Giải Toán Hình Thang Lớp 8 / Top 8 # Xem Nhiều Nhất & Mới Nhất 1/2023 # Top View | Ictu-hanoi.edu.vn

Giải Sbt Toán 8 Hình Thang.

Giải bài 11 trang 81 SBT toán 8 tập 1.

Tính các góc của hình thang ABCD (AB

Giải bài 12 trang 81 SBT toán 8 tập 1.

Tứ giác ABCD có BC = CD và BD là tia phân giác của góc D. Chứng minh rằng ABCD là hình thang.

Theo dấu hiệu nhận biết hình thang thì một tứ giác có hai cạnh song song là hình thang. Và như vậy ta phải lục lại cách chứng minh hai đường thẳng song song. Ta có BC = CD nên tam giác BCD cân tại C Suy ra $widehat{B_1}$ = $widehat{D_1}$ Ta lại có $widehat{D_1}$ = $widehat{D_2}$ (BD là tia phân giác của góc D) Do đó $widehat{B_1}$ = $widehat{D_2}$ Mà hai góc $widehat{B_1}$ và $widehat{D_2}$ ở vị trí so le trong. Suy ra BC

Giải bài 13 trang 81 SBT toán 8 tập 1.

Dùng thước và êke kiểm tra xem trong các tứ giác trên hình 2 SBT:

a) Tứ giác nào chỉ có một cặp cạnh song song.

b) Tứ giác nào có hai cặp cạnh song song.

c) Tứ giác nào là hình thang.

Bài giải: Nhắc lại một chút về cách dùng thước và êke để kiểm tra hai đường thẳng có song song với nhau không: – Đặt một cạnh góc vuông của êke trùng với một trong hai cạnh cần kiểm tra; – Đặt mép thước trùng với mép cạnh góc vuông còn lại của êke; – Điều chỉnh êke xem cạnh góc vuông có trùng với cạnh còn lại không. Nếu chúng trùng nhau thì hai cạnh đó song song.

Theo đó ta có kết quả như sau: a) Tứ giác 1 chỉ có một cặp cạnh song song. b) Tứ giác 3 có hai cặp cạnh song song. c) Tứ giác 1 và 3 là hình thang.

Giải bài 14 trang 81 SBT toán 8 tập 1.

Tính các góc B và D của hình thang ABCD, biết rằng $widehat{A}$ = $60^0$, $widehat{C}$ = $130^0$.

Bài giải: Với hình thang ABCD thì $widehat{A}$ và $widehat{C}$ chính là hai góc đối. Nên sẽ có hai trường hợp xảy ra: – Nếu $widehat{A}$ và $widehat{B}$ là hai góc kề một cạnh bên AB (xem hình bên dưới) Khi đó ta có $widehat{A}$ + $widehat{B}$ = $180^0$ Mà $widehat{A}$ = $60^0$ Suy ra $widehat{B}$ = $120^0$ và tương tự $widehat{D}$ = $50^0$. – Nếu $widehat{A}$ và $widehat{D}$ là hai góc kề một cạnh bên như hình bên dưới thì khi đó $widehat{B}$ = $50^0$ và $widehat{D}$ = $130^0$.

Giải bài 15 trang 81 SBT toán 8 tập 1.

Chứng minh rằng trong hình thang có nhiều nhất là hai góc tù, có nhiều nhất là hai góc nhọn.

Bài giải: Giả sử ta có hình thang ABCD với AB

Giải bài 16 trang 81 SBT toán 8 tập 1.

Chứng minh rằng trong hình thang, các tia phân giác của hai góc kề một cạnh bên vuông góc với nhau.

Giải bài 17 trang 81 SBT toán 8 tập 1.

Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau ở I. Qua I kẻ đường thẳng song song với BC cắt cạnh AB và AC ở D và E.

a) Tìm các hình thang trong hình vẽ.

b) Chứng minh rằng hình thang ABCD có một cạnh đáy bằng tổng hai cạnh bên.

a) Ta vẽ hình theo yêu cầu của đề. Nhìn vào hình vẽ ta thấy có 3 hình thang, đó là: BDEC, BDIC, BIEC. b) Theo đó ta sẽ chứng minh DE = BD + CE. Ta có DE

Giải bài 18 trang 82 SBT toán 8 tập 1.

Cho tam giác ABC vuông cân tại A. Ở phía ngoài tam giác ABC, vẽ tam giác BCD vuông cân tại B. Tứ giác ABDC là hình gì? Vì sao?

Bài giải: Theo yêu cầu của đề ta có hình vẽ như sau: Khi đó ta có $widehat{C_1}$ = $45^0$ (vì tam giác ABC vuông cân tại A) Ta lại có tam giác BCD vuông cân tại B nên $widehat{C_2}$ = $45^0$ Do đó $widehat{C}$ = $90^0$ (1) Nên CD $perp$ AC Mặt khác ta cũng có AB $perp$ AC (vì $widehat{A}$ = $90^0$) Suy ra AB

Giải bài 19 trang 82 SBT toán 8 tập 1.

Hình thang vuông ABCD có $widehat{A}$ = $widehat{D}$ = $90^0$, AB = AD = 2cm, DC = 4cm. Tính các góc của hình thang.

Giải bài 20 trang 82 SBT toán 8 tập 1.

Chứng minh rằng tổng hai cạnh bên của hình thang lớn hơn hiệu hai đáy.

Giải bài 21 trang 82 SBT toán 8 tập 1.

Trong hình 3 có bao nhiêu hình thang?

Bài giải: Ta sẽ viết tên các hình thang ra giấy và chỉ cần biết … đếm nữa thôi là đã giải xong bài tập này! Nhìn vào hình vẽ ta nhận ra rất nhiều hình thang với những cái tên rất đẹp! Để không “bỏ sót” hình nào, ta sẽ đọc từ trên xuống như sau:ABCD, ABEF, ABGH, ABIK, DCEF, DCGH, DCIK, FEGH, FEIK, HGIK. Sau khi “đếm đi đếm lại” ta chắc chắn một điều rằng có tất cả 10 hình thang.Còn các bạn, các bạn đếm được bao nhiêu hình thang!

Xem bài trước: Giải SBT toán 8 về tứ giác.

Mỗi bài toán có nhiều cách giải, đừng quên chia sẻ cách giải hoặc ý kiến đóng góp của bạn ở khung nhận xét bên dưới. Xin cảm ơn!

Giải Toán Lớp 8 Bài 4: Diện Tích Hình Thang

Giải Toán lớp 8 Bài 4: Diện tích hình thang

Bài 26 (trang 125 SGK Toán 8 Tập 1):

Tính diện tích mảnh đất hình thang ABED theo các độ dài đã cho trên hình 140 và biết diện tích hình chữ nhật ABCD là 828m 2.

Lời giải:

Bài 27 (trang 125 SGK Toán 8 Tập 1):

Vì sao hình chữ nhật ABCD và hình bình hành ABEF (h.141) lại có cùng diện tích? Suy ra cách vẽ một hình chữ nhật có cùng diện tích với một hình bình hành cho trước.

Lời giải:

Hình chữ nhật ABCD và hình bình hành ABEF có đáy chung là AB và có chiều cao bằng nhau, vậy chúng có diện tích bằng nhau.

Suy ra cách vẽ một hình chữ nhật có cùng diện tích với một hình bình hành cho trước: – Lấy một cạnh của hình bình hành ABEF làm một cạnh của hình chữ nhật cần vẽ, chẳng hạn cạnh AB. – Vẽ đường thẳng EF. – Từ A và B vẽ các đường thẳng vuông góc với đường thẳng EF chúng cắt đường thẳng EF lần lượt tại D, C. Vẽ các đoạn thẳng AD, BC. ABCD là hình chữ nhật có cùng diện tích với hình bình hành ABEF đã cho.

Bài 28 (trang 126 SGK Toán 8 Tập 1):

Xem hình 142 (IG

Lời giải:

Bài 29 (trang 126 SGK Toán 8 Tập 1):

Khi nối trung điểm của hai đáy hình thang, tại sao ta được hình thang có diện tích bằng nhau?

Lời giải:

Cho hình thang ABCD. Gọi M, N lần lượt là trung điểm của hai đáy AB, CD. Ta có hai hình thang AMND và BMNC có cùng chiều cao, có đáy trên bằng nhau DN =NC. Vậy chúng có diện tích bằng nhau.

Bài 30 (trang 126 SGK Toán 8 Tập 1):

Trên hình 143 ta có hình thang ABCD với đường trung bình EF và hình chữ nhật GHIK. Hãy so sánh diện tích hai hình này, từ đó suy ra một cách chứng minh khác về công thức diện tích hình thang.

Lời giải:

Bài 31 (trang 126 SGK Toán 8 Tập 1):

Xem hình 144. Hãy chỉ ra các hình có cùng diện tích (lấy ô vuông làm đơn vị diện tích).

Lời giải:

Các hình 2, 6, 9 có cùng diện tích là 6 ô vuông.

Các hình 1, 5, 8 có cùng diện tích là 8 ô vuông.

Các hình 3, 7 có cùng diện tích là 9 ô vuông.

Hình 4 có diện tích là 7 ô vuông nên không có cùng diện tích với một trong các hình đã cho.

Từ khóa tìm kiếm:

toán 8 diện tích hình thang

giải bài tập toán lớp 8 bài diện tích hình thang

Giải bt diên tích hình thang sgk lop 8

giải diện tích hình thang lớp 8

giải toán 8 bài diện tích hình thang

Giải Sbt Toán 8 Bài 3: Hình Thang Cân

Giải SBT Toán 8 Bài 3: Hình thang cân

Bài 22 trang 82 SBT Toán 8 Tập 1: Hình thang cân ABCD có AB

Lời giải:

Xét hai tam giác vuông AHD và BKC:

∠(AHD) = ∠(BKC) = 90 o

AD = BC (tính chất hình thang cân)

∠C = ∠D (gt)

Suy ra: ΔAHD = ΔBKC (cạnh huyền, góc nhọn)

⇒ HD = KC

Bài 23 trang 82 SBT Toán 8 Tập 1: Hình thang cân ABCD có AB

Lời giải:

Xét ΔADC và ΔBCD, ta có:

AD = BC (tính chất hình thang cân)

∠(ADC) = ∠(BCD) (gt)

DC chung

Do đó: ΔADC = ΔBCD (c.g.c) ⇒ ∠C 1= ∠D 1

Trong ΔOCD ta có: ∠C 1= ∠D 1 ⇒ ΔOCD cân tại O ⇒ OC = OD (1)

AC = BD (tính chất hình thang cân) ⇒ AO + OC = BO + OD (2)

Bài 24 trang 83 SBT Toán 8 Tập 1: Cho tam giác ABC cân tại A. Trên cạnh AB, AC lấy các điểm M, N sao cho BM = CN

a. Tứ giác BMNC là hình gì? Vì sao?

b. Tính các góc của tứ giác BMNC biết rang góc ∠A = 40 o

Lời giải:

a. ΔABC cân tại A

⇒∠B = ∠C = (180 o– ∠A) / 2 (tính chất tam giác cân) (1)

AB = AC (gt) ⇒ AM + BM = AN + CN

Mà BM = CN (gt) ⇒ AM = AN

⇒ ΔAMN cân tại A

⇒∠M 1 = ∠N 1 = (180 o– ∠A) / 2 (tính chất tam giác cân) (2)

Từ (1) và (2) suy ra: ∠M 1 = ∠B

⇒ MN

Tứ giác BCNM là hình thang có B = C

Vậy BCNM là hình thang cân.

∠N 2= ∠M 2= 110 o (tính chất hình thang cân)

Bài 25 trang 83 SBT Toán 8 Tập 1: Cho tam giác ABC cân tại A, các đường phân giác BE, CF. Chứng minh rằng BFEC là hình thang cân có đáy nhỏ bằng cạnh bên.

Lời giải:

Xét hai tam giác AEB và AFC

Có AB = AC (ΔABC cân tại A)

∠ABE = ∠B/2 = ∠C/2 = ∠ACF

∠A là góc chung

⇒ ΔAEB = ΔAFC (g.c.g) ⇒ AE = AF ⇒ ΔAEF cân tại A

⇒ ∠AFE = (180 o− ∠A) / 2 và trong tam giác ΔABC: ∠B = (180 o − ∠A) / 2

⇒∠AFE = ∠B ⇒ FE//BC

⇒ Tứ giác BFEC là hình thang.

Vì FE//BC nên ta có: ∠FEB = ∠EBC (so le trong)

Lại có: ∠FBE = ∠EBC

⇒∠FBE = ∠FEB

⇒ ΔFBE cân ở F ⇒ FB = FE

⇒ Hình thang BFEC là hình thang cân có đáy nhỏ bằng cạnh bên (đpcm)

Bài 26 trang 83 SBT Toán 8 Tập 1: Chứng minh hình thang có hai đường chéo bằng nhau là hình thang cân.

Lời giải:

Từ B kẻ đường thẳng song song với AC cắt đường thẳng DC tại K.

Ta có hình thang ABKC có hai cạnh bên BK

Mà AC = BD (gt)

Suy ra: BD = BK do đó ΔBDK cân tại B

⇒ ∠D 1 = ∠K (tính chất hai tam giác cân)

Ta lại có: ∠C 1 = ∠K (hai góc đồng vị)

Xét ΔACD và ΔBDC:

AC = BD (gt)

CD chung

Do đó ΔACD = ΔBDC (c.g.c) ⇒ ∠(ADC) = ∠(BCD)

Hình thang ABCD có ∠(ADC) = ∠(BCD) nên là hình thang cân.

Bài 27 trang 83 SBT Toán 8 Tập 1: Tính các góc của hình thang cân, biết một góc bang 50 o

Lời giải:

Giả sử hình thang ABCD có AB

Vì ∠C = ∠D (tính chất hình thang cân)

∠A + ∠D = 180 o (hai góc trong cùng phía)

∠B = ∠A (tính chất hình thang cân)

Suy ra: ∠B = 130 o

Bài 28 trang 83 SBT Toán 8 Tập 1: Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD. Chứng minh rằng CA là tia phân giác của góc C.

Lời giải:

Ta có:

AB = AD (gt)

AD = BC (tính chất hình thang cân)

⇒ AB = BC do đó ΔABC cân tại B

⇒ ∠BAC = ∠BCA (tính chất tam giác cân) (*)

ABCD là hình thang có đáy là AB nên AB

∠BAC = ∠DCA (hai góc so le trong) (**)

Từ (*) và (**) suy ra: ∠BCA = ∠DCA (cùng bằng ∠BAC)

Vậy CA là tia phân giác của ∠BCD.

Bài 29 trang 83 SBT Toán 8 Tập 1: Hai đoạn thẳng AB và CD cắt nhau tại 0. Biết rằng OA = OC, OB = OD. Tứ giác ABCD là hình gì ? Vì sao

Lời giải:

Ta có: OA = OC (gt)

⇒ ΔOAC cân tại O

⇒∠A 1= (180 o – ∠(AOC) ) / 2 (tính chất tam giác cân) (1)

OB = OD (gt)

⇒ ΔOBD cân tại O

⇒ ∠B 1= (180 o – ∠(BOD) )/2 (tính chất tam giác cân) (2)

∠(AOC) = ∠(BOD) (đối đỉnh) (3)

⇒ AC

Suy ra: Tứ giác ABCD là hình thang

Ta có: AB = OA + OB

CD = OC + OD

Mà OA = OC, OB = OD

Suy ra: AB = CD

Vậy hình thang ABCD là hình thang cân.

Bài 30 trang 83 SBT Toán 8 Tập 1: Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD = AE.

a. Tứ giác BDEC là hình gì ? Vì sao

b. Các điểm D, E ở vị trí nào thì BD =DE = EC?

Lời giải:

a. AD = AE (gt)

⇒ ΔADE cân tại A ⇒∠(ADE) = (180 o– ∠A )/2

ΔABC cân tại A ⇒ ∠(ABC) = (180 o– ∠A )/2

Suy ra: ∠(ADE) = ∠(ABC)

⇒ DE

Tứ giác BDEC là hình thang

∠(ABC) = ∠(ACB) (tính chất tam giác cân) hay ∠(DBC) = ∠(ECB)

Vậy BDEC là hình thang cân.

b. Ta có: BD = DE ⇒ ΔBDE cân tại D

DE = EC ⇒ ΔDEC cân tại E

Vậy khi BE là tia phân giác của ∠(ABC) , CD là tia phân giác của ∠(ACB) thì BD = DE = EC.

Bài 31 trang 83 SBT Toán 8 Tập 1: Hình thang cân ABCD có 0 là giao điểm của hai đường thắng chứa cạnh bên AD, BC và E là giao điểm của hai đường chéo. Chứng minh rằng OE là đường trung trực của hai đáy.

Lời giải:

Ta có: ∠(ADC) = ∠(BCD) (gt)

⇒ ∠(ODC) = ∠(OCD)

⇒ΔOCD cân tại O

⇒ OC = OD

OA + AD = OB + BC

Mà AD = BC (tính chất hình thang cân)

⇒ OA = OB

Xét ΔADC và. ΔBCD:

AD = BC (chứng minh trên)

AC = BD (tính chất hình thang cân)

CD chung

Do đói ΔADC và ΔBCD (c.c.c)

⇒ΔEDC cân tại E

⇒ EC = ED nên E thuộc đường trung trực CD

OC = OD nên O thuộc đường trung trực CD

E ≠ O. Vậy OE là đường trung trực của CD.

Ta có: BD= AC (chứng minh trên)

⇒ EB + ED = EA + EC mà ED = EC

⇒ EB = EA nên E thuộc đường trung trực AB

OA = OB nên O thuộc đường trung trực của AB

E ≠ O. Vậy OE là đường trung trực của AB.

Bài 32 trang 83 SBT Toán 8 Tập 1: a. Hình thang ABCD có đáy nhỏ AB = b , đáy lớn CD = a, đường cao AH. Chứng minh rằng HA = (a – b) / 2 , HC = (a + b) / 2 (a, b có cùng đơn vị đo).

Lời giải:

a. Kẻ đường cao BK

Xét hai tam giác vuông AHD và BKC, ta có:

∠(AHD) = ∠(BKC) = 90 o

AD = BC (tỉnh chất hình thang-Cân)

∠D = ∠C (gt)

Do đó: ΔAHD = ΔBKC (cạnh huyền, góc nhọn) ⇒ HD = KC.

Hình thang ABKH có hai cạnh bên song song nên AB = HK

a – b = DC – AB = DC – HK = HD + KC = 2HD ⇒ HD = (a – b) / 2

HC = DC – HD = a – (a – b) / 2 = (a + b) / 2

b. HD = (CD – AB) / 2 = (26 – 10) / 2 = 8 (cm)

Trong tam giác vuông AHD có ∠(AHD) = 90 o

AH = 15 (cm)

Bài 33 trang 83 SBT Toán 8 Tập 1: Hình thang cân ABCD có đường chéo BD vuông góc với cạnh bên BC, BD là tia phân giác của-góc D. Tính chu vi của hình thang, biết BC = 3cm.

Lời giải:

Ta có: AD = BC = 3 (cm) (tính chất hình thang cân)

∠(ABD) = ∠(BDC) (so le trong)

∠(ADB) = ∠(BDC) (gt)

⇒ (ABD) = (ABD)

⇒ΔABD cân tại A

⇒ AB = AD = 3 (cm)

ΔBDC vuông tại B

∠(ADC) = ∠C (gt)

Mà ∠(BDC) = 1/2 ∠(ADC) nên ∠(BDC) = 1/2 ∠C

Từ B kẻ đường thẳng song song AD cắt CD tại E.

Hình thang ABED có hai cạnh bên song song nên AB = DE và AD = BE

⇒ DE = 3 (cm), BE = 3 (cm)

∠(BEC) = ∠(ADC) (đồng vị)

Suy ra: ∠(BEC) = ∠C

⇒ΔBEC cân tại B có ∠C = 60 o

⇒ΔBEC đều

⇒ EC = BC = 3 (cm)

CD = CE + ED = 3 + 3 = 6(cm)

Chu vi hình thang ABCD bằng:

AB + BC + CD + DA = 3 + 3 + 6 + 3 = 15 (cm)

Lời giải:

Chọn A. ∠(C ) = 110 o

Bài 3.2 trang 84 SBT Toán 8 Tập 1: Hình thang cân ABCD (AB// CD) có hai đường chéo cắt nhau tại I, hai đường thẳng chứa các cạnh bên cắt nhau ở K. Chứng minh rằng KI là đường trung trực của hai đáy.

Lời giải:

∆ACD = ∆BDC (c.c.c) suy ra

do đó ID = IC (1)

Tam giác KCD có hai góc ở đấy bằng nhau nên KD = KC (2)

Từ (1) và (2) suy ra KI là đương trung trực của CD.

Chứng minh tương tự có IA = IB, KA = KB

Suy ra KI là đường trung trực của AB

Bài 3.3 trang 84 SBT Toán 8 Tập 1: Hình thang cân ABCD (AB

Lời giải:

Hình thang ABCD cân có AB

DB là tia phân giác của góc D

⇒ ∠(ADB) = ∠(BDC)

∠(ABD) = ∠(BDC) (hai góc so le trong)

Suy ra: ∠(ADB) = ∠(ABD)

⇒ Δ ABD cân tại A ⇒ AB = AD (1)

Từ B kẻ đường thẳng song song với AD cắt CD tại E

Hình thang ABED có hai cạnh bên song song nên AB = ED, AD= BE (2)

∠(BEC) = ∠(ADC) (đồng vị )

Suy ra: ∠(BEC) = ∠C = 60 o

⇒Δ BEC đều ⇒ EC = BC (3)

AD = BC (tính chất hình thang cân) (4)

Từ (1), (2), (3) và (4) ⇒ AB = BC = AD = ED = EC

⇒ Chu vi hình thang bằng:

AB + BC + CD + AD = AB + BC + EC + ED + AD = 5AB

⇒AB = BC = AD = 20 : 5 = 4 (cm)

CD = CE + DE = 2 AB = 2.4 = 8 (cm)

Giải Bài Tập Toán Lớp 8: Bài 3. Hình Thang Cân

§3. HÌNH THANG CÂN A. KIẾN THỨC Cơ BẢN Định nghĩa Hình thang cân là hình thang có hai góc kề một đáy bằng nhau. ABCD là hình thang cân (đáy AB; CD) (AB//CD Tính Chat Hình thang có hai góc kề một đáy bằng nhau là hình thang cân. Hình thang có hai đường chéo bằng nhau là hình thang cân. B. HƯỚNG DẪN GIẢI BÀI TẬP Bài tập mẫu Nếu cắt các cạnh bên của một tam giác cân bởi một đường thẳng song song với cạnh đáy thì tứ giác thu được là hình gì? Giải Xét tam giác ABC cân tại A, đường thẳng song song với đáy BC cắt các cạnh bên AB, AC lần lượt tại E và F. Ta xét tứ giác BEFC, có: EF Mặt khác AABC cân tại A nên có: B = C Khi đó BEFC là hình thang có hai góc ở một đáy bằng nhau, vậy theo định nghĩa thì tứ giác BEFC là hình thang cân. Bài tập cơ bản D Hình 30 Hình 31 Tính độ dài các cạnh của hình thang cân ABCD trên giấy kẻ ô vuông (h.30, độ dài của cạnh ô vuông là lcm). Cho hình thang cân ABCD (AB CD). Kẻ các đường cao AE, BF của hình thang. Chứng minh rằng DE = CF. Cho hình thang cân ABCD (AB Đố. Trong các tứ giác ABCD, EFGH trên giấy kẻ ô vuông (h.31), tứ giác nào là hình thang cân? Vì sao? Cho tam giác ABC cân tại A. Trên các cạnh bên AB, AC lấy theo thứ tự các điểm D và E sao cho AD = AE. Chứng minh rằng BDEC là hình thang cân. A B _ b) Tính các góc của hình thang cân đó, biết rằng Ẩ = 50°. Giải Theo hình vẽ, ta có: AB = 2cm, CD = 4cm Trong tam giác vuông AED, áp dụng định lí Pitago ta được D E AD 2 Da = Ẽ2 = 180° - B = 180" - 65° = 115° Bài tập tương tự Cho tam giác ABC cân tại A. Trên các cạnh bên AB, AC lấy các điểm M, N sao cho BM = CN. a) Tứ giác BMNC là hình gì? Vì sao? = AE2 + ED2 = 32 + l2 = 10 Suy ra AD = 7ĨÕ cm Vậy AB = 2cm, CD = 4cm, AD = BC = Ợ10 cm Xét hai tam giác vuông AED và BFC Ta có: AD = BC (gt) _D = C (gt) Nên AAED = ABFC (cạnh huyền - góc nhọn) Suy ra: DE = CF Do ABCD là hình thang cân nên AD = BC, AC = BC, D - C Xét hai tam giác ADC và BCD, ta có: AD = BC (gt) AC = BD (gt) DC cạnh chung Nên AADC = ABCD (c.c.c) Suy ra Cl = Di Do đó tam giác ECD cân tại E, nên EC = ED Ta lại có: AC = BD suy ra EA = EB Chú ý: Ngoài cách chứng minh AADC = ABCD (c.c.c) ta còn có thể chứng minh AADC = ABCD (c.g.c) như sau: AD = BC,D = c, DC cạnh chung Để xét xem tứ giác nào là hình thang cân ta dùng tính chất "Trong hình thang cân hai cạnh bên bằng nhau" * Tứ giác ABCD là hình thang cân vì có AD = BC. a) Ta có AD = AE nên AADE cân Do đó Di = Ei _ _ _ Trong tem giác ADE có: Di + El + A = 180° Hay 2Di = 180° -  ~ 180° -  180° -  Tương tự trong tam giác cân ABC ta có B = Nên Di = B là hai góc đồng vị. Suy ra DE Do đó BDEC là hình thang. Lại có B = c Nên BDEC là hình thang cân. _ ~ ~ 180° - A b) Với A = 50° ta được B = c = 180° - 50° = 65° Di = Tính các góc của tứ giác BMNC, biết rằng  = 40° * LUYỆN TẬP Cho tam giác ABC cân tại A, các đường phân giác BD, CE, (D e AC, E e AB). Chứng minh rằng BEDC là hình thangcan có đáy nhỏ bằng cạnh bên. Hình thang ABCD(AB//CD) có ACD = BDC . Chứng minh rằng ABCD là hình thang cân. Chứng minh định lí "Hình thang có hai đường chéo bằng nhau là hình D A K Hình 32 thang cân" qua bài toán sau: Cho hình thang ABCD (AB ABDE là tam giác cân. AACD = ABDC Hình thang ABCD là hình thang cân. Đố. Cho ba điểm A, D, K trên giây kẻ ô vuông (h.32). Hãy tìm điểm thứ tư M là giao điểm của các dòng kẻ sao cho nó cùng với ba điểm đã cho là bốn đỉnh của một hình thang cân. Giải a) AABD và AACE có AB = AC (gt)  chung. Bi =Ci =ịÊ=£C 2 2 Nên AABD = AACE (g.c.g) Suy ra AD = AE của bài 15. b) Vì BEDC là hình thang cân nên DE Suy ra Di = ỗ2 (so le trong) Lại có Bi = Ba nên Bi = Di Do đó tam giác EBD cân. Suy ra EB = ED. Vậy BEDC là hình thang cân có đáy nhỏ bằng cạnh bên. Gọi E là giao điếm của AC và BD. AECD có Cl = D (do ACD = BDC) nên là giác cân. Suy ra EC = ED (1) Tương tự EA = EB (2) Từ (1) và (2) suy ra AC = BD Hình thang ABCD có hai đường chéo bằng nhau nên là hình thang cân. a) Hình thang ABEC (AB cạnh bên AC, BE song song nên chúng bằng nhau: AC = BE (1) Theo giả thiết AC = BD (2) Từ (1) và (2) suy ra BE = BD do đó tam giác BDE cân. Ta có AC ABDE cân tại B (câu a) nên Di = Ê (4) Từ (3) và (4) suy ra Cl = D. Xét AACD và ABCD có AC = BD (gt) Ci = Di (cmt) CD cạnh chung Nên AACD = ABDC (c.g.c) D A K AACD = ABDC (câu b) Suy ra ADC = BCD Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân. Có thể tìm được hai điểm M là giao điếm của các dòng kẻ sao cho nó cùng với ba điểm đã cho A, D, K là bốn đỉnh của một hình thang cân. Đó là hình thang AKDM1 (với AK là đáy) và hình thang ADKMg (với DK là đáy).