu

Bài 2: Cộng, trừ các số có ba chữ số (không nhớ) Bài 3: Luyện tập Bài 4: Cộng các số có ba chữ số (có nhớ một lần) Bài 5: Luyện tập Bài 6: Trừ các số có ba chữ số (có nhớ một lần) Bài 7: Luyện tập Bài 8: Ôn tập các bảng nhân Bài 9: Ôn tập các bảng chia Bài 10: Luyện tập Bài 11: Ôn tập về hình học Bài 12: Ôn tập về giải toán Bài 13: Xem đồng hồ Bài 14: Xem đồng hồ (tiếp theo) Bài 15: Luyện tập Bài 16: Luyện tập chung Tự kiểm tra https://download.vn

 › Học tập › Lớp 3

 Xếp hạng: 4,1 · ‎190 phiếu bầu

Học và làm bài tập Toán lớp 3 trực tuyến – Luyện thi 123

https://www.luyenthi123.com

 › toan-lop-3

Học Toán lớp 3 online và làm bài tập Toán lớp 3 Online. Giáo viên dạy dễ hiểu, giúp con dễ dàng học Toán hơn. Đề kiểm tra 15 phút Toán 3, Đề kiểm tra 1 tiết …

Vở bài tập Toán lớp 3 – Giải bài tập sách giáo khoa, Sách bài …

https://baitapsgk.com

 › Lớp 3

Giải bài tập trong vở bài tập Toán 3 (VBT Toán lớp 3) tập 1, tập 2 chương: Ôn tập và bổ sung, Phép nhân, chia có nhớ trong phạm vi 100 trên Baitapsgk.com …

Giải vở bài tập (sách bài tập) Toán lớp 3 tập 1, tập 2

https://sachbaitap.com

 › vo-bai-tap-toan-lop-3-c91

Giải vở bài tập (sách bài tập) Toán lớp 3, tập 1, tập 2, lời giải chi tiết câu hỏi bài tập ôn tập, luyện tập nâng cao.

Câu 1, 2, 3, 4, 5 trang 4 Vở bài tập (SBT) Toán 3 tập 1

https://sachbaitap.com

 › cau-1-2-3-4-5-trang-4-vo-bai-t…

Câu 1, 2, 3, 4, 5 trang 4 Vở bài tập (SBT) Toán 3 tập 1. 1. Tính nhẩm – chúng tôi … Toán học · Vở bài tập Toán lớp 3 …

bổ sung

Chương 2: Phép nhân và phép chia trong phạm vi 1000 Bài 17: Bảng nhân 6 Bài 18: Luyện tập Bài 19: Nhân số có hai chữ số với số có một chữ số (không nhớ) Bài 20: Nhân số có hai chữ số với số có một chữ số (có nhớ)

Toán lớp 3- Phiếu bài tập tuần 20. Cô Lan 0968 035 669 …

https://www.youtube.com

 › watch

44:27

#CôLanToán. Toán lớp 3– Phiếu bài tập tuần 20. Cô Lan 0968 035 669. 32,241 views32K views. • Feb 6, 2023 …

6 thg 2, 2023 · Tải lên bởi Cô Lan Toán

https://tiki.vn

 › vo-bai-tap-toan-nang-cao-lop-3-tap-1-p…

Mua online Vở Bài Tập Toán Nâng Cao Lớp 3 (Tập 1) giá siêu tốt, giao nhanh, Freeship, hoàn tiền 111% nếu giả. Lựa chọn thêm nhiều Sách tham khảo cấp I …

Hướng dẫn giải sách bài tập Toán lớp 3 – DeHocTot … – Học Tốt

https://dehoctot.com

 › Lớp 3

Tổng hợp lời giải hay Toán Lớp 3. Hướng dẫn Giải bài tập trong Sách giáo khoa, Sách bài tập Toán – Lớp 3.

Giải Vở Bài Tập Toán Lớp 3 – Sachgiaibaitap.com

https://sachgiaibaitap.com

 › giai-vo-bai-tap-toan-lop-3

Lớp 3. Giải Vở Bài Tập Toán Lớp 3. Cập nhật gần nhất Ngày 17 Tháng Sáu, 2023 lúc 8:18 sáng. Yêu cầu tài liệu, báo lỗi nội dung. Danh sách các nội dung.

Giải bài tập SGK Toán lớp 3 – Chữa Bài Tập

https://www.chuabaitap.com

 › giai-bai-tap-sgk-toan-lop-3

Giải bài 1, 2, 3, 4 trang 14 Vở bài tập Toán 3 tập 2 – Giaibaitap …

https://giaibaitap.me

 › lop-3 › giai-bai-1-2-3-4-trang-1…

Toán lớp 3 – Bài học bám sát sách giáo khoa và nhiều minh …

https://vuihoc.vn

 › Lớp 3

Gồm 76 bài giảng bám sát SGK kèm nhiều MINH HOẠ THỰC TẾ, 30 bài giảng ôn tập hè, 3000 câu hỏi luyện tập và 100 đề thi thử. 750.000₫. Chỉ còn 560.000 ₫.

Bạn đã truy cập trang này vào ngày 28/01/2023.

[PDF] Vở bài tập toán lớp 3 tập 2 (bản đầy đủ) – Sách học

https://sachhoc.com

 › vo-bai-tap-toan-lop-3-tap-2-ban-…

Vở bài tập toán lớp 3 tập 2 được xây dựng theo chương trình của bộ giáo dục, có các bài tập rèn luyện, thực hành theo nội dung, và mức độ như sách giáo khoa …

https://shopee.vn

 › Sách-Vở-bài-tập-Toán-3-tập-một-i.5…

Mua Sách – Vở bài tập Toán 3 – tập một giá tốt. Mua hàng qua mạng uy tín, tiện lợi. Shopee đảm bảo nhận hàng, hoặc được hoàn lại tiền Giao Hàng Miễn Phí.

 Xếp hạng: 5 · ‎117 phiếu bầu

Vở Bài Tập Toán Nâng Cao – Lớp 3 (Tập 1-2), Giá tháng 1/2023

https://123mua.com.vn

 › Vo-Bai-Tap-Toan-Nang-Cao-…

So sánh giá Vở Bài Tập Toán Nâng Cao – Lớp 3 (Tập 1-2) tháng 1/2023 ✅ Bên cạnh việc học các kiến thức cơ bản trong sách giáo khoa ở trên lớp, để rèn …

20.400 ₫ – 32.000 ₫

Skkn Giai Toan Hinh Hoc Lop 5

Khi dạy về hình tam giác việc xây dựng công thức còn mang tính áp đặt,học sinh phải công nhận trong khi học sinh chưa hiểu vì sao lại làm thế; hoặc có hướng dẫn thì chỉ dựa vào gợi ý của sách bài soạn, sách thiết kế bài giảng còn việc mở rộng kiến thức phát triển tư duy cho học sinh còn ít được chú ý đến nên học sinh chưa hiểu được bản chất của công thức và chưa nắm được mối quan hệ giữa các yếu tố trong hình tam giác, các nhận xét được rút ra từ quy tắc tính diện tích hình tam giác. Trong thời gian giảng dạy, giáo viên chỉ đề cập nội dung trong sách, về phương pháp chủ yếu là giải bài tập rồi làm rõ kết quả. Phương pháp dạy giải các bài toán nâng cao đôi khi giáo viên chưa đi sâu nghiên cứu để phân dạng bài, để lựa chọn những phương pháp giải hay nhất phù hợp với đặc điểm tâm lí và khả năng tiếp thu của học sinh. Một số giáo viên có trình độ chuyên môn cao thì lại áp dụng các tính chất của các yếu tố trong hình tam giác ở nội dung Sách giáo khoa lớp 7 (như đường trung bình, đường trung trực, đường trung tuyến, trọng tâm, trực tâm, Định lí Pi-ta-go,….) và áp đặt điều đó là hiển nhiên có để học sinh giỏi so sánh và tính diện tích hình tam giác.

Đặc biệt, ghi nhớ của học sinh không được tốt nên giáo viên gặp nhiều khó khăn lúng túng, chưa đưa được hệ thống bài tập phát triển tư duy, chưa rèn cho học sinh phương pháp tư duy cho học sinh.. 1.Về phía giáo viên:2.Về phía học sinh:

Học sinh giải bài tập tư duy chưa có hệ thống, đặc biệt là xác định đường cao, diện tích hình tam giác. Trong các đề thi học sinh giỏi, hầu hết đều đề cập đến hình tam giác và diện tích hình tam giác. Song số lượng học sinh làm được không nhiều, có em được học bài như đề thi rồi nhưng lại quên, không nhớ cách giải. Phần thứ hai: nội dungI- THỰC TRẠNG VỀ VIỆC DẠY GIẢI TOÁN LIÊN QUAN ĐẾN DIỆN TÍCH HÌNH TAM GIÁCII- NỘI DUNG LÝ LUẬN LIÊN QUAN TRỰC TIẾP ĐẾN HÌNH TAM GIÁC VÀ DIỆN TÍCH HÌNH TAM GIÁC:Nhận diện các yếu tố của hình tam giác và vẽ hình.

Mục tiêu: Giúp học sinh nắm chắc về khái niệm hình tam giác, các yếu tố của hình tam giác (cạnh, góc, đỉnh, đáy, đường cao, chiều cao), nhận diện được hình tam giác dựa vào góc, chỉ ra và vẽ được đường cao của hình tam giác bất kì khi biết cạnh đáy. Đối với học sinh giỏi, cần giới thiệu cho các em biết cách nhận diện hình tam giác dựa theo cạnh: hình tam giác đều (hình tam giác có 3 cạnh dài bằng nhau), hình tam giác cân (hình tam giác có hai cạnh dài bằng nhau) Hình tam giác *Hình tam giác có 3 cạnh, 3 đỉnh, 3 góc.Hình tam giác có 3 góc nhọnHình tam giác có 1 góc tù và 2 góc nhọnHình tam giác có 1 góc vuông và 2 góc nhọn* Hình tam giác có đáy và đường cao.Dùng công cụ ê-ke để vẽ và xác định đường cao. AH là đường cao ứng với đáy BCAB là đường cao ứng với đáy BC B Sách giáo khoa Toán 5 trang 87 đã trình bày rõ phần lí thuyết cơ bản, cách hình thành quy tắc và công thức tính diện tích hình tam giác: Cụ thể: Cho hai hình tam giác bằng nhau. Lấy một hình tam giác đó, cắt theo đường cao để thành hai mảnh tam giác 1 và 2. Ghép hai mảnh 1 và 2 vào tam giác còn lại để được hình chữ nhật (như hình vẽ): Dựa vào hình vẽ ta có: Hình chữ nhật ABCD có chiều dài bằng độ dài đáy DC của hình tam giác EDC, có chiều rộng bằng chiều cao EH của hình tam giác EDC. Diện tích hình chữ nhật ABCD gấp 2 lần diện tích hình tam giác EDC.Diện tích hình chữ nhật ABCD là DC x AD = DC x EH.

Vậy diện tích hình tam giác EDC là DC x EH 22. Diện tích hình tam giác

* Quy tắc, công thức tính diện tích hình tam giác. Quy tắc: Muốn tính diện tích hình tam giác ta lấy độ dài cạnh đáy nhân với chiều cao (cùng một đơn vị đo) rồi chia cho 2.

Công thức: S =

(S là diện tích, a là độ dài cạnh đáy,

h là chiều cao, a và h cùng đơn vị đo) h

– Tính độ dài cạnh đáy hình tam giác:Quy tắc: Muốn tính độ dài cạnh đáy của hình tam giác ta lấy hai lần diện tích chia cho chiều cao tương ứng

Công thức: a =

(S là diện tích hình tam giác, a là độ dài cạnh đáy, h là chiều cao tương ứng)

* Tính độ dài cạnh đáy và chiều cao của hình tam giác.

– Tính chiều cao hình tam giác: Quy tắc: Muốn tính chiều cao của hình tam giác ta lấy hai lần diện tích chia cho độ dài cạnh đáy tương ứng)

Công thức: h =

(S là diện tích hình tam giác, a là độ dài cạnh đáy, h là chiều cao tương ứng) 3. Các nhận xét được rút ra từ quy tắc tính diện tích tam giác: (Thực chất là mối quan hệ tỉ lệ giữa diện tích, đáy, chiều cao của hình tam giác)*Vậy hai hình tam giác có chung chiều cao, độ dài cạnh đáy tương ứng với chiều cao bằng nhau thì diện tích bằng nhau.

Ví dụ 1 S ABD = ; S ADC =

Mà BD = DC nên S ABD = S ADC D BHC AD BHC A(BD = DC)SADC= ; SBDC= AH x DC2BK x DC2Ví dụ 2: Cho hình thang ABCD. Nối A với C, B với D. So sánh SADC và SBDC * Vậy hai hình tam giác có chung cạnh đáy, chiều cao tương ứng với cạnh đáy bằng nhau thì diện tích bằng nhau.BKHCDA Mà AH = BK nên SADC = SBDC Ví dụ 3: Hình chữ nhật ABCD, E là trung điểm của DC. Nối A với E, B với E. So sánh SADE và SBCE

Mà AD = BC; DE = CE

nên SADE = SBCE * Vậy hai hình tam giác có độ dài cạnh đáy bằng nhau, chiều cao tương ứng với cạnh đáy bằng nhau thì diện tích bằng nhau.B ED C A Qua 3 trường hợp vừa nêu, ta có:

Nhận xét 1: Hai (hay nhiều) hình tam giác có chiều cao bằng nhau (hoặc có chung chiều cao), độ dài cạnh đáy tương ứng với đường cao bằng nhau (hoặc có chung đáy) thì diện tích hai (hay nhiều) hình tam giác đó bằng nhau. SADE = = =

Vậy SHDC = SADE

Ví dụ 4: Hình chữ nhật ABCD. E là trung điểm của DC, H là trung điểm của BC. So sánh SHDC và SADE Nhận xét 2: Khi diện tích hai hình tam giác không đổi, độ dài cạnh đáy tăng (hoặc giảm) bao nhiêu lần thì chiều cao tương ứng giảm (hoặc tăng) bấy nhiêu lần.SHDC = H ED CB AVí dụ 5: Cho tứ giác ABCD vuông ở C và D, có AD = BC. Nối A với C, B với D. Hãy so sánh diện tích tam giác ADC và BDCNhận xét 3: Khi độ dài cạnh đáy của hai hình tam giác bằng nhau thì tỉ số diện tích hai hình tam giác bằng tỉ số hai chiều cao tương ứng với đáy.

SADC = ; SBDC =

Mà AD = BC nên SADC = SBDC Ví dụ 6: Cho tam giác ABC, EC = BE. So sánh SACE và SABE Nhận xét 4: Khi chiều cao của hai hình tam giác bằng nhau thì tỉ số diện tích hai hình tam giác bằng tỉ số độ dài hai cạnh đáy tương ứng .1) Khi h1 = h2 , a1 = a2 thì S1 = S2 2) Khi S1 = S2 thì

3) Khi a1 = a2 thì

4) Khi h1 = h2 thì * Các nhận xét được rút ra từ mối quan hệ tỉ lệ giữa diện tích, đáy, chiều cao của hình tam giác: * Các quy tắc, công thức và những nhận xét trên là công cụ quan trọng để giải các bài toán về diện tích hình tam giác. Nhưng khi vào các bài toán cụ thể, phải biết vận dụng linh hoạt các công thức tính, các nhận xét đó và phải biết vẽ hình phụ trợ để giải được các bài toán từ đơn giản đến phức tạp.

Bước 2: Lập kế hoạch giải bài toán (Dựa vào công thức, các nhận xét được rút ra từ quy tắc tính diện tích hình tam giác để phân tích bài toàn và tìm hướng giải bài toán).

Bước 3: Thực hiện kế hoạch giải bài toán (Trình bày bài giải)

Bước 4: Tự kiểm tra đánh giá kết quảKhi hướng dẫn học sinh giải bài tập cần thực hiện các bước như sau:

Phần thứ hai: nội dungI- THỰC TRẠNG VỀ VIỆC DẠY GIẢI TOÁN LIÊN QUAN ĐẾN DIỆN TÍCH HÌNH TAM GIÁCII- NỘI DUNG LÝ LUẬN LIÊN QUAN TRỰC TIẾP ĐẾN HÌNH TAM GIÁC VÀ DIỆN TÍCH HÌNH TAM GIÁC:III- CÁC GIẢI PHÁP THỰC HIỆN1. Nhận diện các yếu tố của hình tam giác và vẽ hình. Hình tam giác 1) Hình tam giác có 3 cạnh, 3 đỉnh, 3 góc.C BA Hình tam giác ABC có:Ba cạnh: cạnh AB, cạnh BC, cạnh ACBa đỉnh: Đỉnh A, đỉnh B, đỉnh CBa góc: Góc đỉnh A cạnh AB và AC (góc A) Góc đỉnh B cạnh BA và BC (góc B) Góc đỉnh C cạnh CA và CB (góc C) 2.1. Hình tam giác có ba góc nhọn: Hình tam giác ABC:AH là đường cao ứng với đáy BCBI là đường cao ứng với đáy ACCK là đường cao ứng với đáy AB 2.2. Hình tam giác có một góc tù và hai góc nhọn: Hình tam giác MNP:ME là đường cao ứng với đáy PNNH là đường cao ứng với đáy MPPG là đường cao ứng với đáy MN 2.3. Hình tam giác có một góc vuông và hai góc nhọn: Hình tam giác EGH:HE là đường cao ứng với đáy EGGE là đường cao ứng với đáy EHEB là đường cao ứng với đáy HG2) Xác định đường cao và đáy của hình tam giác HGEPNM HGEPNM– Đường cao của hình tam giác là đoạn thẳng hạ từ một đỉnh và vuông góc với cạnh đối diện (cạnh đối diện gọi là cạnh đáy). Độ dài đường cao là chiều cao của hình tam giác.Chú ý: – Cả ba cạnh của hình tam giác đều có thể chọn làm cạnh đáy của hình tam giác đó. – Như vậy, trong mỗi hình tam giác có 3 cạnh đáy, 3 chiều cao, mỗi cạnh đáy có một chiều cao tương ứng, không thể chọn cạnh đáy và chiều cao tùy ý.Mở rộng: Đường cao của nhiều hình tam giác có chung một đỉnh

* Hình (1) gồm 3 tam giác chung đỉnh A: ABC, ACD và ABD đều có chung đường cao AH. * Hình (2) gồm 6 tam giác chung đỉnh A: ABM, AMN, ANC, ABN, AMC và ABC đều có chung đường cao AH. AACDHHình (1)B * Hình (3) gồm 2 tam giác vuông chung đỉnh A: ABC, ABD và 1 tam giác có một góc tù ADC có chung đường cao AB (là một cạnh của góc vuông đỉnh B). * Hình (4) gồm 3 tam giác có một góc tù chung đỉnh A: ABD, ADC và ABC có chung đường cao AH (nằm ngoài các tam giác đó). ABCDAB CHDHình (3)Hình (4) * Đường cao của nhiều hình tam giác không chung đỉnh. A M N B D H K CHình (1) A H M K N I D B E CHình (2) HS cần chỉ ra được đường cao và dùng ê-ke vẽ được đường cao hình tam giác. AH là đường cao ứng với đáy BC AH là đường cao ứng với đáy BC AB là đường cao ứng với đáy BC Thực tế trong quá trình hướng dẫn học sinh vẽ đường cao trong tam giác, học sinh rất lúng túng khi đặt thước ê-ke để vẽ đường cao. Chúng ta cần mô tả ê-ke, chỉ rõ cho học sinh đâu là góc vuông của ê-ke, đâu là cạnh góc vuông của ê-ke. Khi vẽ đường cao trong tam giác cần đặt ê ke vào hình vẽ sao cho một cạnh góc vuông của ê-ke trùng với cạnh đáy của tam giác, cạnh góc vuông còn lại đi qua đỉnh của tam giác. Vừa mô tả bằng hình vẽ trực quan, vừa mô tả bằng đồ dùng dạy học: Cần tránh để HS đặt thước ê-ke để vẽ đường cao như các trường hợp sau: Bài tập áp dụng:

Bài 1: Vẽ đường cao tương ứng với các cạnh đáy cho mỗi tam giác sau:BAB

Bài 2: Cho hình vẽ sau:a. Nêu tên những tam giác có chung chiều cao BG.b. Nêu tên những tam giác có chung chiều cao DH.c. Nêu tên các tam giác có chung cạnh đáy AC. 2. Hình thành quy tắc, công thức tính diện tích hình tam giác:Bước 1: Dựa vào cách tính diện tích của các hình đã học (hình vuông, hình chữ nhật, hình bình hành, hình thoi), kết hợp sử dụng đồ dùng trực quan hoặc suy luận tư duy qua cắt ghép trên giấy nháp, học sinh tự tìm cách tính diện tích hình tam giác.

Ở bước này, đối với học sinh khá giỏi, giáo viên nên để tự học sinh khám phá và tìm ra kiến thức; đối với học sinh trung bình và yếu, giáo viên nên gợi ý, hướng dẫn học sinh học sinh để tất cả học sinh đều tự mình tìm ra kiến thức và chiếm lĩnh được kiến thức.2.1. Quy tắc, công thức tính diện tích hình tam giác: Cách 2: Từ một hình tam giác, cắt và ghép lại được một hình chữ nhật: Cách 3: Ghép hai hình tam giác bằng nhau thành một hình bình hành, cạnh đáy của hình tam giác là cạnh đáy của hình bình hành thì chiều cao tương ứng của hình tam giác cũng là chiều cao của hình bình hành.Cách 1: Thực hiện như sách giáo khoa Toán 5 trang 87– Cắt lấy 2 hình tam giác bằng nhau, dùng ê ke vẽ đường cao của mỗi hình tam giác (như hình vẽ)Bước 2: Giáo viên thực hiện lại thao tác một cách làm dễ hiểu và nhanh nhất để tìm ra quy tắc tính diện tích hình tam giác

S = S là diện tích, a là độ dài đáy, h là chiều cao (a và h cùng đơn vị đo) Bước 3: Lập công thức tính diện tích hình tam giác* Với hình tam giác vuông: Diện tích hình tam giác vuông bằng tích của hai cạnh góc vuông (cùng đơn vị đo) chia cho 2.h

Xuất phát từ công thức tính diện tích hình tam giác HS đã học:

(Trong đó S là diện tích hình tam giác, a là độ dài cạnh đáy, h là chiều cao tương ứng với đáy; a, h cùng đơn vị đo) GV hướng dẫn HS cách tính độ dài cạnh đáy và chiều cao của hình tam giác như sau:

2.2. Cách tính độ dài cạnh đáy và chiều cao của hình tam giác.

S = * Tính chiều cao hình tam giác: Quy tắc: Muốn tính chiều cao của hình tam giác ta lấy hai lần diện tích chia cho độ dài cạnh đáy tương ứng.

Công thức: h =

(S là diện tích hình tam giác, a là độ dài cạnh đáy, h là chiều cao tương ứng)

* Tính độ dài cạnh đáy hình tam giác: Quy tắc: Muốn tính độ dài cạnh đáy của hình tam giác ta lấy hai lần diện tích chia cho chiều cao tương ứng

Công thức: a =

(S là diện tích hình tam giác, a là độ dài cạnh đáy, h là chiều cao tương ứng)

Trường hợp 2: Kẻ đoạn thẳng đi qua hai cạnh của tam giác chia hình tam giác thành các phần theo tỉ số diện tích.

A

*Tiết học lí thuyết – ngay sau khi hình thành quy tắc tính diện tích hình tam giác, chúng ta hướng dẫn HS vận dụng công thức tính diện tích hình tam giác để giải bài tập theo các dạng và rèn kĩ năng giải toán như SGK

*Tiết luyện tập chung về tính diện tích – Bài tập vận dụng công thức tính ngược về diện tích hình tam giác Rèn cho HS kỹ năng tính độ dài cạnh đáy và tính chiều cao của hình tam giác. Bài 1: Cho tam giác ABC có đáy BC dài 8cm. Kéo dài BC về phía C một đoạn CD dài 4cm thì diện tích tam giác tăng thêm 12cm2 (như hình vẽ). Tính diện tích hình tam giác ABC – Để tính diện tích hình tam giác ABC khi mới biết đáy BC dài 8cm thì cần biết chiều cao AH của tam giác. – Nhận xét chiều cao tam giác ABC (ứng với đáy BC) và chiều cao tam giác tam giác ACD) ứng với đáy CD: Hai tam giác ABC và ACD có chung chiều cao hạ từ A (Chiều cao AH). – Để tính được chiều cao AH, dựa vào quy tắc tính chiều cao và các dữ kiện đã cho ở hình tam giác ACD (Hình tam giác ACD đã biết diện tích và đáy thì tính được chiều cao). * Bài tập củng cố, bồi dưỡng kiến thức dành cho học sinh đại trà trong các tiết học buổi 2: GV ra bài tập tương tự các bài tập nêu trên và phát triển thêm:Với học sinh khá giỏi: Hướng dẫn học sinh tìm lời giải khác theo hướng sau: Như vậy: – Trước hết cần xác định tỉ số giữa số đo hai cạnh đáy của hai tam giác:Tỉ số của cạnh đáy CD và cạnh đáy BC là: 4 : 8 = (hay CD= BC)

– Tiếp theo, xác định được tỉ số diện tích tam giác ACD và ABC:

SACD = S ABC(vì chung chiều cao hạ từ đỉnh A và đáy CD= BC)

Từ đó tính diện tích tam giác ABC: 12 : = 24 (cm2) Nhận xét về chiều cao của hai hình tam giác HS nắm được mối quan hệ giữa hai hình tam giác ABC và ACD có chung chiều cao hạ từ đỉnh A. Như vậy áp dụng nhận xét 4 về diện tích tam giác, học sinh giải được một cách dễ dàng. (Nhận xét 4: Khi chiều cao của hai hình tam giác bằng nhau thì tỉ số diện tích hai hình tam giác bằng tỉ số hai độ dài cạnh đáy tương ứng)Bài 2: Cho tam giác ABC có đáy BC dài 8cm. Kéo dài BC về phía C một đoạn CD dài 4cm. Biết diện tích tam giác ABC là 24 cm2. Tính diện tích phần tăng thêm.Đề bài: Cho tam giác ABC có cạnh BC dài 30cm. Chiều cao AH bằng độ dài đáy BC.Tính diện tích tam giác ABCKéo dài BC về phía C một đoạn CM (như hình vẽ). Tính độ dài đoạn CM, biết diện tích tam giác ACM bằng 20% diện tích tam giác ABC(Đề khảo sát đầu vào lớp 6 năm học 2013-2014)Đề bài: Cho hình thang ABCD (như hình vẽ), đáy lớn bằng 3,6cm, đáy nhỏ bằng đáy lớn, chiều cao AH = 2cm.Tính diện tích hình thang ABCD.Tính độ dài DH, biết diện tích tam giác ADH bằng 25% diện tích tam giác AHC. (Đề khảo sát đầu vào lớp 6 năm học 2011-2012)

Đây là dạng bài tập hay gặp trong các đề thi khảo sát đầu vào lớp 6M C HBABài 2: Cho hình vẽ bên

KM = KN = 4cm. Tính diện tích

hình tam giác ABC.Bước 1: Tìm hiểu cái đã cho và cái cần tìm:Bước 2: Hướng dẫn học sinh phân tích bài toán bằng sơ đồ:Bước 3: Trình bày bài giảiBước 4: Tự kiểm tra lại kết quảBiết AB + AC = 20cm;Biết AB = 5,2cm; AC = 6,5cm;(Đề kiểm tra định kỳ cuối kỳ I năm học 2012-2013, Huyện Ninh Giang)Giải lao Mức độ 2: Nâng cao kiến thức

1. Tính diện tích hình tam giác khi phải giải bài toán phụ để tìm chiều cao hoặc độ dài cạnh đáy.

Bài 1: Cho tam giác ABC có góc vuông tại A, AB = 5cm, AC = 6cm. Trên AB lấy điểm M sao cho AM = 1cm. Từ M kẻ đường thẳng song song với AC cắt BC tại N. Tính diện tích tam giác BMN.

Bước 1: Vẽ hình. Xác định cái đã cho và cái cần tìm theo mẫu sau:

Bước 2. Phân tích bài toán, suy luận để tìm lời giải:Bước 3: Trình bày bài giải

Bước 4: Kiểm tra lại kết quảBài 2: Cho tam giác ABC có diện tích là 48cm2. Cạnh AB = 16cm, AC = 10cm. Kéo dài AB về phía B một đoạn BM, kéo dài AC về phía C một đoạn CN, sao cho BM = CN = 2cm. Nối M với N. Tính diện tích hình tứ giác BCNM.Phân tích bài toán để tìm lời giải: Vận dụng linh hoạt các bài toán tính ngược (Tính độ dài đáy khi biết diện tích tam giác và chiều cao tương ứng, hoặc tính chiều cao khi biết diện tích tam giác và độ dài đáy tương ứng) để suy luận tìm hướng giải.

Tính HB Tính AN và SANB Tính NK Tính SAMN Tính SBCNMA2. Tính diện tích hình tam giác dựa vào nhận xét 1: Hai (hay nhiều) hình tam giác có chiều cao bằng nhau, độ dài cạnh đáy tương ứng với đường cao bằng nhau thì diện tích hai (hay nhiều) hình tam giác đó bằng nhau.Bài 3: Cho tam giác ABC có diện tích là 12cm2. Kéo dài AB về phía A một đoạn AE, AC về phía C một đoạn CG và BC về phía B một đoạn BH, sao cho AE = AB; AC = CG; BC = BH. Tính diện tích hình tam giác EGH Dựa vào nhận xét 1 đã nêu, nhìn hình vẽ và các dữ kiện bài toán đã cho, ta dễ dàng chứng minh được các cặp hình tam giác có diện tích bằng nhau. Đó là:SABC = SAEC; SAEC = SGEC; SABC = SABH; SABH = SAEH; SABC = SAEC = SGEC = SABH = SAEH = SGBC =SABC = SGBC; SGBC = SGBH; 3. Tính diện tích hình tam giác dựa vào nhận xét 2: Khi diện tích hai hình tam giác không đổi, độ dài cạnh đáy tăng (hoặc giảm) bao nhiêu lần thì chiều cao tương ứng giảm (hoặc tăng) bấy nhiêu lần.Bài 4: Cho hình thang vuông ABCD, vuông tại A và D. Đáy AB = CD. Trên AD lấy M sao cho AM = MD. Tính diện tích tam giác MCD biết diện tích tam giác ABD bằng 15cm2Hai tam giác ABD và MCD có:Đáy DC = AB x 2. Chiều cao AD = MD x 2. Suy ra diện tích ABD = diện tích MCD. Vậy diện tích MCD là 15 cm24. Tính diện tích hình tam giác dựa vào nhận xét 3: Khi độ dài cạnh đáy của hai hình tam giác bằng nhau thì tỉ số diện tích hai hình tam giác bằng tỉ số hai chiều cao tương ứng với đáy.Bài 5: Cho hình thang vuông ABCD (vuông tại A và D). Độ dài đáy AB bằng độ dài đáy CD. Kéo dài hai cạnh bên AD và BC về phía A và B cắt nhau tại K. Tính diện tích tam giác KDC, biết diện tích hình tam giác KBD là 90cm25. Tính diện tích hình tam giác dựa vào nhận xét 4: Khi chiều cao của hai hình tam giác bằng nhau thì tỉ số diện tích hai hình tam giác bằng tỉ số hai độ dài cạnh đáy tương ứng .Bài 6: Cho tam giác ABC có diện tích 450 m2. Trên BC, AC lấy hai điểm M, N sao cho CM = BC, NC = AC. Tính diện tích tam giác MNC?Cách 1:Cách 2:Nối AMBài 7: Cho tam giác ABC. Trên cạnh AB lấy điểm M sao cho AM gấp rưỡi MB; trên cạnh AC lấy điểm N sao cho AN bằng một nửa AC. Biết diện tích tam giác AMN là 36 cm2. Tính diện tích tứ giác BMNC. (Đề thi Olympic học sinh tiểu học tỉnh Hải Dương năm học 2010-2011)36 cm2Đây là hai bài toán ngược nhau giữa cái đã cho và cái cần tìm. Song về cơ bản cách tư duy tương tự như nhau. GV chỉ cần thay đổi vị trí của điểm M, N để HS luyện kỹ năng tính toán phát triển tư duy rất tốt.Bài 6: Cho tam giác ABC có diện tích 450 m2. Trên BC, AC lấy hai điểm M, N sao cho CM = BC, NC = AC. Tính diện tích tam giác MNC?Bài 7: Cho tam giác ABC. Trên cạnh AB lấy điểm M sao cho AM gấp rưỡi MB; trên cạnh AC lấy điểm N sao cho AN bằng một nửa AC. Biết diện tích tam giác AMN là 36 cm2. Tính diện tích tứ giác BMNC. (Đề thi Olympic học sinh tiểu học tỉnh Hải Dương năm học 2010-2011)4) Khi h1 = h2 thìBài 8: Cho tam giác ABC. Trên cạnh AC lấy điểm M sao cho MC gấp đôi MA. Nối B với M, gọi D là trung điểm của BM. Nối A với D. Tính diện tích tam giác ABC biết diện tích tam giác ADM là 4,5cm2. (Đề Olympic học sinh tiểu học cấp huyện, thị xã, thành phố năm học 2011-2012_ Tỉnh Hải Dương)Tương tự bài 6Bài 9: Cho tam giác ABC có diện tích là 48cm2. Trên AC lấy điểm M sao cho AM = MC. Nối B với M. Kéo dài BM một đoạn MD = BM. Tính diện tích tứ giác ABCD.(* Lưu ý: Trong các bài toán cho tỉ số độ dài các đoạn thẳng, giúp học sinh dễ nhận ra cách so sánh để xác định tỉ số diện tích dựa vào tỉ số độ dài đáy hoặc tỉ số chiều cao của tam giác, tôi thường dùng điểm chấm vạch rõ số phần bằng nhau ở đáy hay đường cao của tam giác như hình vẽ trên)– Đối với bài toán yêu cầu tính diện tích một tam giác (ta chưa biết cụ thể số đo độ dài đáy và chiều cao tương ứng với nó) nhưng có mối quan hệ với các tam giác khác thì ta phải xét mối quan hệ giữa các yếu tố của các tam giác đó để tìm ra cách tính. Bài 10: Cho tam giác ABC. Trên AC lấy điểm M sao cho MC = MA,

trên BC lấy điểm N sao cho NC = NB. BM cắt AN tại O. Tính diện

tích tam giác ABC, biết diện tích tam giác ABO là 12cm2.* Lưu ý: Trong giảng dạy các bài toán 5, 6,7, 8,9,10 GV chỉ cần thay vị trí các điểm M,N theo tỉ lệ khác nhau để HS thực hành rèn kỹ năng giải toán nhanh và phát triển tư duy cho HS rất hiệu quả..6.1.Tính độ dài đoạn thẳng và so sánh độ dài đoạn thẳng Bài 11: Cho hình tam giác ABC có diện tích 90cm2, cạnh BC dài 24cm. Trên cạnh BC có điểm M sao cho diện tích tam giác ABM bằng 30cm2. Hỏi M cách B bao nhiêu xăng- ti -mét?6. Một số bài toán sử dụng linh hoạt 4 nhận xét ở trên để giải.Bài 12: Cho tam giác ABC. Trên AB lấy điểm M sao cho MA = MB. Trên AC lấy N sao cho NC = NA; MN cắt BC tại D. So sánh BC và CDLưu ý: Trong trường hợp cần so sánh độ dài hai đoạn thẳng hay tính độ dài một đoạn thẳng nào đó trong hình, ta cần so sánh diện tích hai hình tam giác có chung đỉnh và hai cạnh đáy là hai cạnh cần so sánh.6.2.So sánh diện tích các hình tam giác SADC = SBDC SABD = SABCSAOD = SBOC Bài 13: Cho hình thang ABCD có đáy bé là AB, đáy lớn DC. Hai đường chéo AC và BD cắt nhau tại O. Chứng tỏ rằng SAOD = SBOCPhương pháp so sánh “phần bù” trong giải toán hình họcBài 14: Cho tam giác ABC. D là điểm chính giữa của BC, E là điểm chính giữa của AC. AD cắt BE tại I. a) Hãy so sánh diện tích tam giác IAE và diện tích tam giác IBD. b) Hãy so sánh diện tích tam giác IAB và diện tích tứ giác EIDC. Phân tích bài toán

Ta có: SIAE + SABI = SABE; SIBD + SABI = SABD

Hai tam giác ABE và ABD có phần chung là tam giác ABI.

Để so sánh SIAE và SIBD , cần so sánh SABE và SABD Trong thực tế giảng dạy, rất nhiều học sinh khi chưa nắm được bản chất vấn đề này thì nhìn hình vẽ bài 2 và hiển nhiên cho rằng ED song song với AB nên tứ giác ABDE là hình thang rồi so sánh SABD = SABE một cách dễ dàng tương tự như bài toán 1 như vậy là chưa chính xác.. Là giáo viên trực tiếp giảng dạy và bồi dưỡng học sinh giỏi chúng ta cần phân biệt rõ vấn đề vừa nêu để học sinh không mắc sai lầm trong việc so sánh diện tích hai hình tam giác. Bài 13:Bài 14:So sánh diện tích tam giác hình tam giác thường xuất hiện nhiều ở hình thang với nhiều tình huống khác nhau. Điều quan trọng là học sinh cần chỉ ra được hình nào chắc chắn chứng tỏ được là hình thang thì mới được vận dụng tương tự như bài toán 1. Thay đổi vị trí các điểm trên mỗi cạnh tam giác, ta có một số bài toán: Bài 15: Cho hình chữ nhật ABCD. Điểm M nằm trên đoạn thẳng AB, MC cắt BD ở O (như hình vẽ bên). So sánh diện tích tam giác MODvà BOC.Bài 16: Cho tam giác ABC. Trên BC lấy hai điểm M, N sao cho BM = MN = NC. Từ M kẻ đường song song với AB, từ N kẻ đường songsong với AC chúng cắt nhau tại H. So sánh SAHB và SAHC.Luyện giải một số bài toán dạng 3:Luyện giải một số bài toán dạng 3:Bài 17: Cho tam giác ABC. Lấy điểm M trên BC sao cho BM=MC, trên Ac lấy điểm N sao cho AN = NC. MN cắt BN tại E.So sánh diện tích hai tam giác AEN và BEM.b) Cho diện tích tam giác AEN bằng 12cm2. Tính diện tích tam giác ABC. (Đề khảo sát chọn học sinh giỏi lớp 5- Huyện Ninh Giang năm học 2012-2013)a)b)Bài 19: . Cho hình vẽ:Biết diện tích hình vu

Giải Toán Có Lời Văn Giao An Giai Bai Toan Co Loi Van Doc

GIẢI BÀI TOÁN CÓ LỜI VĂN LỚP 3

– Tìm một trong các phần bằng nhau của một số.

– Gấp một số lên nhiều lần.

– Giảm đi một số lần.

– Tổng quát: Tìm của số A.

– Bài tập vận dụng:

– Bài tập áp dụng:

Bài 1. Năm nay em 6 tuổi, tuổi chị gấp 2 lần tuổi em. Hỏi năm nay chị bao nhiêu tuổi ?

Bài 2. Con hái được 7 quả cam, mẹ hái được gấp 5 lần số cam của con. Hỏi mẹ hái được bao nhiêu quả cam ?

III. Giảm đi một số lần

– Bài tập áp dụng:

Bài 1. Mẹ có 40 quả bưởi, sau khi đem bán thì số bưởi giảm đi 4 lần. Hỏi mẹ còn lại bao nhiêu quả bưởi ?

Bài 2. Một công việc làm bằng tay hết 30 giờ, nếu làm bằng máy thì thời gian giảm 5 lần. Hỏi làm công việc đó bằng máy hết bao nhiêu giờ ?

Ví dụ 2. Có 35 l mật ong chia đều vào 7 can. Hỏi 2 can có mấy lít mật ong ?

Số lít mật ong trong 2 can là:

5 2 = 10 ( l )

GIẢI BÀI TOÁN CÓ LỜI VĂN LỚP 4

– Giải các bài toán có nội dung hình học.

– Số trung bình cộng = Tổng các số : số các số

Bài 1. Tìm trung bình cộng của các số : 4 ; 6 ; 8 ; 10.

Bài 2. Trung bình cộng của ba số bằng 20. Tìm tổng của ba số đó.

Giải : Tổng của ba số đó là : 20 3 = 60.

Số thứ năm là : 480 – 320 = 160.

II. Tìm hai số biết tổng và hiệu của hai số đó

Tóm tắt:

– Cách 1. Số bé là : (Tổng – Hiệu) : 2

Số lớn là : Tổng – Số bé (hoặc: Hiệu + Số bé)

– Cách 2. Số lớn là : (Tổng + Hiệu) : 2

Số bé là: Tổng – Số lớn (hoặc: Số lớn – Hiệu).

Bài 1. Tổng hai số bằng 50, số lớn hơn số bé 10 đơn vị. Tìm hai số đó.

Số lớn là : 50 – 20 = 30.

Số lớn là : (490 + 24) : 2 = 257

Số bé là : 257 – 24 = 233.

Vẽ sơ đồ đoạn thẳng:

Tổng số phần bằng nhau là : m + n

Giá trị của một phần là : Tổng : (m + n)

Số lớn là : Tổng – Số bé.

2. Bài tập vận dụng:

Giải : Ta có sơ đồ:

Tổng số phần bằng nhau là : 2 + 3 = 5 (phần)

Số lớn là : 30 – 12 = 18.

Ta có sơ đồ:

Chiều rộng hình chữ nhật là : 80 : 8 3 = 30 (cm)

Diện tích hình chữ nhật là: 30 50 = 1500 (cm 2 ).

Giải : Số bé nhất có ba chữ số là 100 nên tổng của hai số là 100 , số lớn nhất có một chữ số là 9 nên tỉ số của hai số là 9.

Coi số bé là 1 phần thì số lớn là 9 phần như thế, tổng số phần bằng nhau là:

Vẽ sơ đồ đoạn thẳng:

Hiệu số phần bằng nhau là : n – m

2. Bài tập vận dụng:

Giải : Ta có sơ đồ:

Hiệu số phần bằng nhau là: 5 – 3 = 2 (phần)

Coi số bé là 1 phần thì số lớn là 10 phần như thế, hiệu số phần là:

Số lớn là : 111 + 999 = 1110.

Diện tích hình chữ nhật là: 72 120 = 8640 (cm 2 ).

1. Tìm phân số của một số

– Tổng quát: Cho số A. Hãy tìm của số A.

– Cách giải. Nếu chia số A thành n phần bằng nhau thì một phần có giá trị là . m phần có giá trị là: . Vậy của số A là:

– Các bài tập vận dụng:

Giải : của 50 là : 50 = 175.

Giải : Độ dài đường chéo thứ hai là: 27 = 36 (cm)

Diện tích hình thoi đó là : 27 36 : 2 = 486 (cm 2 ).

360 000 = 216 000 (đồng)

Số tiền người thứ hai nhận được là:

360 000 – 216 000 = 144 000 (đồng) .

(số tiền của hai người)

Số tiền người thứ hai nhận được là: 360 000 = 144 000 (đồng) .

2. Tìm một số biết giá trị phân số của nó

– Cách giải. Nếu chia số cần tìm thành n phần bằng nhau thì m phần có giá trị là A. Giá trị một phần là . Số đó là: .

– Bài tập vận dụng:

Giải : Số đó là: 2 0 : = 3 0.

Bài 2. Biết của một số là . Tìm số đó.

Giải : Số đó là: : = .

Phân số chỉ số tiền người thứ hai được nhận là:

(số tiền của hai người)

Số tiền hai người thợ đem chia nhau là: 144 000 : = 360 000 (đồng).

VI. Bài toán “Ứng dụng tỉ lệ bản đồ”

102 000 000 = 102 km.

Khoảng cách giữa hai điểm A và B trên bản đồ là:

2000 : 500 = 4 (cm)

Quãng đường Hà Nội – Sơn Tây trên bản đồ dài là:

41 000 000 : 1 000 000 = 41 (mm)

GIẢI BÀI TOÁN CÓ LỜI VĂN LỚP 5

Trong Toán 5, nội dung dạy học về giải bài toán có lời văn bao gồm:

– Giải các bài toán về tỉ số phần trăm.

– Giải các bài toán về chuyển động đều.

1. Bài toán tỉ lệ thuận.

Cách 1. (Rút về đơn vị).

Trong 1 giờ ô tô đi được là : 90 : 2 = 45 (km)

Cách 2. (Tìm tỉ số).

4 giờ gấp 2 giờ số lần là : 4 : 2 = 2 (lần)

2. Bài toán tỉ lệ nghịch

4 ngày : …người ?

Cách 1. (Rút về đơn vị).

Muốn đắp xong nền nhà trong 4 ngày, cần số người là : 24 : 4 = 6 (người)

Cách 2. (Tìm tỉ số).

4 ngày gấp 2 ngày số lần là : 4 : 2 = 2 (lần)

Muốn đắp xong nền nhà trong 4 ngày, cần số người là : 12 : 2 = 6 (người).

Bài tập: 1. Một bếp ăn dự trữ gạo đủ cho 120 người ăn trong 20 ngày, thực tế đã có 150 người ăn. Hỏi số gạo dự trữ đó đủ ăn trong bao nhiêu ngày ? (Mức ăn của mỗi người như nhau)

Bài toán 1. Tìm tỉ số phần trăm của hai số

+ Tìm thương của hai số đó.

+ Nhân thương đó với 100 và viết thêm kí hiệu % vào bên phải tích tìm được.

– Bài tập vận dụng:

Bài 2. Trong 80kg nước biển có 2,8kg muối. Tìm tỉ số phần trăm của lượng muối trong nước biển.

Chuyen De ” Giai Toan Co Loi Van Lop 2

PHÒNG GD&ĐT HUYỆN CÙ LAO DUNGTRƯỜNG TIỂU HỌC AN THẠNH 2CHÀO MỪNG CÁC ĐỒNG CHÍ ĐẾN VỚI CHUYÊN ĐỀ KHỐI 2Phương pháp dạy “Giải toán có lời văn” lớp 2

G.V – Tổ trưởng: Lâm Thị NhiễuI/ LÝ DO CHỌN ĐỀ TÀI: Trong các môn học ở tiểu học, môn toán chiếm vị trí rất quan trọng. Ở môn học này trọng tâm là rèn cho học sinh có kỹ năng tính toán; đồng thời tạo cho các em có thói quen suy nghĩ độc lập,cẩn thận và sáng tạo trong quá trình giải toán. Bên cạnh đó giáo viên phát hiện những ưu điểm hoặc những thiếu sót giúp học sinh khắc phục kịp thời những hạn chế các em mắc phải.

– Có nhiều phương pháp nhưng không có phương pháp nào là tối ưu cả, trọng tâm việc dạy học người giáo viên phải biết kết hợp nhiều phương pháp một cách linh hoạt và sáng tạo thì mới đạt hiệu quả cao . 1/ Tìm cách giải bài toán : 1.1.Chọn phép tính giải thích hợp: Sau khi hướng dẫn học sinh tìm hiểu đề toán để xác định cái đã cho và cái cần tìm nhằm giúp học sinh lựa chọn phép tính thích hợp: chọn ” phép cộng” nếu bài toán yêu cầu ” nhiều hơn” hoặc ” gộp”, ” tất cả”; chọn ” tính trừ” nếu ” bớt” hoặc ” tìm phần còn lại” hay là ” ít hơn”.V/ BIỆN PHÁP THỰC HIỆN:

Vườn nhà Mai có 17 cây cam, vườn nhà Hoa có ít hơn vườn nhà Mai 7 cây cam. Hỏi vườn nhà Hoa có mấy cây cam? *** + Bài toán cho biết gì? * vườn nhà Mai có 17 cây cam. + Bài toán còn cho biết gì nữa? * Vườn nhà Hoa có ít hơn vườn nhà Mai 7 cây. + Bài toán hỏi gì? * Vườn nhà Hoa có bao nhiêu cây cam. + Muốn biết vườn nhà Hoa có mấy cây cam em làm tính gì? * tính trừ. + Lấy mấy trừ mấy? +17-7 bằng bao nhiêu?

Ví dụ 1 :17-717-7=10 1.2.Đặt câu lời giải thích hợp: Thực tế giảng dạy cho thấy việc đặt câu lời giải phù hợp là bước vô cùng quan trọng và khó khăn nhất đối với học sinh lớp 2. Chính vì vậy việc hướng dẫn học sinh lựa chọn và đặt câu lời giải hay cũng là khó khăn đối với người dạy. Tùy từng đối tượng học sinh mà giáo viên lựa chọn cách hướng dẫn sau:V/ BIỆN PHÁP THỰC HIỆN: Cách 1: ( Được áp dụng nhiều nhất và dễ hiểu nhất): dựa vào câu hỏi của bài toán rồi bỏ bớt từ đầu “hỏi” và cuối từ ” mấy” rồi thêm từ ” là” để có câu lời giải “Vườn nhà Hoa có số cây cam là:”V/ BIỆN PHÁP THỰC HIỆN:

G.V – Tổ trưởng: Lâm Thị Nhiễu

09 Huong Dan Giai Toan Xac Suat

Published on

1. PHẦN I: MỞ ĐẦU 1. Lý do chọn đề tài. Toán xác suất là một ngành toán học có nhiều ứng dụng rộng rãi trong nhiều lĩnh vực khoa học, công nghệ, kinh tế…Vì vậy lí thuyết xác suất đã được đưa vào chương trình toán lớp 11 nhằm cung cấp cho học sinh THPT những kiến thức cơ bản về ngành toán học quan trọng này. Để có thể học tốt toán xác suất học sinh phải nắm vững các khái niệm và các công thức cơ bản của xác suất đồng thời phải biết vận dụng các kiến thức đó để giải quyết các bài toán về tính xác suất . Qua thực tiễn giảng dạy xác suất cho học sinh lớp 11 môn Toán ở trường THPT Đức Hợp tôi nhận thấy: đa số các em chưa hiểu sâu sắc các khái niệm cơ bản như: không gian mẫu, biến cố, biến cố độc lập, biến cố xung khắc, biến cố đối,…các em chỉ biết giải bài toán xác suất trong một số kiểu bài tập quen thuộc, đa số học sinh chưa biết sử dụng linh hoạt các quy tắc cộng, quy tắc nhân xác suất để giải các bài tập về tính xác suất. Qua nhiều năm đứng trên bục giảng, khi dạy tới chuyên đề này, tôi luôn băn khoăn làm thế nào để cho giờ dạy của mình đạt kết quả cao nhất, các em chủ động trong việc chiếm lĩnh kiến thức.Thầy đóng vai trò là người điều khiến để các em tìm đến đích của lời giải. Chính vì lẽ đó trong hai năm học 2010-2011 và 20112012 Tôi đã đầu tư thời gian nghiên cứu Chuyên đề này. Một mặt là giúp học sinh hiểu được bản chất của vấn đề, các em không còn lúng túng trong việc giải các bài toán xác suất, hơn nữa tạo ra cho các em hứng thú trong giải toán nói chung và các bài toán xác suất nói riêng. Mặt khác sau khi nghiên cứu tôi sẽ có một phương pháp giảng dạy có hiệu quả cao hơn trong các giờ lên lớp, trả lời thoả đáng câu hỏi “Vì sao nghĩ và làm như vậy”. Với mong muốn ấy Tôi chọn đề tài: ” Hướng dẫn học sinh tiếp cận và giải bài toán xác suất ở trường THPT Đức Hợp “. Nội dung đề tài gồm ba bài toán: 1

3. 5.Phương pháp nghiên cứu a) Kết hợp hợp lý các phương pháp dạy học tích cực b) Đánh giá trình độ nhận thức, kỹ năng giải toán của học sinh. c) Tổng kết kinh nghiệm, tìm ra những khó khăn, thuận lợi khi giải quyết các bài toán. 3

6. Tìm xác suất để máy bay rơi trong trường hợp: a/ 4 bộ phận có diện tích bằng nhau và máy bay trúng hai viên đạn b/ Các bộ phận B,C, D có diện tích bằng nhau và bằng nửa diện tích bộ phận A và máy bay trúng hai viên đạn Hướng dẫn học sinh: Liệt kê các phần tử của không gian mẫu. a/ Đánh số 4 bộ phận A,B,C,D là 1,2,3,4 Phép thử T: ”máy bay trúng hai viên đạn” (1,1), (1, 2), (1,3), (1, 4)    Không gian mẫu: Ω = ………………………………  ⇒ n( Ω )= 4.4=16 phần tử (4,1), (4, 2), (4,3), (4, 4)    Xét biến cố A: máy bay rơi. Tập Ω A các kết quả thuận lợi của A : Ω A = { (1,1), (2, 2), (3,3), (4, 4), (1, 2), (2,1), (2,3), (3, 2), (3, 4), (4,3)} ⇒ n(Ω A ) = 10 n (Ω ) 5 Xác suất của A: P( A) = n(ΩA) = 8 Hướng dẫn học sinh: mô tả không gian mẫu dưới dạng khái quát để cho các em tiếp cận với các không gian mẫu trừu tượng hơn Chia bộ phận A thành 2 phần A1, A2 có diện tích bằng các phần B, C, D. b/ Đánh số 4 bộ phận A1, A2 ,B,C,D là 1,2,3,4,5 Phép thử T: ”máy bay trúng hai viên đạn” Không gian mẫu: Ω = { ( x, y ) :1 ≤ x ≤ 5;1 ≤ y ≤ 5; x ∈ N , y ∈ N } ⇒ n(Ω) = 5.5=25 phần tử Xét biến cố A: máy bay rơi. Tập Ω A các kết quả thuận lợi của A : Ω A = { ( x, x) :1 ≤ x ≤ 5, x ∈ N } ∪ { ( x, x + 1) :1 ≤ x ≤ 4, x ∈ N } ∪ { ( x + 1, x) :1 ≤ x ≤ 4, x ∈ N } ∪ { (1,3), (3,1)} ⇒ n(Ω A ) = 5 + 2.4 + 2 = 15 6

7. Xác suất của biến cố A: P ( A) = 15 3 = 25 5 Bài học kinh nghiệm: Để giải các bài toán về tính xác suất có không gian mẫu được mô tả cụ thể cần: – Liệt kê các phần tử của không gian mẫu, đếm số phần tử của không gian mẫu – Liệt kê các khả năng thuận lợi của biến cố, tính số khả năng thuận lợi của biến cố – Thay vào công thức tính xác suất. 2. Hướng dẫn học sinh tiếp cận các bài toán tính xác suất có không gian mẫu được mô tả trừu tượng hơn : Bài 3: Một tổ có 12 học sinh gồm 8 nam và 4 nữ. Chọn một nhóm lao động gồm 6 học sinh. Tính xác suất để có 4 nam và 2 nữ được chọn. Hướng dẫn học sinh: Phép thử T: ”Chọn ngẫu nhiên 6 học sinh từ 12 học sinh” ⇒ Mỗi phần tử của không gian mẫu là một tổ hợp chập 6 của 12 phần tử 6 n(Ω) = C10 Xét biến cố A: “Có 4 nam và 2 nữ được chọn.”. Để chọn được 4 nam và 2 nữ ta phải thực hiện 2 công đoạn liên tiếp: Công đoạn 1: Chọn 4 nam từ 8 nam có C84 Công đoạn 2: Chọn 2 nữ từ 4 nữ 2 C4 ⇒ có có 2 C64 .C4 cách chọn ra 4 nam và 2 nữ ⇒ n(Ω A ) = C64 .C42 2 C84 .C4 5 = Xác suất của A: P( A) = 6 C12 17 Cho học sinh giải bài tập sau : 7

8. Bài 4: Có 4 hành khách lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Tính xác suất để 1 toa có 3 người, 1 toa có 1 người, 2 toa còn lại không có ai. Hướng dẫn học sinh: Tìm số phần tử cua không gian mẫu: Phép thử T: ”Xếp 4 hành khách lên một đoàn tàu 4 toa” Mỗi hành khách có 4 cách chọn toa nên có toa ⇒ không gian mẫu: gồm 44 cách xếp 4 người lên một đoàn tàu 4 4 44 phần tử ⇒ n(Ω) = 4 Xét biến cố A: “1 toa có 3 người, 1 toa có 1 người, 2 toa còn lại không có ai.” Xét 2 công đoạn liên tiếp: − Chọn 3 hành khách trong 4 hành khách, chọn 1 toa trong 4 toa và xếp lên toa 3 1 đó 3 hành khách vừa chọn ⇒ C4 .C4 = 16 − Chọn 1 toa trong 3 toa còn lại và xếp lên toa đó 1 một hành khách ⇒ C3 = 3 1 (Cách) ⇒ n(Ω A ) = 16.3 = 48 ⇒ P ( A) = 48 3 = 44 16 Bài 5: Xét các số tự nhiên có 5 chữ số khác nhau. Tìm xác suất để số tự nhiên có 5 chữ số khác nhau lấy ra từ các số trên thảo mãn: Chữ số đứng sau lớn hơn chữ số đứng trước. Hướng dẫn học sinh: Không gian mẫu: Các số tự nhiên có 5 chữ số khác nhau: ai ≠ a j với i ≠ j a1 ≠ 0 ⇒ Có 9 cách chọn a1 Mỗi cách chọn a1 có 9 cách chọn a2 Mỗi cách chọn a1, a2 có 8 cách chọn a3 8 a1a2 a3 a4 a5 trong đó

9. Mỗi cách chọn a1, a2, a3 có 7 cách chọn a4 Mỗi cách chọn a1, a2, a3, a4 có 6 cách chọn a5 ⇒ n(Ω) = 9.9.8.7.6 = Xét biến cố A: ” Số có năm chữ số lấy ra thoả mãn chữ số đứng sau lớn hơn chữ số đứng trước”. Vì chữ số 0 không thể đứng trước bất kỳ số nào nên xét tập hợp: X= { 1; 2;3; 4;5;6;7;8;9} . Mỗi bộ gồm 5 chữ số khác nhau lấy ra từ X có một cách sắp xếp theo thứ tự tăng dần ⇒ n(Ω A ) = C9 5 ⇒ P ( A) = 126 1 = 27216 216 Bài học kinh nghiệm: Để tính được số phần tử của không gian mẫu được mô tả trừu tượng hơn cần phân tích đề bài và vận dụng toán Tổ hợp. Yêu cầu học sinh về nhà giải các bài tập: Bài 1: Gieo đồng thời ba con súc sắc. Tính xác suất để tổng số chấm trên mặt xuất hiện của ba con súc sắc bằng 10. Bài 2: Một chiếc hộp đựng 6 quả cầu trắng, 4 quả cầu xanh và 2 quả cầu đen. Chọn ngẫu nhiên 6 quả cầu. Tính xác suất để chọn được 3 quả cầu lấy ra cùng màu. Bài 3: ( Đại học Tài chính kế toán Hà Nội 1997) Mét hép bãng ®Ìn cã 12 bãng, trong ®ã cã 7 bãng tèt. LÊy ngÉu nhiªn 3 qu¶ bãng. TÝnh x¸c suÊt ®Ó lÊy ®îc : a. 3 bãng tèt ? b. Ýt nhÊt 2 bãng tèt ? c. Ýt nhÊt 1 bãng tèt ? Bµi 4: Mét ®ît xæ sè ph¸t hµnh 20000 vÐ trong ®ã cã 1 gi¶i nhÊt, 100 gi¶i nh×, 200 gi¶i ba, 1000 gi¶i t vµ 5000 gi¶i khuyÕn khÝch. T×m x¸c suÊt ®Ó mét ngêi mua 3 vÐ, tróng 1 gi¶i nh× vµ 2 gi¶i khuyÕn khÝch Bµi 5: Mét líp cã 30 häc sinh, trong ®ã gåm 8 häc sinh giái, 15 häc sinh kh¸ vµ 7 häc sinh trung b×nh. Ngêi ta muèn chän ngÉu nhiªn 3 9

10. em ®Ó ®i dù §¹i héi. TÝnh x¸c suÊt ®Ó chän ®îc : a. Ba häc sinh ®îc chän ®Òu lµ häc sinh giái ? b. Cã Ýt nhÊt 1 häc sinh giái ? c. Kh”ng cã häc sinh trung b×nh ? 10

11. Bài toán 2: SỬ DỤNG CÁC QUY TẮC TÍNH XÁC SUẤT GIẢI CÁC BÀI TOÁN TÍNH XÁC SUẤT Trước hết yêu cầu học sinh tư duy lại các loại biến cố hợp, biến cố giao các biến cố xung khắc, biến cố độc lập, biến cố đối , và quy tắc tính xác suất theo s¬ ®å t duy : Biến cố hợp Biến cố xung khắc Quy tắc cộng xác suất Biến cố đối Quy tắc cộng xác suất Quy tắc tính xác suất Biến cố giao Quy tắc nhân xác suất Biến cố độc lập Quy tắc nhân xác suất 11

12. 1. Hướng dẫn học sinh sử dụng quy tắc cộng xác suất trong các bài toán tính xác suất: Bài 1: Có 8 học sinh lớp A, 6 học sinh lớp B, 5 học sinh lớp C. Chọn ngẫu nhiờn 8 học sinh. Tính xác suất để 8 học sinh được chọn thuộc vào không quá hai trong 3 lớp . Hướng dẫn học sinh: Không gian mẫu gồm 8 C19 phần tử 8 Gọi A là biến cố 8 học sinh được chọn đều thuộc lớp A, khi đó n(Ω A ) = C8 = 1 8 Gọi B là biến cố 8 học sinh được chọn thuộc lớp A và B khi đó n(Ω B ) = C14 − 1 8 Gọi C là biến cố 8 học sinh được chọn thuộc lớp A và C khi đó n(ΩC ) = C13 − 1 8 Gọi D là biến cố 8 học sinh được chọn thuộc lớp C và B khi đó ΩB = C11 A,B,C,D là các biến cố xung khắc A ∪ B ∪ C ∪ D là biến cố 8 học sinh được chọn thuộc vào không quá hai trong 3 lớp . Vậy xác suất để 8 học sinh được chọn thuộc vào không quá hai trong 3 lớp bằng: P( A ∪ B ∪ C ∪ D ) = P ( A) + P ( B ) + P (C ) + P ( D ) = 8 8 8 1 C14 − 1 C13 − 1 C11 131 = 8 + + + 8 = 8 8 C19 C19 C19 C19 2223 Bài 2: Một chiếc hộp đựng 9 chiếc thẻ được đánh số từ 1 đến 9. Rút ngẫu nhiên 2 thẻ. Tính xác suất kết quả nhận được ghi trên 2 tấm thẻ là một số chẵn? 12

13. Học sinh vận dụng giải bài toán, giáo viên đưa ra thông tin phản hồi đề học sinh so sánh: Không gian mẫu: n(Ω)= C92 Gọi A là biến cố: ” Rút được một thẻ chẵn và một thẻ lẻ” 1 1 ⇒ n(ΩA ) = C5C4 = 20 ⇒ P( A) = 20 5 = 36 9 2 Gọi B là biến cố ” Rút được hai thẻ đề chẵn” ⇒ n(ΩB ) = C4 ⇒ P( B) = 2 C4 6 1 = = 2 C9 36 6 Nhận xét: hai biến cố A và B là xung khắc và A ∪ B biến cố ” kết quả nhận được ghi trên 2 tấm thẻ là một số chẵn” 5 9 1 6 Theo qui tắc cộng xác suất ta có : P( A ∪ B) = P( A) + P( B) = + = 13 18 Bài học kinh nghiệm: Trong những bài toán mà các kết quả thuận lợi của biến cố A chia thành nhiều nhóm ta có thể coi biến cố A là biến cố hợp của các biến cố A1 , ….., An xung khắc tương ứng . Sau đó sử dụng quy tắc cộng xác suất để tính xác suất của biến cố A 2. Hướng dẫn học sinh sử dụng quy tắc nhân xác suất trong các bài toán tính xác suất: Bài 3: Xạ thủ An bắn 2 viên đạn vào mục tiêu, xác suất bắn trúng của An trong một lần bắn là 7 . Xạ thủ Bình bắn 3 viên đạn vào mục tiêu, xác suất bắn trúng của 10 Bình trong một lần bắn là 9 . Tính xác suất để mục tiêu không trúng đạn 10 Hướng dẫn học sinh: Gọi A1 là biến cố An bắn trượt lần bắn thứ nhất thì P ( A1 ) = 13 3 10

14. 3 10 Gọi A2 là biến cố An bắn trượt lần bắn thứ hai thì P ( A2 ) = ⇒ A1, A2 là hai biến cố độc lập A = A1 ∩ A2 là biến cố An bắn trượt cả hai lần bắn 3 P ( A) = P ( A1 ).P ( A2 ) = ( ) 2 10 Tương tự: B = B1 ∩ B2 ∩ B3 là biến cố Bình bắn trượt cả ba lần bắn P ( B ) = P ( B1 ).P ( B2 ) P ( B3 ) = ( 1 3 ) 10 A, B là độc lập. A ∩ B là biến cố cả An và Bình đều bắn trượt hay: A ∩ B là biến cố “Mục tiêu không trúng đạn” 32 P ( A ∩ B ) = P ( A).P ( B ) = 5 10 Bài học kinh nghiệm: Trong những bài toán mà các kết quả thuận lợi của biến cố A phải đồng thời thỏa mãn nhiều điều kiện ràng buộc khác nhau ta có thể coi biến cố A là biến cố giao của các biến cố A1 , ….., An độc lập tương ứng . Sau đó sử dụng quy tắc nhân xác suất để tính xác suất của biến cố A 3. Hướng dẫn học sinh sử dụng biến cố đối trong các bài toán tính xác suất: Bài 4: Có 5 học sinh lớp A, 4 học sinh lớp B, 3 học sinh lớp C. Chọn ngẫu nhiên 4 học sinh. Tính xác suất để 4 học sinh được chọn thuộc vào không quá hai trong 3 lớp . Hướng dẫn học sinh: 4 Không gian mẫu : n(Ω)= C12 phần tử 14

15. Gọi A là biến cố 4 học sinh được chọn thuộc cả lớp A, lớp B, lớp C 1 1 1 2 1 1 1 n(ΩA ) = C52C4C3 + C5C4 C3 + C5C4C32 A là biến cố :” 4 học sinh được chọn thuộc vào không quá hai trong 3 lớp” . 1 1 1 2 1 1 1 C52C4C3 + C5C4 C3 + C5C4C32 5 P ( A) = 1 − = 4 11 C12 Bài 5: Một máy bay có 3 bộ phận A, B, C lần lượt chiếm 15%, 30%, 55% diện tích máy bay. Máy bay rơi khi có hoặc 1 viên trúng vào A, hoặc 2 viên trúng vào B, hoặc 3 viên trúng vào C. Tính xác suất để máy bay rơi nếu máy bay trúng 3 viên đạn. Hướng dẫn học sinh: Gọi A là biến cố máy bay không rơi khi máy bay trúng 3 viên đạn. A chính là biến cố có 1 viên trúng B, 2 viên trúng C A = ( B1 ∩ B2 ∩ C ) ∪ ( B1 ∩ C ∩ B2 ) ∪ (C ∩ B1 ∩ B2 ) P( A) = 3P( B1 ).P ( B2 ) P (C ) = 3.0,552.0, 3 A là biến cố máy bay rơi khi máy bay trúng 3 viên đạn P( A) = 1 − 3.0,552.0,3 = 0,728 Bài học kinh nghiệm: Trong những bài toán mà các kết quả thuận lợi của biến cố A chia thành quá nhiều nhóm khác nhau ta nên sử dụng biến có đối để lời giải đơn giản 15

16. Bài toán 3: SỬ DỤNG KẾT HỢP CÁC QUI TẮC TÍNH XÁC SUẤT ĐỂ GIẢI CÁC BÀI TOÁN TÍNH XÁC SUẤT Cùng học sinh phân tích bài toán để đưa biến cố cần xem xét thành biến cố hợp của các biến cố con có cùng xác suất Bài 1: Trong lớp học có 6 bóng đèn, mỗi bóng có xác suất bị cháy là 0,25. Lớp học đủ ánh sáng nếu có ít nhất 4 bóng hỏng. Tính xác suất dể lớp học không đủ ánh sáng . Hướng dẫn học sinh: Mỗi bóng có xác suất bị cháy là 0,25, mỗi bóng có xác suất hỏng là 0,75 4 Gọi A1 là biến cố 4 bóng hỏng 2 bóng tối, A1 là biến cố hợp của C6 biến cố con, 4 P ( A1 ) = C6 .0, 754.0, 252 5 Gọi A2 là biến cố 5 bóng hỏng 1 bóng tối, A2 là biến cố hợp của C6 biến cố con, 5 P ( A2 ) = C6 .0, 755.0, 251 6 6 Gọi A3 là biến cố 6 bóng hỏng P( A3 ) = C6 .0, 75 A = A1 ∪ A2 ∪ A3 là biến cố lớp học đủ ánh sáng A là biên cố lớp học không đủ ánh sáng P ( A) = 1 − P ( A) = 0,8305 Bài 2: Một người bắn 3 viên đạn. Xác suất để cả 3 viên trúng vòng 10 là 0,008, xác suất để 1 viên trúng vòng 8 là 0,15, xác suất để 1 viên trúng vòng dưới 8 là 0,4. Tính xác suất để xạ thủ đạt ít nhất 28 điểm Hướng dẫn: 16

17. Gọi A1 là biến cố 1 viên trúng vòng 10, 2 viên trúng vòng 9, A1 là biến cố hợp của 1 1 C3 biến cố con, P ( A1 ) = C3 .0, 2.0, 252 Gọi A2 là biến cố 2 viên trúng vòng 10, 1 viên trúng vòng 9, A2 là biến cố hợp của 1 1 C3 biến cố con, P ( A2 ) = C3 .0, 22.0, 25 Gọi A3 là biến cố 2 viên trúng vòng 10, 1 viên trúng vòng 8, A3 là biến cố hợp của 1 1 C3 biến cố con, P ( A3 ) = C3 .0, 22.0,15 Gọi A4 là biến cố 3 viên trúng vòng 10, P( A4 ) = 0, 008 A = A1 ∪ A2 ∪ A3 ∪ A4 là biến cố xạ thủ đạt ít nhất 28 điểm P ( A) = 0, 0935 Yêu cầu học sinh giải các bài tập tương tự, giáo viên đưa ra thông tin phản hồi để học sinh so sánh: Bài 3: Tại một thành phố tỉ lệ người thích bóng đá là 65%. Chọn ngẫu nhiờn 12 người. Tính xác suất để có đúng 5 người thích bóng đá 5 5 7 Đáp số: P = C12 0, 65 .0,35 = 0, 0591 Bài 4: Gieo đồng thời 3 con súc sắc . Bạn thắng nếu có xuất hiện ít nhất 2 lần ra 6 chấm. Tính xác suất để trong 5 ván chơi bạn thắng ít nhất 3 ván 3 Đáp số: P = C5 ( 2 3 25 2 2 25 2 ) .( ) + C54 ( ) 4 .( ) + ( )5 27 27 27 27 27 Bài 5 Bài thi trắc nghiệm gồm 12 câu , mỗi câu có 5 phương án trả lời trong đó chỉ có 1 17

18. phương án đúng . Mỗi câu trả lời đúng được 4 điểm, mỗi câu trả lời sai bị trừ 1 điểm. Một học sinh làm bài bằng cách chọn ngẫu nhiên. Tính xác suất để anh ta bị điểm âm. 4 5 1 5 4 5 1 5 4 5 0 12 1 11 2 2 10 Đáp số: P = C12 ( ) + C12 ( ).( ) + C12 ( ) .( ) = 0,5583 18

19. PHẦN III: THỰC NGHIỆM – GIẢI PHÁP 1. Khảo sát thực tế: Trước khi thực hiện đề tài , năm học 2010- 2011 tôi đá khảo sát chất lượng của học sinh lớp11ở hai lớp 11B5, 11B6 Trường THPT Đức Hợp, có trình độ nhận thức và sĩ số là tương đương nhau,thông qua kiểm tra viết gồm ba bài toán xác suất: Bài toán 1: Tính xác suất của biến cố bằng cách sử dụng công thức xác suất cổ điển Bài toán 2: Sử dụng các qui tắc tính xác suất để giải các bài toán tính xác suất Bài toán 3: Sử dụng kết hợp các quy tắc xác suất giải các bài toán tính xác suất. Kết quả số học sinh làm đạt được như sau: Lớp 11B5 Bài toán 1 43 Bài toán 2 19 Bài toán 3 7 45 90% 39 40% 5 15% 1 87% 11B6 Sĩ số 48 11% 2% Chất lượng bài giải của học sinh thấp, kĩ năng giải toán dạng này yếu, kỹ năng trình bày lời giải rất hạn chế. Sau khi khảo sát thấy được thực trạng như vậy đến năm học 2011- 2012 tôi áp dụng đề tài này với hai lớp 11A2, 11A3 năm học 20112012 của nhà trường, với trình độ và sĩ số tương đương với hai lớp tôi đã dạy ở năm học 2010- 2011. 2. Các bước thực hiện đề tài: Bước 1: Hệ thống hóa các kiến thức các khái niệm cơ bản như: không gian mẫu, biến cố, biến cố độc lập, biến cố xung khắc, biến cố đối, các quy tắc cộng và quy tắc nhân xác suất 19

20. Bước 2: Đưa ra một số ví dụ điển hình hướng dẫn học sinh phân tích và giải bài toán. Từ đó rút ra cho học sinh các bài học kinh nghiệm khi giải các bài toán tính xác suất. Bước 3: Rèn luyện kĩ năng giải các bài tập cho học sinh thông qua một số bài tập bổ sung nâng cao và các đề thi. Gợi mở cho học sinh những hướng phát triển, mở rộng bài toán. 3. Kết quả sau khi thực hiện đề tài: Sau khi thực hiện đề tài ở lớp 11A2, 11A3 trường THPT Đức Hợp năm học 2011- 2012 Tôi đã khảo sát chất lượng của học sinh thông qua kiểm tra viết gồm 3 bài toán xác suất tương đương với đợt khảo sát của năm học 2010- 2011: Bài toán 1: Tính xác suất của biến cố bằng cách sử dụng công thức xác suất cổ điển Bài toán 2: Sử dụng các qui tắc tính xác suất để giải các bài toán tính xác suất Bài toán 3: Sử dụng kết hợp các quy tắc xác suất giải các bài toán tính xác suất. Kết quả như sau: Lớp 11A2 Bài toán 1 46 Bài toán 2 45 Bài toán 3 44 44 100% 44 97% 44 96% 43 100% 11A3 Sĩ số 46 100% 98% Chất lượng bài giải và kĩ năng trình bày bài giải các dạng toán về tính xác suất này rất tốt. 4. Giải pháp đề nghị : Bài toán xác suất mới được đưa vào chương trình toán lớp 11 THPT , hầu hết học sinh đều gặp khó khăn khi tiếp cận với bài toán này. Để giúp học sinh nắm vững các kiến thức cơ bản về xác suất đồng thời biết vận dụng một cách linh hoạt 20

22. TT 1 PhÇn I: Më ®Çu Mục Trang 1 2 Lý do chän ®Ò tµi 1 3 Môc ®Ých yªu cÇu 2 4 §èi tîng, ph¹m vi nghiªn cøu 2 5 NhiÖm vô nghiªn cøu 2 6 Ph¬ng ph¸p nghiªn cøu 3 7 PhÇn II: Néi dung 4 8 Bµi to¸n 1: Sö dông ®Þnh nghÜa cæ ®iÓn cña x¸c suÊt gi¶i 4 9 c¸c bµi to¸n tÝnh x¸c suÊt Bµi to¸n 2: sö dông qui t¾c tÝnh x¸c suÊt gi¶i c¸c bµi to¸n 11 10 tÝnh x¸c suÊt Bµi to¸n 3: Sö dông kÕt hîp c¸c qui t¾c tÝnh x¸c suÊt ®Ó 16 11 gi¶i c¸c bµi to¸n tÝnh x¸c suÊt PhÇn III: Thùc nghiÖm, gi¶i ph¸p 19 12 Kh¶o s¸t thùc tÕ 19 13 C¸c bíc thùc hiÖn ®Ò tµi 19 14 KÕt qu¶ sau khi thùc hiÖn ®Ò tµi 20 15 Gi¶i ph¸p ®Ò nghÞ 21 22