Giáo Trình Giải Tích 1 Pdf / Top 4 # Xem Nhiều Nhất & Mới Nhất 3/2023 # Top View | Ictu-hanoi.edu.vn

Giáo Trình Giải Tích 1

Giáo Trình Giải Tích 3, Giáo Trình Giải Tích Tập 1, Giải Tích 3 Giáo Trình Và 500 Bài Tập, Giải Tích 3 Giáo Trình, Giáo Trình Giải Tích 1, Giáo Trình Giải Tích 2, Giải Tích 2 Giáo Trình, Giáo Trình Giải Tích 2 Bùi Xuân Diệu, Giải Bài Tập Phương Trình Tích, Sách Giáo Khoa Giải Tích 12, Tài Liệu Giáo Khoa Chuyên Toán Giải Tích 12, Giáo Trình Phân Tích Hóa Lý, Giáo Trình âm Giai, Giải Giáo Trình Taxi3, Lời Giải Bài Tập Giáo Trình Lý Thuyết Thông Kê, Tờ Trình Xin Giải Thể Chi Đoàn Giáo Viên, Giáo Trình Cấu Trúc Dữ Liệu Và Giải Thuật, Giải Bài Tập Unit 3 Transport Giáo Trình Life, Hãy Phân Tích ưu Nhược Điểm Và Phạm Vi ứng Dụng Của Pp Giải Tích Và Pp Mô Ph, Quy Trình Giải Quyết Tai Nạn Giao Thông Đường Thủy , Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông Đường Bộ, Giáo Trình Kỹ Năng Giải Quyết Vụ Việc Dân Sự; Kinh Tế; Lao Động, Phân Tích Những Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Trong Giai Đoạn Hiện Nay, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Lập Phương, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Hộp Chữ Nhật, To Trinh De Nghi Ra Quyet Dinh Chu Tich Pho Chu Tich Hoi Chu Thap Do Cap Xa, To Trinh Phe Chuan Chuc Danh Chu Tich, Pho Chu Tịch Họi Chu Thap Dỏ, Phân Tích Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Trong Sạch Vững Mạnh Trong Giai Đoạn Hiện Nay, Thông Tư 73/2012/tt-bca Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông Đường Thuỷ, Thông Tư 73/2012/tt-bca Về Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Thủy Nội, Thông Tư 77/2012/tt-bca Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Bộ Của Cảnh, 77/2012/tt-bca Ngày 28 Tháng 12 Năm 2012 Quy Định Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông, Quyết Định 17/2007/qĐ-bca(c11) Về Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Thủy Do Bộ, Thông Tư Số 77/2012/tt-bca Ngày 28/12/2012 Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thôn, Thông Tư 73/2012/tt-bca Về Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Thủy Nội, Hông Tư 77/2012/tt-bca Ngày 05/12/2012 Quy Định Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông Đườ, Quyết Định 17/2007/qĐ-bca(c11) Về Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Thủy Do Bộ, Thông Tư 77/2012/tt-bca Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Bộ Của Cảnh, Thông Tư Số 73/2012/tt-bca Ngày 05/12/2012 Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thôn, Thông Tư Số 73/2012/tt-bca Ngày 05/12/2012 Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thôn, Thông Tư 77/2012/tt-bca Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Bộ Của Cảnh, Thông Tư Số 73/2012/tt-bca Quy Trình Giải Quyết Tai Nạn Giao Thông, Khái Niệm Chương Trình Giáo Dình Giáo Dục ,phát Triển Chương Trình Giáo Dục Của Cơ Sở Mầm Non, Các Đồng Chí Hẫy Trình Bày Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Tron Sạch Vững Mạnh Trong Giai Đoạn H, Bài Tập Giải Tích 1, Giải Tích, Đại Số Và Giải Tích 11, Giải Tích 1, Giải Tích – Tập 1, Bài 2 Giải Tích 12, Bài 4 Giải Tích 12, Giải Tích 1b, Giải Tích 1 7e, Bài 5 Giải Tích 12, Thông Tư Số 77/2012/tt-bca Ngày 0/12/2012 Quy Định Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông , Thông Tư Số 77/2012/tt-bca Ngày 28/12/2012 Quy Định Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông, Thông Tư Số 77/2012/tt-bca Ngày 05/12/2012 Quy Định Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông, Thông Tư Số 77/2012/tt-bca Ngày 0/12/2012 Quy Định Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông, Thông Tư 77/2012/tt-bca Ngày 05/12/2012 Quy Định Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông Đư, Thông Tư 77/2012/tt-bca Ngày 28/12/2012 Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đ, Thông Tư 77/2012/tt-bca Ngày 28/12/2012 Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đ, Bài 5 Trang 44 Giải Tích 12, Giải Tích Tập 1 – Calculus, Giải Tích Calculus 7e (tập 1), Giải Tích – Tập 1 – Calculus 7e Pdf, Toán Giải Tích 12, Bài 5 Trang 10 Giải Tích 12, Bài 5 ôn Tập Chương 1 Giải Tích 12, Bài 3 Trang 43 Giải Tích 12, Bài 3 Trang 84 Giải Tích 12, Bài 3 ôn Tập Chương 3 Giải Tích 12, Bài Giảng Giải Tích 1, Bài Giảng Giải Tích 2, Bài 4 Sgk Giải Tích 12 Trang 44, Bài Giảng Giải Tích 3, Bài 4 Trang 10 Giải Tích 12, Bài 4 Trang 61 Giải Tích 12, Bài 3 Trang 24 Giải Tích 12, Đề Cương Giải Tích 3, Tài Liệu Giải Tích 3, Toán Giải Tích 12 Bài 1, Bài 9 ôn Tập Chương 1 Giải Tích 12, Giải Tích Calculus 7e – Tập 1 Pdf, Tài Liệu Giải Tích 2, Bài 8 ôn Tập Chương 1 Giải Tích 12, Tài Liệu ôn Tập Giải Tích 1, Đề Cương Bài Tập Giải Tích 2, Bài 1 Sgk Giải Tích 12 Trang 43, Đề Cương Giải Tích 2, Bài 6 ôn Tập Chương 1 Giải Tích 12, Bài 4 ôn Tập Chương 3 Giải Tích 12, Bài Giải Giải Tích 2, Giải Bài Tập Giải Tích 2 7e, Giải Tích James Stewart, Khóa Luận Giải Tích, Đề Kiểm Tra Chương 2 Giải Tích 12, Giải Tích 1 Đại Học Khoa Học Tự Nhiên, Tài Liệu ôn Tập Chương 1 Giải Tích 12, Phân Tích N Giai Thừa, Đề Cương Giải Tích 2 Sami,

Giáo Trình Giải Tích 3, Giáo Trình Giải Tích Tập 1, Giải Tích 3 Giáo Trình Và 500 Bài Tập, Giải Tích 3 Giáo Trình, Giáo Trình Giải Tích 1, Giáo Trình Giải Tích 2, Giải Tích 2 Giáo Trình, Giáo Trình Giải Tích 2 Bùi Xuân Diệu, Giải Bài Tập Phương Trình Tích, Sách Giáo Khoa Giải Tích 12, Tài Liệu Giáo Khoa Chuyên Toán Giải Tích 12, Giáo Trình Phân Tích Hóa Lý, Giáo Trình âm Giai, Giải Giáo Trình Taxi3, Lời Giải Bài Tập Giáo Trình Lý Thuyết Thông Kê, Tờ Trình Xin Giải Thể Chi Đoàn Giáo Viên, Giáo Trình Cấu Trúc Dữ Liệu Và Giải Thuật, Giải Bài Tập Unit 3 Transport Giáo Trình Life, Hãy Phân Tích ưu Nhược Điểm Và Phạm Vi ứng Dụng Của Pp Giải Tích Và Pp Mô Ph, Quy Trình Giải Quyết Tai Nạn Giao Thông Đường Thủy , Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông Đường Bộ, Giáo Trình Kỹ Năng Giải Quyết Vụ Việc Dân Sự; Kinh Tế; Lao Động, Phân Tích Những Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Trong Giai Đoạn Hiện Nay, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Lập Phương, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Hộp Chữ Nhật, To Trinh De Nghi Ra Quyet Dinh Chu Tich Pho Chu Tich Hoi Chu Thap Do Cap Xa, To Trinh Phe Chuan Chuc Danh Chu Tich, Pho Chu Tịch Họi Chu Thap Dỏ, Phân Tích Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Trong Sạch Vững Mạnh Trong Giai Đoạn Hiện Nay, Thông Tư 73/2012/tt-bca Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông Đường Thuỷ, Thông Tư 73/2012/tt-bca Về Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Thủy Nội, Thông Tư 77/2012/tt-bca Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Bộ Của Cảnh, 77/2012/tt-bca Ngày 28 Tháng 12 Năm 2012 Quy Định Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông, Quyết Định 17/2007/qĐ-bca(c11) Về Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Thủy Do Bộ, Thông Tư Số 77/2012/tt-bca Ngày 28/12/2012 Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thôn, Thông Tư 73/2012/tt-bca Về Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Thủy Nội, Hông Tư 77/2012/tt-bca Ngày 05/12/2012 Quy Định Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông Đườ, Quyết Định 17/2007/qĐ-bca(c11) Về Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Thủy Do Bộ, Thông Tư 77/2012/tt-bca Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Bộ Của Cảnh, Thông Tư Số 73/2012/tt-bca Ngày 05/12/2012 Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thôn, Thông Tư Số 73/2012/tt-bca Ngày 05/12/2012 Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thôn, Thông Tư 77/2012/tt-bca Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Bộ Của Cảnh, Thông Tư Số 73/2012/tt-bca Quy Trình Giải Quyết Tai Nạn Giao Thông, Khái Niệm Chương Trình Giáo Dình Giáo Dục ,phát Triển Chương Trình Giáo Dục Của Cơ Sở Mầm Non, Các Đồng Chí Hẫy Trình Bày Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Tron Sạch Vững Mạnh Trong Giai Đoạn H, Bài Tập Giải Tích 1, Giải Tích, Đại Số Và Giải Tích 11, Giải Tích 1, Giải Tích – Tập 1, Bài 2 Giải Tích 12,

Giáo Trình Giải Phẫu Học Y Dược Huế Pdf

ykhoa247.com trân trọng giới thiệu giáo trình giải phẫu học đại học y dược huế pdf.Hi vọng cuốn sách này sẽ giúp các bạn sinh viên Y1 Y2 học tốt và thi tốt môn giải phẫu này.

Ở môn học này, bạn sẽ học cái chi tiết từ đại thể đến vi thể ( chi tiết) những hình ảnh giải phẫu người: từ lục phủ ngũ tạng tay chân mắt miệng…Những buổi học thực hành sẽ giúp các bạn tiếp cận một cách thực tế hơn khi bạn chưa đủ điều kiện đi lâm sàng. Tuy nhiên, mô hình vẫn chỉ là mô hình, nếu bạn có điều kiện tiếp xúc ngoại khoa sớm thì bạn học giải phẫu sẽ rất giỏi.

Tất nhiên giải phẫu người có rất nhiều chi tiết nên tôi khuyên khi học xong môn giải phẫu này các bạn cần nhớ được những điều quan trọng cần nhớ. Không ai đủ giỏi và đủ siêng để học thuộc cuốn sách này đâu.

Dù sao mục đích cuối cùng khi học môn giải phẫu trong chương trình Y1 Y2 cũng là điểm số !!! Chắc chắn có rất nhiều bạn suy nghĩ như vậy. Lời khuyên chân thành của tôi là các bạn cứ học cái này vì điểm đi đã… Hãy cố gắng chắt lọc và nên nhớ những gì cần nhớ !!! Những gì giúp được bạn và bệnh nhân của bạn sau này.

Luôn luôn nhớ rằng” não của bạn còn phải chứa rất nhiều thứ”,” bạn không phải là bách khoa toàn thư đâu”. Vì vậy khi học giải phẫu phải học một cách thông minh. Mục đích rõ ràng.“Điểm số là thước đo hiện tại nhưng kinh nghiệm sẽ giúp bạn chiến thắng sau này”

MỤC LỤC SÁCH:

Chương 1. Đại cương1. Giải phẫu người bài: Nhập môn giải phẫu học2. Giải phẫu người bài: Da3. Giải phẫu người bài: Hệ nội tiết

Chương 2. Chi trên4. Giải phẫu người bài: Xương khớp chi trên5. Giải phẫu người bài: Nách6. Giải phẫu người bài: Cánh tay7. Giải phẫu người bài: Khuỷu8. Giải phẫu người bài: Cẳng tay9. Giải phẫu người bài: Bàn tay

Chương 3. Chi dưới

10. Giải phẫu người bài: Xương khớp chi dưới11. Giải phẫu người bài: Mông12. Giải phẫu người bài: Đùi13. Giải phẫu người bài: Gối14. Giải phẫu người bài: Cẳng chân15. Giải phẫu người bài: Bàn chân

Chương 4. Lồng ngực, thành bụng, cơ hoành

16. Giải phẫu người bài: Xương khớp thân mình17. Giải phẫu người bài: Cơ thân mình18. Giải phẫu người bài: Cơ hoành19. Giải phẫu người bài: Ống bẹn 20. Giải phẫu người bài: Tim21. Giải phẫu người bài: Phổi và màng phổi22. Giải phẫu người bài: Động mạch chủ23. Giải phẫu người bài: Trung thất

Chương 5. Hệ tiêu hóa

24. Giải phẫu người bài: Dạ dày25. Giải phẫu người bài: Lách26. Giải phẫu người bài: Tá tràng và tụy27. Giải phẫu người bài: Gan và đường mật28. Giải phẫu người bài: Ruột non29. Giải phẫu người bài: Ruột già

Chương 6. Hệ tiết niệu

30. Giải phẫu người bài: Thận – Tuyến thượng thận31. Giải phẫu người bài: Niệu quản32. Giải phẫu người bài: Bàng quang33. Giải phẫu người bài: Niệu đạo

Chương 7. Hệ sinh sản

34. Giải phẫu người bài: Cơ quan sinh sản nam35. Giải phẫu người bài: Cơ quan sinh sản nữ

Chương 8. Đáy chậu – Phúc mạc

36. Giải phẫu người bài: Đáy chậu và hoành chậu hông37. Giải phẫu người bài: Phúc mạc và phân khu ổ bụng

Chương 9. Đầu mặt cổ

38. Giải phẫu người bài: Xương khớp đầu mặt cổ39. Giải phẫu người bài: Cơ mạc đầu mặt cổ40. Giải phẫu người bài: Hệ thống động mạch cảnh41. Giải phẫu người bài: Động mạch dưới đòn42. Giải phẫu người bài: Tĩnh mạch đầu mặt cổ43. Giải phẫu người bài: Bạch mạch đầu mặt cổ44. Giải phẫu người bài: Đám rối thần kinh cổ45. Giải phẫu người bài: Các dây thần kinh sọ

Chương 10. Tai, mắt, mũi, miệng, thanh quản, khí quản, tuyến giáp

46. Giải phẫu người bài: Ổ miệng 47.Giải phẫu người bài: Hầu 48. Giải phẫu người bài: Mũi49. Giải phẫu người bài: Thanh quản50. Giải phẫu người bài: Khí quản 51. Giải phẫu người bài: Tuyến giáp – Tuyến cận giáp52. Giải phẫu người bài: Cơ quan thị giác 53. Giải phẫu người bài: Cơ quan tiền đình ốc tai

Chương 11. Hệ thần kinh trung ương

54. Giải phẫu người bài: Tủy gai55. Giải phẫu người bài: Thân não và tiểu não56. Giải phẫu người bài: Gian não 57. Giải phẫu người bài: Đoan não58. Giải phẫu người bài: Màng não tủy và dịch não tủy59. Giải phẫu người bài: Mạch não tủy60. Giải phẫu người bài: Hệ thần kinh tự chủ

Giáo Trình Giải Tích Mạng Điện

Hệ thống điện bao gồm các khâu sản xuất, truyền tải và phân phối điện năng. Kết cấu một hệ thống điện có thể rất phức tạp, muốn nghiên cứu nó đòi hỏi phải có một kiến thức tổng hợp và có những phương pháp tinh toán phù hợp.

Giải tích mạng là một môn học còn có tên gọi “Các phương pháp tin học ứng dụng trong tính toán hệ thống điện”. Trong đó, đề cập đến những bài toán mà tất cả sinh viên ngành hệ thống nào cũng cần phải nắm vững. Vì vậy, để có một cách nhìn cụ thể về các bài toán này, giáo trình đi từ kiến thức cơ sở đã học nghiên cứu lý thuyết các bài toán cũng như việc ứng dụng chúng thông qua công cụ máy vi tính. Phần cuối, bằng ngôn ngữ lập trình Pascal, công việc mô phỏng các phần mục của bài toán đã được minh hoạ.

Nội dung giáo trình gồm 2 phần chính:

Phần lý thuyết gồm có 8 chương.

1. Đại số ma trận ứng dụng trong giải tích mạng.

2. Phương pháp số dùng để giải các phương trình vi phân trong giải tích mạng.

3. Mô hình hóa hệ thống điện.

4. Graph và các ma trận mạng điện.

5. Thuật toán dùng để tính ma trận mạng.

6. Tính toán trào lưu công suất.

7. Tính toán ngắn mạch.

8. Xét quá trình quá độ của máy phát khi có sự cố trong mạng.

Phần lập trình: gồm có bốn phần mục:

1. Xây dựng các ma trận của 1 mạng cụ thể

2. Tính toán ngắn mạch.

3. Tính toán trào lưu công suất lúc bình thường và khi sự cố.

4. Xét quá trình quá độ của các máy phát khi có sự cố trong mạng điện.

GV: Lê Kim Hùng

CHƯƠNG 1

ĐẠI SỐ MA TRẬN ỨNG DỤNG TRONG GIẢI TÍCH MẠNG

Trong chương này ta nhắc lại một số kiến thức về đại số ma trận thông thường được ứng dụng trong giải tích mạng.

ĐỊNH NGHĨA VÀ CÁC KHÁI NIỆM CƠ BẢN:

Kí hiệu ma trận:

Ma trận chữ nhật A kích thước m x n là 1 bảng gồm m hàng và n cột có dạng sau:

Các dạng ma trận:

Ma trận vuông: Là ma trận có số hàng bằng số cột (m = n).

Ví dụ:

Ma trận tam giác dưới: Là ma trận vuông mà các phần tử trên đường chéo chính a ịj của ma trận bằng 0 với i < j.

Ma trận không: Là ma trận mà tất cả các phần tử của ma trận bằng 0.

Ma trận chuyển vị: Là ma trận mà các phần tử a ịj = a ji (đổi hàng thành cột và ngược lại).

Cho ma trận A thì ma trận chuyển vị kí hiệu là A t, A T hoặc A’

Ma trận đối xứng: Là ma trận vuông có các cặp phần tử đối xứng qua đường chéo chính bằng nhau a ịj = a ji.

Ví dụ:

Chuyển vị ma trận đối xứng thì A T = A, nghĩa là ma trận không thay đổi.

Ma trận xiên – phản đối xứng: Là ma trận vuông có A = – A T. Các phần tử ngoài đường chéo chính tương ứng bằng giá trị đối của nó (a ịj = – a ji) và các phần tử trên đường chéo chính bằng 0.

Ví dụ:

Ma trận trực giao: Là ma trận có ma trận chuyển vị chính là nghịch đảo của nó. (A T .A = U = A .A T với A là ma trận vuông và các phần tử là số thực).

Ma trận phức liên hợp: Là ma trận nếu thế phần tử a + jb bởi a – jb thì ma trận mới A* là ma trận phức liên hợp.

Cho ma trận A thì ma trận phức liên hợp là A*

-Nếu tất cả các phần tử của A là thực, thì A = A*

-Nếu tất cả các phần tử của A là ảo, thì A = – A*.

Ma trận Hermitian (ma trận phức đối): Là ma trận vuông với các phần tử trên đường chéo chính là số thực còn các cặp phần tử đối xứng qua đường chéo chính là những số phức liên hợp, nghĩa là A = (A*) t.

Ma trận xiên – Hermitian (ma trận xiên – phức đối): Là ma trận vuông với các phần tử trên đường chéo chính bằng 0 hoặc toàn ảo còn các cặp phần tử đối xứng qua đường chéo chính là những số phức, tức A = – (A*) t.

Nếu ma trận vuông phức liên hợp có (A*) t. A = U = A. (A*) t thì ma trận A được gọi là ma trận đơn vị. Nếu ma trận đơn vị A với các phần tử là số thực được gọi là ma trận trực giao.

CÁC ĐỊNH THỨC:

Định nghĩa và các tính chất của định thức:

Cho hệ 2 phương trình tuyến tính

Rút x 2 từ phương trình (2) thế vào phương trình (1), giải được:

Suy ra:

Giải phương trình (1.1) bằng phương pháp định thức ta có:

Giá trị của định thức bằng 0 nếu:

– Tất cả các phần tử của hàng hoặc cột bằng 0.

– Các phần tử của 2 hàng (cột) tương ứng bằng nhau.

– Một hàng (cột) là tương ứng tỉ lệ của 1 hoặc nhiều hàng (cột).

Nếu ta đổi chổ 2 hàng của ma trận vuông A cho nhau ta được ma trận vuông B và có det(B) = – det(A).

Giá trị của định thức không thay đổi nếu:

– Tất cả các hàng và cột tương ứng đổi chổ cho nhau.

– Cộng thêm k vào 1 hàng (cột) thứ tự tương ứng với các phần tử của hàng (cột) đó.

Nếu tất cả các phần tử của hàng (cột) nhân với thừa số k, thì giá trị của định thức là được nhân bởi k.

Định thức con và các phần phụ đại số.

Xét định thức:

Chọn trong định thức này k hàng, k cột bất kỳ với 1  k  n. Các phần tử nằm phía trên kể từ giao của hàng và cột đã chọn tạo thành một định thức cấp k, gọi là định thức con cấp k của A. Bỏ k hàng và k cột đã chọn, các phần tử còn lại tạo thành 1 định thức con bù của định thức A.

Phần phụ đại số ứng với phần tử a ij của định thức A là định thức con bù có kèm theo dấu (-1) i+j.

Mối liên hệ giữa các định thức và phần phụ:

– Tổng các tích của các phần tử theo hàng (cột) với phần phụ tương ứng trong hàng (cột) khác bằng 0.

Các ma trận bằng nhau:

Hai ma trận A và B được gọi là bằng nhau nếu tất cả các phần tử của ma trận A bằng tất cả các phần tử của ma trận B (a ij = b ịj ∀ size 12{ forall } {} i, j; i, j = 1, 2, .. n).

Phép cộng (trừ) ma trận.

Cộng (trừ) các ma trận phái có cùng kích thước m x n. Ví dụ: Có hai ma trận A[a ij ] mn và B[b ij ] mn thì tổng và hiệu của hai ma trận này là ma trận C[c ij ] mn với c ij = a ij b ij

Phép cộng (trừ) ma trận có tính chất giao hoán: A + B = B + A.

Phép cộng (trừ) ma trận có tính chất kết hợp: A + (B + C) = (A + B) + C.

Tích vô hướng của ma trận:

k.A = B. Trong đó: b ij = k .a ij ∀ size 12{ forall } {} i & j .

Tính giao hoán: k.A = A.k..

Tính phân phối: k (A + B) = k.A + k..B = (A + B) k.

(với A và B là các ma trận có cùng kích thước, k là 1 hằng số ).

Nhân các ma trận:

Phép nhân hai ma trận A.B = C. Nếu ma trận A có kích thước m x q và ma trận B có kích thước q x n thì ma trận tích C có kích thước m x n. Các phần tử c ij của ma trận C là tổng các tích của các phần tử tương ứng với i hàng của ma trận A và j cột của ma trận B là:

Ví dụ:

Phép nhân ma trận có tính chất phân phối đối với phép cộng:

A (B + C) = A.B + A.C.

Phép nhân ma trận có tính chất kết hợp: A (B.C) = (A.B) C = A.B.C.

Tích 2 ma trận A.B = 0 khi A = 0 hoặc B = 0.

Tích C.A = C.B khi A = B.

Nghịch đảo ma trận:

Cho hệ phương trình:

Viết dưới dạng ma trận A.X = Y

Nếu nghiệm của hệ trên là duy nhất thì tồn tại một ma trận B là nghịch đảo của ma trận A.

Do đó: X = B.Y (1.3)

Nhân ma trận A với nghịch đảo của nó ta có A.A-1 = A-1.A = U

Rút X từ phương trình (1.3) sau khi đã nhân cả hai vế cho A-1.

A.X = Y

Nếu định thức của ma trận bằng 0, thì ma trận nghịch đảo không xác định (ma trận suy biến).

Nếu định thức khác 0 gọi là ma trận không suy biến và là ma trận nghịch đảo duy nhất.

Giả sử 2 ma trận A và B cùng cấp và là khả đảo lúc đó:

Ma trận phân chia:

Tổng các ma trận đã phân chia được biểu diễn bởi ma trận nhỏ bằng tổng các ma trận nhỏ tương ứng.

Phép nhân được biểu diễn như sau:

Trong đó:

Tách ma trận chuyển vị như sau:

Tách ma trận nghịch đảo như sau:

Trong đó:

(với A 1 và A 4 phải là các ma trận vuông).

SỰ PHỤ THUỘC TUYẾN TÍNH VÀ HẠNG CỦA MA TRẬN:

Sự phụ thuộc tuyến tính:

Số cột của ma trận A(m x n) có thể viết theo n vectơ cột hoặc m vectơ hàng.

Phương trình vectơ cột thuần nhất.

Khi tất cả P k = 0 (k = 1, 2, …., n).

Tương tự vectơ hàng là không phụ thuộc tuyến tính nếu.

Nếu vectơ cột (hàng) của ma trận A là tuyến tính, thì định thức của A = 0.

Hạng của ma trận:

Hạng của ma trận là cấp cao nhất mà tất cả các định thức con khác 0.

0  r(A)  min(m, n) với A là ma trận kích thước m x n.

HỆ PHƯƠNG TRÌNH TUYẾN TÍNH:

Hệ phương trình tuyến tính của m phương trình trong n hệ số được viết:

…………………………………… (1.6)

Trong đó:

a i j: Là hệ số thực hoặc phức ; x j: Là biến số ; y j: Là hằng số của hệ.

Hệ phương trình được biểu diễn ở dạng ma trận như sau:

A. X = Y (1.7)

Ma trận mở rộng:

Nếu y i = 0 thì hệ phương trình gọi là hệ thuần nhất, nghĩa là: A.X = 0.

Định lý:

Điều kiện cần và đủ để hệ phương trình tuyến tính có nghiệm là hạng của ma trận hệ số bằng hạng của ma trận mở rộng.

Hệ phương trình tuyến tính vô nghiệm khi và chỉ khi hạng của ma trận hệ số nhỏ hơn hạng của ma trận mở rộng.

Nếu hạng của ma trận r(A) = r(Â) = r = n (số ẩn) của hệ phương trình tuyến tính (1.6) thì hệ có nghiệm duy nhất (hệ xác định).

Nếu r(A) = r(Â) = r < n thì hệ phương trình tuyến tính có vô số nghiệm và các thành phần của nghiệm phụ thuộc (n – r) tham số tùy ý.

Giáo Án Giải Tích 12 Kì 1

Và vẽ đồ thị hàm số

Tiết 1+2: sự đồng biến, nghịch biến của hàm số – luyện tập

– Biết mối liên hệ giữa tính đồng biến, nghịch biến của một hàm số và dấu của

đạo hàm cấp một của nó.

– Biết cách xét tính đồng biến, nghịch biến của một hàm số trên một khoảng dựa

vào dấu đạo hàm cấp một của nó.

– Phát triển tư duy logic, óc tưởng tượng.

– Cẩn thận, chính xác, nghiêm túc.

II-Chuẩn bị của GV và HS

Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 1 Ngày soạn: 06/09/2008 Ngày giảng: 08/09/2008 Ch−ơng I: ứng dụng đạo hàm để khảo sát Và vẽ đồ thị hàm số Tiết 1+2: sự đồng biến, nghịch biến của hàm số - luyện tập I-Mục tiêu 1) Kiến thức - Biết mối liên hệ giữa tính đồng biến, nghịch biến của một hàm số và dấu của đạo hàm cấp một của nó. 2) Kỹ năng - Biết cách xét tính đồng biến, nghịch biến của một hàm số trên một khoảng dựa vào dấu đạo hàm cấp một của nó. 3) T− duy - Phát triển t− duy logic, óc t−ởng t−ợng. 4) Thái độ - Cẩn thận, chính xác, nghiêm túc. II-Chuẩn bị của GV và HS 1) Giáo viên Giáo án, SGV, phấn màu. 2) Học sinh Vở ghi, SGK. III-Ph−ơng pháp dạy học Gợi mở, vấn đáp giải quyết vấn đề đan xen HĐ nhóm. IV-Tiến trình bài học 1) Kiểm tra bài cũ (không) 2) Bài mới HĐ1: Nhắc lại định nghĩa HĐGV HĐHS Ghi bảng GV treo bảng phụ y x xx y=x 21 2 f(x )1 f(x )2 HXy chỉ ra các khoảng đồng biến, nghịch biến của hàm số y=x2? Lấy x1<x2 trong khoảng ( )0;+∞ nh− hình vẽ. HXy sao sánh 1( )f x và 2( )f x ? Cho HS nhận xét t−ơng tự nếu lấy x1<x2 trong khoảng Quan sát hình vẽ và trả lời câu hỏi. Hàm số đồng biến trên khoảng ( )0;+∞ và nghịch biến trên khoảng ( )0;−∞ . 1( )f x < 2( )f x Nhận xét t−ơng tự. I. Tính đơn điệu của hàm số Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 2 ( )0;−∞ ? Từ đó GV nhắc lại định nghĩa cho HS. Nếu hàm số ( )f x đồng biến (nghịch biến) trên K hXy nhận xét về dấu của tỷ số 2 1 2 1 ( ) ( )f x f x x x − − ? GV đ−a ra nhận xét nh− SGK. GV cho HS quan sát hình trên bảng phụ và nhận xét h−ớng đi của đồ thị trong các tr−ờng hợp HS đồng biến, nghịch biến? ( )f x đồng biến trên K thì 2 1 2 1 ( ) ( ) 0 f x f x x x − > − ( )f x nghịch biến trên K thì 2 1 2 1 ( ) ( ) 0 f x f x x x − < − HS đồng biến thì đồ thị HS đi lên từ trái sang phải. HS nghịch biến thì đồ thị HS đi xuống từ trái sang phải. 1) Nhắc lại định nghĩa Hàm số ( )y f x= đồng biến (tăng) trên K nếu với mỗi cặp 1 2,x x thuộc K mà 1x nhỏ hơn 2x thì 1( )f x nhỏ hơn 2( )f x , tức là 1 2 1 2( ) ( );x x f x f x< ⇒ < Hàm số ( )y f x= nghịch biến (giảm) trên K nếu với mỗi cặp 1 2,x x thuộc K mà 1x nhỏ hơn 2x thì 1( )f x lớn hơn 2( )f x , tức là 1 2 1 2( ) ( );x x f x f x Hàm số đồng biến hoặc nghịch biến trên K đ−ợc gọi chung là hàm số đơn điệu trên K. Nhận xét: a) ( )f x đồng biến trên K thì 2 1 2 1 ( ) ( ) 0 f x f x x x − > − ( )f x nghịch biến trên K thì 2 1 2 1 ( ) ( ) 0 f x f x x x − < − b) Hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải. Hàm số nghịch biến trên K thì đồ thị đi lên từ trái sang phải. HĐ2: Tính đơn điệu và dấu của đạo hàm Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 3 HĐGV HĐHS Ghi bảng GV treo bảng phụ trong hoạt động 1 và yêu cầu HS tính đạo hàm cấp 1 đồng thời xét dấu của đạo hàm và điền vào bảng sau: Dựa vào bảng kết quả hXy nhận xét: Khi y'<0, HS đồng biến hay nghịch biến? nghịch biến? GV tổng quát hóa vấn đề từ đó đ−a ra định lí: GV đặt câu hỏi mở rộng: Khi y'=0 thì HS đồng biến hay nghịch biến? Từ đó GV đ−a ra chú ý: Tính đạo hàm và xét dấu của đạo hàm. Điền kết quả vào bảng. Khi y'<0, HS nghịch biến. Nghe giảng, ghi nhận kiến thức. ' 0y y C= ⇒ = (hằng số) do đó HS ( )f x không đổi trên K. 2) Tính đơn điệu và dấu của đạo hàm Cho hàm số ( )y f x= có đạo hàm trên K. thuộc K thì hàm số f(x) đồng biến trên K. b) Nếu f'(x)<0 với mọi x thuộc K thì hàm số f(x) nghịch biến trên K. '( ) 0 ( ) đồng biến. '( ) 0 ( ) nghịch biến. f x f x f x f x > ⇒  < ⇒ Chú ý: Nếu '( ) 0,f x x K= ∀ ∈ thì ( )f x không đổi trên K. HĐ3: Bài tập luyện tập HĐGV HĐHS Ghi bảng GV đ−a ra bài tập vận dụng. Giải thích rõ cho HS ý nghĩa của việc tìm khoảng đơn điệu của hàm số. HXy tìm đạo hàm của Nghe giảng, ghi nhận kiến thức. y'=2x-4 Ví dụ 1: Tìm các khoảng đơn điệu của hàm số y=x2- 4x+5. Giải Đạo hàm: y'=2x-4 Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 4 hàm số? HXy xét dấu của đạo hàm? Từ bảng trên hXy suy ra bảng biến thiên của hàm số? Từ bảng biến thiên hXy nêu các khoảng đơn điệu (đồng biến hoặc nghịch biến) của hàm số? Qua ví dụ trên GV đặt vấn đề ng−ợc lại cho HS suy nghĩ thông qua việc phân tích ví dụ trong HĐ3 SGK. Qua đồ thị của hàm số y=x3 hXy nhận xét về tính đồng biến, nghịch biến của hàm số trên toàn tập xác định? Xét dấu của đạo hàm hàm số trên? Qua đó GV khái quát và đ−a ra chú ý: x −∞ 2 +∞ y' - 0 + Lên bảng vẽ bảng biến thiên của hàm số. Trả lời câu hỏi. Hàm số đồng biến trên toàn tập xác định. 2' 3 0,y x x= ≥ ∀ y'<0 khi x<2 y'=0 khi x=2 Vậy ta có bảng biến thiên: Vậy hàm số đồng biến trên khoảng ( )2;+∞ và nghịch biến trên khoảng ( );0−∞ . Chú ý: Giả sử hàm số ( )y f x= có đạo hàm trên K. Nếu ( )'( ) 0 ( ) 0 ,f x f x x K≥ ≤ ∀ ∈ và '( ) 0f x = chỉ tại một số hữu hạn điểm thì hàm số đồng biến (nghịch biến) trên K. 3) Củng cố, dặn dò - Ôn tập lại nội dung cơ bản đX học trong bài, đọc và xem lại các định lí và ví dụ trong bài. - Làm các bài tập 1, 2 SGK Tr10 và bài tập bổ sung. Bài tập bổ sung: Bài 1: Tìm các khoảng đơn điệu của các hàm số: a) y=x4+8x3+5 b) y=x-sinx Bài 2: Sử dụng tính đồng biến, nghịch biến của hàm số để chứng minh rằng với 1 2x x + ≥ Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 5 Ngày giảng: 09/09/2008 sự đồng biến, nghịch biến của hàm số - luyện tập (Tiết 2) 4) Kiểm tra bài cũ Câu hỏi: 1) HXy phát biểu định lý về sự liên hệ giữa tính đơn điệu của hàm số và dấu của đạo hàm? 2) Vận dụng giải bài tập sau: Xét tính đơn điệu của hàm số y=x3-3x2+5? 5) Bài mới HĐ3: Quy tắc xét tính đơn điệu của hàm số HĐGV HĐHS Ghi bảng Chia lớp thành 3 nhóm và tổ chức cho HS HĐ nhóm làm VD 2. GV nhận xét, chỉnh sửa bổ sung và đ−a ra đáp án bằng bảng phụ. Qua ví dụ trên GV yêu cầu HS khái quát các b−ớc để xét tính đơn điệu của hàm số. Tiến hành HĐ nhóm d−ới sự h−ớng dẫn của GV. Trình bày kết quả, bổ sung và nhận xét chéo. Khái quát các b−ớc. II. Quy tắc xét tính đơn điệu của hàm số Ví dụ 2: Xét tính đơn điệu của hàm số y=x3- 3x2+5? Giải Hàm số trên xác định với mọi x thuộc ℝ . Đạo hàm: y'=3x2-6x 0 ' 0 2 x y x = = ⇔  = Ta có bảng biến thiên Vậy hàm số đồng biến trên các khoảng ( );0−∞ và ( )2;+∞ , hàm số nghịch biến trên khoảng (0;2). 1) Quy tắc B1: Tìm tập xác định. B2: Tính đạo hàm '( )f x . Tìm các điểm ( 1,2,3,..., )ix i n= mà tại đó đạo hàm bằng 0 hoặc không xác định. B3: Sắp xếp các điểm ix Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 6 theo thứ tự tăng dần và lập bảng biến thiên. B4: Nêu kết luận về các khoảng đb, nb của hàm số. HĐ4: Bài tập áp dụng HĐGV HĐHS Ghi bảng GV đ−a ra bài tập vận dụng cho HS HĐ nhóm. Nhóm 1, 2, 3: Phần a) Nhóm 4, 5, 6: Phần b) GV nhận xét, chỉnh sửa, bổ sung và đ−a ra đáp án. GV chú ý cho HS cách điền các cận vào bảng biến thiên thông qua việc tính giới hạn. HĐ nhóm d−ới sự h−ớng dẫn của GV. Các nhóm trình bày kết quả và nhận xét chéo, bổ sung kết quả. Nghe giảng, tiếp thu kiến thức. 2) áp dụng Xét tính đơn điệu của các hàm số: a) 3 1 1 x y x + = − b) 2 2 1 x x y x − = − Giải: a) TXĐ: {1}D = ℝ Đạo hàm: ( )2 4 ' 0 1 y x − Bảng biến thiên: b) TXĐ: {1}D = ℝ Đạo hàm: ( ) 2 2 2 2 ' 1 x x y x − + − = − Bảng biến thiên: 6) Củng cố, dặn dò - Ôn tập lại các b−ớc để xét tính đơn điệu của hàm số và xem lại các ví dụ đX làm. - Làm các bài tập 3, 4, 5 SGK Tr10. Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 7 Ngày soạn: 09/09/2008 Ngày giảng: 11/09/2008 Tiết 3+4+5: cực trị của hàm số I- Mục tiêu 1) Kiến thức - Biết khái niệm điểm cực đại, cực tiểu, điểm cực trị của hàm số. - Biết các điều kiện đủ để hàm số có điểm cực trị. 2) Kỹ năng - Biết cách tìm điểm cực trị của hàm số. 3) T− duy - Phát triển t− duy logic, óc t−ởng t−ợng. 4) Thái độ - Cẩn thận, chính xác, nghiêm túc. II- Chuẩn bị của GV và HS 1) Giáo viên Giáo án, SGV, phấn màu. 2) Học sinh Vở ghi, SGK. III- Ph−ơng pháp dạy học Gợi mở, vấn đáp giải quyết vấn đề đan xen HĐ nhóm. IV- Tiến trình bài học 1) Kiểm tra bài cũ Câu hỏi: HXy nêu quy tắc xét tính đơn điệu của hàm số? áp dụng xét tính đơn điệu của hàm số y=-x2+1? 2) Bài mới HĐ1: Khái niệm cực đại, cực tiểu HĐGV HĐHS Ghi bảng GV cho HS quan sát đồ thị của hàm số y=-x2+1 và nêu nhận xét: HXy chỉ ra tọa độ của điểm "cao nhất" của đồ thị trong khoảng ( )1;1− ? Điểm này t−ơng ứng với x, y bằng bao nhiêu? Ta nói hàm số y=-x2+1 đạt cực đại tại x=0. T−ơng tự GV cho HS quan sát đồ thị của hàm số 3 22 3 3 x y x x= − + và cho 1 -1 1 y xO y=-x +12 Điểm "cao nhất" của đồ thị trong khoảng ( )1;1− là ( )0;1 . Điểm này t−ơng ứng với x=0; y=1. I. Khái niệm cực đại, cực tiểu Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 8 HS nhận xét t−ơng tự trong các khoảng 1 3 ; 2 2       và 3 ;4 2       ? Ta nói trên khoảng 1 3 ; 2 2       hàm số đạt cực đại tại x=1. Ta nói trên khoảng 3 ;4 2       hàm số đạt cực tiểu tại x=0. Từ đó GV đ−a ra định nghĩa: GV yâu cầu HS lên bảng lập bảng biến thiên của hàm số 3 22 3 3 x y x x= − + ? 1 2 2 3 3 4 Trong khoảng 1 3 ; 2 2       có điểm "cao nhất" là 4 1; 3       t−ơng ứng với 4 1; 3 x y= = . Trong khoảng có điểm "thấp nhất" là (0;3) t−ơng ứng với x=0; y=3. Lên bảng lập bảng biến thiên: x −∞ 1 3 +∞ y' + 0 - 0 + y −∞ 4 3 0 +∞ Định nghĩa: Cho HS ( )y f x= xác định và liên tục trên khoảng (a;b) (có thể a là −∞ , b là +∞ ) và điểm 0 ( ; )x a b∈ . sao cho f(x)<f(x0) với mọi 0 0( ; )x x h x h∈ − + và 0x x≠ thì ta nói hàm số f(x) đạt cực đại tại x0. b) Nếu tồn tại số với mọi 0 0( ; )x x h x h∈ − + và 0x x≠ thì ta nói hàm số f(x) đạt cực tiểu tại x0. Chú ý: 1)Nếu hàm số ( )f x đạt Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 9 GV phân biệt rõ cho HS các khái niệm điểm cực đại (cực tiểu) và khái niệm giá trị cực đại (cực tiểu) trên bảng biến thiên. Dựa vào bảng biến thiên hXy nhận xét: Tại các điểm mà HS đạt CĐ, CT t ... 3)( 2)] log 2 x x x x x x − − ≤ ⇔ − − ≤ ⇔ − − ≤ Giải BPT trên ta có: 1 4x≤ ≤ . Kết của BPT là: 3 4x< ≤ . Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 101 3) Củng cố, dặn dò - Xem lại cách giải bất PT lôgarit cơ bản và ph−ơng pháp giải một số bất PT lôgarit đơn giản. - Làm bài tập 2 SGK Tr90. Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 102 Ngày soạn: 30/11/2008 Ngày giảng: 02/12/2008 Tiết 37: bất ph−ơng trình mũ và bất ph−ơng trình Lôgarit (Tiếp) 1) Kiểm tra bài cũ Câu hỏi: Giải bất ph−ơng trình lôgarit sau: ( )1 2 log 2 1 1− ≥x ? 2) Bài mới HĐ1: Ôn tập lý thuyết HĐGV HĐHS Ghi bảng HXy nêu cách giải BPT mũ cơ bản? Với PT mũ ta có thể sử dụng ph−ơng pháp đ−a về cùng cơ số để giải một số BPT mũ cơ bản. HXy nêu cách giải BPT lôgarit cơ bản? Với PT mũ ta có thể sử dụng ph−ơng pháp đ−a về cùng cơ số để giải một số BPT lôgarit cơ bản. Nếu 0b ≤ , tập nghiệm của x∀ ∈ℝ . Với 0<a<1, nghiệm của bất PT là logax b< . Với 0<a<1 thì nghiệm của BPT là 0<x<ab. I. Lý thuyết 1. BPT mũ 2. BPT lôgarit HĐ2: Bài tập về BPT mũ HĐGV HĐHS Ghi bảng Chữa bài tập số 1 phần b) SGK Tr89: H−ớng dẫn HS đ−a về cùng II. Bài tập 1. Bài tập BPT mũ Bài 1 (SGK Tr89) Giải các BPT mũ: b) 22 3 7 9 9 7 x x−   ≥    BPT t−ơng đ−ơng: Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 103 HĐGV HĐHS Ghi bảng cơ số là 7 9 bằng cách đặt câu hỏi: 9 7 bằng 7 9 mũ bao nhiêu? Từ đó GV giải BPT trên: H−ớng dẫn HS làm các phần còn lại. 1 9 7 7 9 −   =     Quan sát và ghi nhận kiến thức. 22 3 1 7 7 9 9 x x− −    ≥        Vì cơ số 7 1 9 < nên ta có: 2 2 2 3 1 2 3 1 0 1 1 2 x x x x x − ≤ − ⇔ − + ≤ ⇔ ≤ ≤ Vậy nghiệm của BPT là: 1 1 2 x≤ ≤ HĐ2: Bài tập về BPT lôgarit HĐGV HĐHS Ghi bảng Chữa bài tập số 2 phần b) SGK Tr90: Từ đó GV giải BPT trên: H−ớng dẫn HS làm làm các phần còn lại. a) Đ−a về cùng cơ số 8 ( 82 log 16= ). c) Đ−a về cùng cơ số 0,2 hoặc cơ số 5 ( 1 0,2 5 = ) rồi sử dụng tính chất log log log ( . )a a ab c b c− = . d) Đặt ẩn phụ 3logt x= . Quan sát và ghi nhận kiến thức. Nghe giảng, ghi nhận kiến thức. 2. Bài tập BPT lôgarit Bài 2 (SGK Tr90) Giải các BPT lôgarit: b) 1 1 5 5 ĐK: 3 5 0 5 31 0 x x x Vì cơ số 1 1 5 < nên BPT t−ơng đ−ơng: 3 5 1 2x x x+ < + ⇔ < Kết hợp với điều kiện 5 3 BPT là: 5 2 3 x< < 3) Củng cố, dặn dò Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 104 - Hệ thống lại toàn bộ kiến thức trong bài. - Hoàn thiện những bài tập còn lại dựa vào h−ớng dẫn của GV. Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 105 Ngày soạn: 07/12/2008 Ngày giảng: 09/12/2008 Tiết 38+39: ôn tập học kỳ i I- Mục tiêu 1) Kiến thức - Hệ thống lại các kiến thức trong học kỳ I. 2) Kỹ năng - Rèn kỹ năng trình bày và kỹ năng áp dụng ph−ơng pháp giải các dạng toán cơ bản vào các bài cụ thể. 3) T− duy - Phát triển t− duy logic, óc t−ởng t−ợng. 4) Thái độ - Cẩn thận, chính xác, nghiêm túc. II- Chuẩn bị của GV và HS 1) Giáo viên Giáo án, SGV, phấn màu. 2) Học sinh Vở ghi, SGK. III- Ph−ơng pháp dạy học Gợi mở, vấn đáp giải quyết vấn đề đan xen HĐ nhóm. IV- Tiến trình bài học 1) Kiểm tra bài cũ (không) 2) Bài mới HĐ1: Ôn tập lại về khảo sát hàm số HĐGV HĐHS Ghi bảng HXy nêu các b−ớc để khảo sát hàm số? 1. Tập xác định Tìm tập xác định của hàm số. 2. Sự biến thiên * Xét chiều biến thiên của hàm số: + Tính đạo hàm y'; + Tìm các điểm tại đó y'=0 hoặc không xác định; + Xét dấu đạo hàm y' và suy ra chiều biến thiên của hàm số. * Tìm cực trị. * Tìm các giới hạn tại vô cực, các giới hạn vô cực và tìm tiệm cận (nếu có). * Lập bảng biến thiên. (Ghi các kết quả tìm đ−ợc vào bảng biến thiên). 3. Đồ thị Khảo sát hàm số Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 106 HĐGV HĐHS Ghi bảng Yêu cầu HS nhắc lại các chú ý khi khảo sát một số hàm th−ờng gặp? Dựa vào kết quả khảo sát để vẽ đồ thị của hàm số. Nhắc lại các chú ý khi khảo sát một số hàm th−ờng gặp. HĐ2: Bài tập về khảo sát hàm số HĐGV HĐHS Ghi bảng GV đ−a ra ví dụ đại diện cho HS nhớ lại về khảo sát hàm số. Xác định đạo hàm y' và giải PT y'=0? Xác định dấu của y'? KL về tính ĐB, NB của hàm số? Từ đó suy ra các điểm cực trị của hàm số? Tính các giới hạn đặc biệt? HXy lập bảng biến thiên của HS? 3' 4 16y x x= − 0 ' 0 2 x y x = = ⇔  = ± Dấu của y': -2 0 2 x + - +- Hàm số ĐB trên các khoảng ( 2;0)− và (2; )+∞ , NB trên khoảng ( ; 2)−∞ − và (0;2) . HS đạt cực đại tại CĐ0; 7x y= = . HS đạt cực tiểu tại CT2; 9x y= ± = − . lim x y →±∞ = +∞ Lên bảng lập bảng biến thiên của hàm số. VD1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số 4 28 7y x x= − + . Giải: (1) Tập xác định: D =ℝ (2) Sự biến thiên Chiều biến thiên 3 2' 4 16 4 ( 4)y x x x x= − = − 0 ' 0 2 x y x = = ⇔  = ± Dấu của 'y : -2 0 2 x + - +- Hàm số ĐB trên các khoảng ( 2;0)− và (2; )+∞ , NB trên các khoảng ( ; 2)−∞ − và (0;2) . * Cực trị HS đạt cực đại tại CĐ0; 7x y= = . HS đạt cực tiểu tại CT2; 9x y= ± = − . * Giới hạn tại vô cực 4 2 4 8 7 lim lim 1 x x y x x x→−∞ →−∞   = − +    = +∞ 4 2 4 8 7 lim lim 1 x x y x x x→+∞ →+∞   = − +    = +∞ * Bảng biến thiên Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 107 HĐGV HĐHS Ghi bảng HXy tìm giao của đồ thị hàm số với trục tung? HXy tìm giao của đồ thị hàm số với trục hoành? GV h−ớng dẫn HS vẽ đồ thị của hàm số. Nhấn mạnh lại cho HS đồ thị hàm số luôn đối xứng qua trục tung. Cho x=0 và tìm y. Cho y=0, giải PT thu đ−ợc để tìm x. Quan sát, ghi nhận kiến thức. (3) Đồ thị Cho 0 7x y= ⇒ = , vậy đồ thị hàm số cắt trục Oy tại điểm (0;7). Cho 1 0 7 x y x = ± = ⇒  = ± vậy đồ thị hàm số cắt Ox tại (-1;0),(1;0),( 7;0)− và ( 7;0) . Đồ thị: 1 7 -9 y x -1 O -2 2 HĐGV HĐHS Ghi bảng GV đ−a ra ví dụ: Nhắc lại ph−ơng pháp làm bài tập dạng trên? H−ớng dẫn HS biến đổi PT trên về dạng: − + = +4 28 7 7x x m rồi sử dụng đồ thị để biện luận. HXy dựa vào đồ thị biện luận số nghiệm của PT trên? Biện luận dựa theo hình vẽ. Khi 7 -9 m + < hay -16m < thì PT vô nghiệm. Khi 7 9 7 7 m m + = − hay có hai nghiệm. Khi 7 7m + = hay 0m = thì PT có 3 nghiệm. Khi 9 7 7m− < + < hay VD2: Dựa vào đồ thị đX khảo sát ở trên hXy biện luận theo tham số m số nghiệm của PT: − = 4 28x x m Giải: Ta đ−a PT về dạng: − + = +4 28 7 7x x m 1 -9 -2 y=m+7 Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 108 HĐGV HĐHS Ghi bảng H−ớng dẫn HS một số khảo sát hàm số cho HS nh− viết PTTT, tìm GTLN, GTNN của hàm số, các trị. 16 0m− < < thì PT có 4 nghiệm. Ghi nhận kiến thức. 3) Củng cố, dặn dò Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 109 Ngày soạn: 14/12/2008 Ngày giảng: 16/12/2008 Tiết 39: ôn tập học kỳ i (Tiếp) 1) Kiểm tra bài cũ Câu hỏi: CM rằng HS 2y x x= − + nghịch biến trên khoảng (3;5)? 2) Bài mới HĐ1: Ôn tập lại về mũ và lôgarit HĐGV HĐHS Ghi bảng HXy nêu các tính chất của lũy thừa và lôgarit? HXy nhắc lại các kiến thức cơ bản về PT mũ và PT lôgarit (các dạng, cách giải,...) Tính chất của lũy thừa: Cho ,a b là những số thực; ,α β là những số thực tùy ý. Khi đó ta luôn có: .a a aα β α β+= a a a α α β β − = ( ) .a aβα α β= ( . ) .a b a bα α α= a a b b α α α   =    Tính chất của lôgarit: log 1 0 a = , log 1 a a = loga ba b= , ( )loga aα α= Cho ba số d−ơng 1 2, ,a b b với 1a ≠ ta có: ( )1 2 1 2log log loga a ab b b b= + 1 2 2 1 2 2 2 log log logb b b b   = −    Cho hai số d−ơng , ; 1a b a ≠ . Với mọi α ta đều có log loga ab b α α= Nhắc lại kiến thức. PT, BPT mũ và lôgarit HĐ2: Bài tập về PT mũ và PT lôgarit HĐGV HĐHS Ghi bảng GV thông qua ví dụ đại Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 110 HĐGV HĐHS Ghi bảng diện cho HS nhớ lại cách giải PT mũ: H−ớng dẫn HS 22log x chính là 22(log )x từ đó dẫn HS đến việc đặt 2log x t= . t có cần điều kiện không? HXy thay trở lại để tìm x? Ta có lấy cả hai nghiệm không? GV thông qua ví dụ đại diện cho HS nhớ lại cách giải PT lôgarit: H−ớng dẫn HS đ−a về cùng cơ số 3: Đây là PT lôgarit cơ bản. HXy giải PT trên? Cho HS nhắc lại một số PP giải PT lôgarit? ( )2 25 5= xx Không cần điều kiện. Thay trở lại để tìm x. Lấy cả hai nghiệm. Ta biến đổi 29 33 1log log log 2 = =x x x 43=x Nhắc lại về một số PP giải PT lôgarit. VD1: Giải ph−ơng trình: 2 2 2log 3log 2 0− + =x x Giải: Đặt 2log x t= . Ta có ph−ơng trình: 2 3 2 0− + =t t 1 2 t t = ⇔  = Thay trở lại ta có: 1 2 2 2 log 1 2 2 log 2 2 4 x x x x = = = ⇔  = = =  Vậy PT có hai nghiệm x=2 và x=4. VD2: Giải ph−ơng trình: 3 9log log 6+ =x x Giải: Ta biến đổi ph−ơng trình nh− sau: 23 3log log 6+ =x x 3 3 1log log 6 2 ⇔ + =x x 3 3 log 6 2 ⇔ =x 3log 4⇔ =x 43⇔ =x Vậy PT có nghiệm 43=x . HĐ3: Bài tập về BPT mũ và BPT lôgarit HĐGV HĐHS Ghi bảng GV đ−a ra bài tập đại diện: Ta dùng ph−ơng pháp nào để giải? Yêu cầu HS lên bảng để giải? GV nhận xét, bổ sung nếu có. Qua bài tập trên GV nhắc Đ−a về cùng cơ số 2. Lên bảng trình bày lời giải. Nhận xét bài làm. VD3: Giải BPT: 2 0,5log log 1x x− ≤ Giải: 2 2log log 1BPT x x⇔ + ≤ 2 2 2log 1 2 2 2 x x x ⇔ ≤ ⇔ ≤ ⇔ − ≤ ≤ ta có nghiệm của BPT là: 0 2x< ≤ hay (0; 2]x∈ Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 111 HĐGV HĐHS Ghi bảng lại về ph−ơng pháp giải BPT mũ cho HS. Ghi nhận kiến thức. 3) Củng cố, dặn dò