Hướng Dẫn Giải Bài Toán Tìm X Lớp 7 / Top 3 # Xem Nhiều Nhất & Mới Nhất 3/2023 # Top View | Ictu-hanoi.edu.vn

Hướng Dẫn Học Sinh Lớp 7 Giải Dạng Toán “Tìm X”

Trong quá trình dạy học sinh môn toán lớp 7 có phần ” Tìm x” tôi nhận thấy học sinh còn nhiều vướng mắc về phương pháp giải, quá trình giải thiếu logic và chưa chặt chẽ, chưa xét hết các trường hợp xảy ra. Lí do là học sinh chưa nắm vững quy tắc đổi dấu , chuyển vế . Đặc biệt biểu thức về giá trị tuyệt đối của một số, của một biểu thức, chưa biết vận dụng biểu thức này vào giải bài tập, chưa phân biệt và chưa nắm được các phương pháp giải đối với từng dạng bài tập. Mặt khác phạm vi kiến thức ở lớp 6,7 chưa rộng, học sinh mới bắt đầu làm quen về vấn đề này, nên chưa thể đưa ra đầy đủ các phương pháp giải một cách có hệ thống và phong phú được. Mặc dù chương trình sách giáo khoa sắp xếp hệ thống và logic hơn sách cũ rất nhiều, có lợi thế để dạy học sinh về vấn đề này , nhưng tôi thấy để giải bài tập về tìm x thì học sinh vẫn còn lúng túng trong việc tìm ra phương pháp giải và việc kết hợp với điều kiện của biến để xác định giá trị phải tìm là chưa chặt chẽ. Chính vì Vậy, trong khi giảng dạy về vấn đề này tôi nghĩ cần phải làm thế nào để học sinh biết áp dụng định nghĩa tính chất về giá trị tuyệt đối để phân chia được các dạng, tìm ra được phương pháp giải đối với từng dạng bài. Từ đó học sinh thấy tự tin hơn khi gặp loại bài tập này và có kỹ năng giải chặt chẽ hơn, có ý thức tìm tòi, sử dụng phương pháp giải nhanh gọn, hợp lí.

Phần I: Mở đầu Trang 1. Lý do chọn đề tài 02 2. Mục đích nghiên cứu 03 3. Đối tượng, phạm vi nghiên cứu 03 4.Các nhiệm vụ nghiên cứu 03 5. Các phương pháp nghiên cứu chính 03 Phần II: Nội dung Chương I: Cơ sở thực tiễn 04 Chương II: Kết quả điều tra khảo sát 05 Chương III: Giải pháp 06 II. Những biện pháp tác động giáo dục và giải pháp khoa học tiến hành 07 Một số dạng cơ bản: 07 1.1. Dạng 1: A(x) = B(x) 07 2. Dạng mở rộng 12 2.1. Dạng chứa biến với số mũ lớn hơn hoặc bằng 2 12 3. Phương pháp giải và cách tìm phương pháp giải 16 Phần III: Kết luận 17 Tài liệu tham khảo 19 Phần I: Mở đầu 1. Lý do chọn đề tài: Trong quá trình dạy học sinh môn toán lớp 7 có phần ” Tìm x” tôi nhận thấy học sinh còn nhiều vướng mắc về phương pháp giải, quá trình giải thiếu logic và chưa chặt chẽ, chưa xét hết các trường hợp xảy ra. Lí do là học sinh chưa nắm vững quy tắc đổi dấu , chuyển vế . Đặc biệt biểu thức về giá trị tuyệt đối của một số, của một biểu thức, chưa biết vận dụng biểu thức này vào giải bài tập, chưa phân biệt và chưa nắm được các phương pháp giải đối với từng dạng bài tập. Mặt khác phạm vi kiến thức ở lớp 6,7 chưa rộng, học sinh mới bắt đầu làm quen về vấn đề này, nên chưa thể đưa ra đầy đủ các phương pháp giải một cách có hệ thống và phong phú được. Mặc dù chương trình sách giáo khoa sắp xếp hệ thống và logic hơn sách cũ rất nhiều, có lợi thế để dạy học sinh về vấn đề này , nhưng tôi thấy để giải bài tập về tìm x thì học sinh vẫn còn lúng túng trong việc tìm ra phương pháp giải và việc kết hợp với điều kiện của biến để xác định giá trị phải tìm là chưa chặt chẽ. Chính vì Vậy, trong khi giảng dạy về vấn đề này tôi nghĩ cần phải làm thế nào để học sinh biết áp dụng định nghĩa tính chất về giá trị tuyệt đối để phân chia được các dạng, tìm ra được phương pháp giải đối với từng dạng bài. Từ đó học sinh thấy tự tin hơn khi gặp loại bài tập này và có kỹ năng giải chặt chẽ hơn, có ý thức tìm tòi, sử dụng phương pháp giải nhanh gọn, hợp lí. Chính vì những lí do trên mà tôi chọn và trình bày kinh nghiệm ” Hướng dẫn học sinh lớp 7 giải dạng toán “Tìm x”” 2. Mục đích nghiên cứu: Củng cố cho học sinh lớp 7 một số kiến thức để giải một số dạng giải bài toán tìm x . Cũng từ đó mà phát triển tư duy lôgic cho học sinh, phát triển năng lực giải toán cho các em, giúp cho bài giải của các em hoàn thiện hơn, chính xác hơn và còn giúp các em tự tin hơn khi làm toán. 3. Đối tượng phạm vi nghiên cứu: + Khách thể: Học sinh lớp 7 + Đối tượng nghiên cứu: Một số dạng bài toán ” Tìm x”. + Phạm vi nghiên cứu: Các bài toán không vượt quá chương trình toán lớp 7. 4. Nhiệm vụ nghiên cứu: – Hướng dẫn học sinh giải một số dạng toán cơ bản về “tìm x”. 5. Các phương pháp nghiên cứu: – Phương pháp nghiên cứu lí luận: Tìm hiểu, nghiên cứu tài liệu bồi dưỡng, sách giáo khoa, sách tham khảo – Phương pháp tổng kết kinh nghiệm ở những lớp học sinh trước để rút kinh nghiệm cho lớp học sinh sau. Phần II: Nội dung Chương I: Cơ sở thực tiễn Với học sinh lớp 7 thì việc giải dạng toán ” Tìm” gặp rất nhiều khó khăn do học sinh chưa học qui tắc giải về phương trình, các phép biến đổi tương đương Chính vì Vậy mà khi gặp dạng toán này học sinh thường ngại, lúng túng không tìm được hướng giải và khi giải hay mắc sai lầm. Khi chưa hướng dẫn học sinh giải bằng cách áp dụng đề tài, học sinh giải thường vướng mắc như sau: Ví dụ 1 : tìm x biết x- 2x +3 = 6 – x + Một số HS chưa rõ tìm x như thế nào ? Hoặc khi chuyển vế không đổi dấu . + Học sinh không biết xét tới điều kiện của x, vẫn xét 2 trường hợp xảy ra: x – 5 – x = 3 hoặc 5 – x – 3 = 3 và học sinh chưa hiểu được ở đây 3 +x có chứa biến x. + Có xét tới điều kiện của x để x – 5 ³0; x-5<0 nhưng đối với mỗi trường hợp học sinh chưa kết hợp với điều kiện của x, hoặc kết hợp chưa chặt chẽ. Khi tôi áp dụng đề tài này vào quá trình hướng dẫn học sinh giải được bài, hiểu rất rõ cơ sở của việc giải bài toán đó. Còn ở ví dụ 2 các em đã biết lựa chọn ngay cách giải nhanh (và hiểu được cơ sở của phương pháp giải đó là áp dụng tính chất; hai số đối nhau có giá trị tuyệt đối bằng nhau). Cụ thể : Chương II: Kết quả điều tra khảo sát Qua khảo sát khi chưa áp dụng đề tài tôi khảo sát hai lớp 7A, 7B trường THCS Minh Tõn với đề bài: Tìm x biết: a) 3x – 2 = 5 ( 2 điểm ) b) 6x – 5 x2 = 2 – 5 x2 ( 3 điểm ) Tôi thấy học sinh còn rất lúng túng về phương pháp giải, chưa nắm vững phương pháp giải đối với từng dạng bài, quá trình giải chưa chặt chẽ, chưa kết hợp được kết quả tìm ra với điều kiện xảy ra, chưa lựa chọn được phương pháp giải nhanh, hợp lí. Kết quả đạt được như sau: Giỏi Khá Trung bình Yếu và kém 7A 3% 10% 73% 14% 7B 11% 23% 66% 0% Kết quả thấp là do học sinh vướng mắc những điều tôi đã nêu ra ( ở phần trên) và phần lớn các em xét chưa được chặt chẽ ở câu c , d. Chương III: giải pháp Yêu cầu học sinh nắm vững và ghi nhớ các kiến thức cần thiết để giải bài tập tìm x, một điều khó khăn khi dạy học sinh lớp 7 về vấn đề này đó là học sinh chưa được học về phương trình, bất phương trình, các phép biến đổi tương đương, hằng đẳng thức nên có những phương pháp dễ xây dựng thì chưa thể hướng dẫn học sinh được, vì thế học sinh cần nắm vững được các kiến thức cơ bản sau: Qui tắc bỏ dấu ngoặc, qui tắc chuyển vế. Tìm x trong đẳng thức: Định lí và tính chất về giá trị tuyệt đối. |A| = |-A| |A| ³ 0 Định lí về dấu nhị thức bậc nhất. II. Những biện pháp tác động giáo dục và giải pháp khoa học tiến hành. Từ các quy tắc , định nghĩa, tính chất về giá trị tuyệt đối hướng dẫn học sinh phân chia từng dạng bài, phát triển từ dạng cơ bản sang các dạng khác, từ phương pháp giải dạng cơ bản, dựa vào định nghĩa, tính chất về giá trị tuyệt đối tìm tòi các phương pháp giải khác đối với mỗi dạng bài, loại bài. Biện pháp cụ thể như sau: Một số dạng cơ bản: 1.1. Dạng cơ bản A(x) = B(x) 1.1.1 . Cách tìm phương pháp giải : Làm thế nào để tìm ra x ? cần áp dụng kiến thức nào ( sử dụng quy tắc chuyển vế ) ? khi làm cần lưu ý điều gì ?( Lưu ý khi chuyển vế phải đổi dấu ) . 1.1.2. Phương pháp giải Sử dụng quy tắc chuyển vế chuyển các hạng tử chứa biến x sang vế trái , còn chuyển các hệ số tự do sang vế phải . Thực hiện các phép tính thu gọn và tìm x . 1.1.3. ví dụ Tìm x , biết 2x – 3 = 5x + 6 Làm thế nào ? Chuyển hạng tử nào sang vế nào ? ( Chuyển 5x từ vế phải sang vế trái và dổi dấu , chuyển -3 từ vế trái sang vế phải và đổi dấu thành +3 ) Giải 2x – 3 = 5x + 6 2x – 5x = 6 + 3 – 3x = 9 x = 9 : (-3) x = -3 ( GV lưu ý HS cả cách trình bày ) 1.2.1 Cách tìm phương pháp giải: Đẳng thức có xảy ra không? Vì sao? Nếu đẳng thức xảy ra thì cần áp dụng kiến thức nào để bỏ được dấu giá trị tuyệt đối (áp dụng tính chất giá trị tuyêt đối của hai số đối nhau thì bằng nhau). 1.2.2. Phương pháp giải: Ta lần lượt xét A(x) = B và A(x) = -B, giải hai trường hợp. 1.2.3. Ví dụ: Đặt câu hỏi bao quát chung cho bài toán: Đẳng thức có xảy ra không? Vì sao? Bài giải Vậy x = 8 hoặc x = 2 Từ ví dụ đơn giản, phát triển đưa ra các ví dụ khó dần. Bài giải Vậy x= -1 hoặc x = 10 1.3.1. Cách tìm phương pháp giải: Cũng đặt câu hỏi gợi mở như trên, học sinh thấy được rằng đẳng thức không xảy ra Nếu B(x) < 0 1.3.2. Phương pháp giải: Cách 1: ( Dựa vào tính chất) Với điều kiện B(x) ³0 ta có A(x) = B(x) hoặc A(x) = – B(x)( giải 2 trường hợp với điều kiện B(x) ³0) Cách 2: Dựa vào định nghĩa xét các quá trình của biến của biểu thức chứa dấu giá trị tuyệt đối để bỏ dấu giá trị tuyệt đối. + Xét A(x) x? Ta có A(x) = – B(x) ( giải để tìm x thoả mãn A(x) < 0) + Kết luận: x = ? 1.3.3. Ví dụ: Cách 1: Vậy x= 1 hoặc x= 3 Cách 2: Vậy x = 1 hoặc x = 3 Vậy x = 1 Vậy x = 1 1.4.1 . Cách tìm phương pháp giải: Với dạng này tôi yêu cầu học sinh nhắc lại kiến thức về đặc điểm của giá trị tuyệt đối của một số (giá trị tuyệt đối của một số là một số không âm).Vậy tổng của hai số không âm bằng không khi nào?(cả hai số bằng 0). Vậy ở bài này tổng trên bằng 0 khi nào? (A(x) = 0 và B(x) =0). Từ đó ta tìm x thoả mãn hai điều kiện: A(x) = 0 và B(x) = 0. 1.4.2. Phương pháp giải: Ta tìm x thoả mãn hai điều kiện A(x) = 0 và B(x) = 0. 1.4.3. Ví dụ: Tìm x biết: Bài giải: Từ (*) và (**) suy ra x = -1 Từ (*) và (**) ta được x = 3 Lưu ý: Dạng mở rộng: 2.1. Dạng chứa biến x mũ lớn hơn hoặc bằng 2 2.1.1 Cách tìm phương pháp giải : HS khi gặp phải các biểu thức chứa mũ ở biến thì bỡ ngỡ chưa biết làm thế nào ? 2.1.2. Phương pháp giải : Sử dụng các quy tắc biến đổi thông thường , sau khi biến đổi các biến của x chứa mũ sẽ bị triệt tiêu . 2.1.3. ví dụ Tìm x biết 2x – 3 x2 = 2 – 3 x2 ( Ta chỉ cần biến đổi -3 x2 từ vế phải sang vế trái thành 3 x2 sẽ triệt tiêu với -3 x2 ở vế trái ) Cách tìm phương pháp giải: Trước hết tôi đặt vấn đề để học sinh thấy được đây là dạng đặc biệt( vì đẳng thức luôn xảy ra do cả 2 vế đều không âm), từ đó các em tìm tòi hướng giải. Phương pháp giải: Cách 1: Xét các trường hợp xảy ra của A(x) và B(x) để phá giá trị tuyệt đối. Cách 2: Dựa vào tính chất hai số đối nhau có giá trị tuyệt đối bằng nhau ta tìm x thoả mãn một trong hai điều kiện A(x) = B(x) hoặc A(x) = -B(x) Ví dụ: |x+3| =|5-x| Vậy x = 1 Bước 1: Lập bảng xét dấu: Trước hết cần xác định nghiệm của nhị thức : Trên bảng xét dấu xếp theo thứ tự giá trị của x phải từ nhỏ đến lớn. Ta có bảng sau: X -2 3 x – 3 – – 0 + x + 2 – 0 + + Cụ thể: Dựa vào bảng xét dấu ta có các trường hợp sau: + Nếu x<- 2 ta có x- 3<0 và x + 2<0 nên ỗx- 3ờ= 3- x và ờx + 2ờ= -x – 2 Đẳng thức trở thành: 3- x – x -2 = 7 -2x + 1 = 7 -2x = 6 x = -3 ( thoả mãn x<-2) + Nếu 2x<3 ta có ỗx- 3ỗ= 3- x và ỗx+ 2ỗ= x + 2 Đẳng thức trở thành: 3- x + x +2 = 7 0x + 5 = 7 (vô lí) +Nếu x3 đẳng thức trở thành: x- 3 + x + 2 = 7 2x – 1 = 7 2x = 8 x = 4 (thoả mãn x3) Vậy x = -3 ; x = 4 Lưu ý: Qua 2 cách giải trên tôi cho học sinh so sánh để thấy được lợi thế trong mỗi cách giải. ở cách giải 2 thao tác giải sẽ nhanh hơn, dễ dàng xét dấu trong các khoảng giá trị hơn, nhất là đối với các dạng chứa 3; 4 dấu giá trị tuyệt đối (để nên ý thức lựa chọn phương pháp giải). Ví dụ3: Tìm x biết: Nếu giải bằng cách 1 sẽ phải xét nhiều trường hợp xảy ra, dài và mất nhiều thời gian. Còn giải bằng cách 2 thì nhanh gọn hơn rất nhiều, vì dựa vào bảng xét dấu ta thấy ngay có 4 trường hợp xảy ra. Mặt khác, với cách giải 2 ( lập bảng xét dấu ) xẽ dễ mắc sai sót về dấu trong khi lập bảng, nên khi xét dấu các biểu thức trong dấu giá trị tuyệt đối cần phải hết sức lưu ý và tuân theo đúng qui tắc lập bảng. Một điều cần lưu ý cho học sinh đó là kết hợp trường hợp ³ trong khi xét các trường hợp xảy ra để thỏa mãn biểu thức ³ 0 ( tôi đưa ra ví dụ cụ thể để khắc phục cho học sinh ). Lập bảng xét dấu x 4 9 Xét các trường hợp xảy ra, trong đó với x ³ 9 thì đẳng thức trở thành x-4+x-9 =5 Từ những dạng cơ bản đó đưa ra các dạng bài tập mở rộng khác về loại toán này: dạng lồng dấu, dạng chứa từ 3 dấu giá trị tuyệt đối trở lên. Vậy 4≤x ≤ 9 Vậy: 1≤x≤2 và x =5 3. Phương pháp giải và cách tìm phương pháp giải: Sau khi giới thiệu cho học sinh hết các dạng bài tôi chốt lại cho học sinh: Phương pháp giải dạng toán “tìm x”: Phương pháp 1 : sử dụng quy tắc chuyển vế đưa cá biến về một vế , các hệ số về một vế và triệt tiêu các biến chứa mũ . * Cách tìm tòi phương pháp giải: Cốt lõi của đường lối giải bài tập tìm x , đặc biệt là tìm x trong đẳng thức chứa dấu giá trị tuyệt đối, đó là tìm cách bỏ dấu giá trị tuyệt đối. + Khi đã xác định được dạng cụ thể nghĩ cách nào làm nhanh gọn hơn để lựa chọn. Phần III: Kết luận Khi áp dụng đề tài nghiên cứu này vào giảng dạy học sinh lớp tôi dạy đã biết cách làm các dạng bài toán tìm x một cách nhanh và gọn. Học sinh không còn lúng túng và thấy ngại khi gặp dạng bài tập này. Cụ thể khi làm phiếu điều tra hai lớp 7A và 7B trường THCS Minh Tõn với đề bài sau: Tìm x biết: a) -5x + 3 = 7 – 6x b) 2x + 5×3 = -3 + 5×3 Kết quả nhận được như sau: Học sinh của tôi không còn lúng túng về phương pháp giải cho từng dạng bài trên. Biết lựa chọn cách giải hợp lí, nhanh, gọn. Hầu hết đã trình bày được lời giải chặt chẽ. Kết quả cụ thể như sau: Giỏi Khá Trung bình Yếu và kém 7A 10% 48% 37% 5% 7D 35% 50% 15% 0% Khi nghiên cứu đề tài này tôi đã rút ra một số bài học cho bản thân trong việc bồi dưỡng hai đầu cho học sinh yếu và học sinh khá – giỏi. Những bài học đó là: 1 – Hệ thống kiến thức bổ trợ cho dạng toán sắp dạy. 2 – Hệ thống các phương pháp cơ bản để giải loại toán đó. 3 – Khái quát hoá, tổng quát hoá từng dạng, từng loại bài tập. 4 – Tìm tòi, khai thác sâu kiến thức. Sưu tầm và tích luỹ nhiều bài toán, sắp xếp thành từng loại để khi dạy sẽ giúp học sinh nắm vững dạng toán. Tôi xin chân thành cảm ơn! Minh Tõn , ngày 03 tháng 5 năm 2014 Người viết Tài liệu tham khảo Vũ Hữu Bình – Nâng cao và phát triển Toán 7- NXB Giáo Dục – 2003 Bùi Văn Tuyên – Bài tập nâng cao và một số chuyên đề Toán 7- NXB Giáo dục – 2004 Sách giáo khoa Toán 7 – NXB Giáo dục – 2007 Vũ Hữu Bình – Toán bồi dưỡng học sinh lớp 7- NXB Giáo dục – 2004.

Chuyên Đề: “Hướng Dẫn Học Sinh Lớp 6 Giải Tốt Một Số Dạng Toán Tìm X “

CHUYÊN ĐỀ:

” HƯỚNG DẪN HỌC SINH LỚP 6

Yêu cầu học sinh nắm vững và ghi nhớ cách giải các bài toán tìm x cơ bản đã học ở tiểu học, một điều khó khăn khi dạy học sinh lớp 6 về vấn đề này đó là học sinh chưa được học về phương trình, bất phương trình, các phép biến đổi tương đương, hằng đẳng thức… vì thế học sinh cần nắm vững được các kiến thức cơ bản sau:

Quy tắc bỏ dấu ngoặc, qui tắc chuyển vế.

Tìm x trong đẳng thức:

Thực hiện phép tính , chuyển vế… đưa về dạng cơ bản đã học ở tiểu học

Định lí và tính chất về giá trị tuyệt đối.

II. Một số giải pháp cơ bản

Học sinh phải nắm được các yêu cầu cơ bản để giải một bài toán tìm x từ đó rút ra được các giải pháp cơ bản sau:

Dạng : Phép toán chia: (Tìm số chia khi biết thương và số bị chia hoặc

tìm số bị chia khi biết thương và số chia )

Dạng 1; 2; 3; 4 các em đã gặp nhiều ở tiểu học

Dạng 5: Gồm các bài: 30 ( SGK – tr 17 ), bài 44 ; 47abc( SGK – tr 24 ), bài 74 ( SGK -tr 32 ), bài 161a ( SGK – tr 163 ), bài 44( SBT – tr 8 ), bài 62 ; 64( SBT-tr 10), bài 77(SBT- tr 12), bài 105a, 108b( SBT -tr 15), bài 198a(SBT- tr 26 ) bài 204 ( SBT – tr 26 ) …

Dạng 6: Gồm các bài 102 ; 103 ( SBT – trang 14 )

Dạng 7: Gồm bài 87 ( SGK trang 36 ) …

Dạng 8: Gồm các bài 156 (SGK – trang 60 ), bài 115 (SBT – Trang 17 ), bài 130 (SBT – trang 18) , bài 142 ; 146 ( SBT – trang 20 )…

Dạng 9: Gồm các bài :bài 74 d ( SGK – trang 24 ) , bài 161b(SGK – tr 63 ) bài 105b; 108a (SBT – trang 15 ), 198b (SBT – trang 26 )…

* Giải pháp 3: Tiến hành giảng dạy các bài toán thuộc dạng 1; 2; 3; 4 .

Thật vậy các dạng toán tìm x là dạng toán cơ bản gặp nhiều trong chương trình toán ở bậc tiểu học, song hầu hết học sinh không nắm được phương pháp giải do vậy đòi hỏi giáo viên phải nêu lại cho học sinh phương pháp giải thuộc bốn dạng trên .

THCS ngay ở tiết 7 toán 6 các em đã gặp bài toán tìm x . Để giải quyết tốt các bài toán tìm x thì giáo viên phải hướng dẫn lại cho học sinh cách giải bốn dạng toán cơ bản nêu trên đặc biệt là cách xác định vai trò của số x từ đó đưa ra cách giải cho phù hợp.

Trong tiết học 7 để học sinh làm được bài tập ?2 không vướng mắc với nhiều đối tượng học sinh, giáo viên nên cho học sinh lên bảng kiểm tra bài cũ với nội dung:

Tìm x biết:

a. x + 5 = 10 b. x – 15 = 4

c. x . 3 = 9 d. 6 : x = 3

Giáo viên yêu cầu 1 học sinh nhận xét bài làm và nêu cách tìm x trong mỗi vị trí của x và ghi vào bảng phụ treo góc bảng để học sinh ghi nhớ .

Dạng 5:Khi các em đã nắm chắc cách giải các dạng toán nêu trên thì ở bài tập số 30 (sgk tr 17).

Tìm x biết:

a ) ( x – 34 ) . 15 = 0

b) 18 . ( x – 16 ) = 18

Câu a các em có thể vận dụng nhận xét: tích của hai thừa số bằng 0 thì một trong hai thừa số đó phải bằng 0, từ đó tìm ngay được số x, câu b giáo viên phải cho học sinh nêu bật được đặc điểm của bài toán, từ đó suy ra cách tìm thừa số chứa x rồi mới tìm x

Cụ thể: a) ( x – 34 ).15 = 0

 x – 34 = 0

 x = 0 + 34 = 34

b) 18.( x – 16 ) = 18

 x – 16 = 18 : 18

 x – 16 = 1

 x = 1 + 16 = 17

Đây là dạng toán tìm x chứa nhiều phép tính vậy thì khi làm dạng này GV nên nhấn mạnh thực hiện “các phép tính từ ngoài vào trong” . Vậy theo các em ta sẽ thực hiện như thế nào? Trong quá trình hướng dẫn học sinh làm bài giáo viên nên hướng dẫn học sinh trình bày theo từng bước để các em dễ hiểu, dễ nhớ và tiện lợi cho việc kiểm tra lại bài làm.

Sau mỗi bài giải giáo viên cần nêu lại cách giải bài toán ở dạng vừa làm và khắc sâu kiến thức cho học sinh.

Tiếp đến bài tập số 44; 47 (sgk tr 24): Tìm số tự nhiên x biết:

a ) x : 13 = 41

b ) 7x – 8 = 713

c ) 124 + ( 118 – x ) = 217

Trong bài tập này các em đã gặp nhiều bài phối hợp hai phép tính, nếu các em làm tốt phần phân tích bài toán để tìm được vị trí của x thì việc giải bài toán thật đơn giản

( Lưu ý: Phần phân tích bài toán cần gọi nhiều học sinh ở đối tượng trung bình và bậc đầu loại khá để các em tăng khả năng nhận biết vị trí của x ).

Dạng 6: Loại toán tìm x trong luỹ thừa

Với bài toán tìm x trong luỹ thừa giáo viên phải yêu cầu học sinh học thuộc định nghĩa luỹ thừa, giáo viên cần phân tích cho học sinh thấy được có hai trường hợp xảy ra.

Trường hợp 1: x nằm ở số mũ

Ví dụ : Tìm số tự nhiên x biết rằng:

a ) 2 x = 32

b ) 3 x = 81

c ) 15 x = 225

Trường hợp này giáo viên phải cho học sinh nêu ra vị trí của x trong bài toán từ đó tìm phương pháp giải

Giáo viên hướng dẫn học sinh viết các số 32; 81; 225 về cơ số của luỹ thừa 2; 3; 15

Cụ thể :

a) Vì 32 = 2 5

2 x = 32

 2 x = 2 5

 x = 5

b) Vì 81 = 3 4

3 x= 81

 3 x = 3 4

 x = 4

c) Vì 225 = 15 2

15 x = 225

 15 2 = 15 x

 x = 2

Trường hợp 2:

a) x 3 = 8

b) x 3 = 27

c ) x 2 = 16

Giáo viên cần hướng dẫn để học sinh nhận biết, nêu ra được vị trí của x trong bài toán từ đó dưa ra cách làm thích hợp.

Cụ thể :

a) 8 = 2 3

x 3 = 8

b) 27 = 3 3

x 3 = 27

c) 16 = 4 2

x 2 = 16

Các dạng toán này giáo viên phải đưa vào trong tiết luyện tập. Sau khi hướng dẫn học sinh giải bài tập tìm x, giáo viên chốt kiến thức và nhấn mạnh có hai trường hợp:

Trường hợp x nằm ở cơ số ta cân bằng số mũ

Trường hợp x nằm ở số mũ ta cân bằng cơ số

Giáo viên có thể cho bài toán phức tạp hơn để học sinh về nhà làm:

Tìm x biết: a) ( 2x + 1 ) 3 = 27

b) 4 . 2 x = 128

a. Hướng dẫn học sinh viết số 27 về luỹ thừa có số mũ là 3, rồi tìm x

b. Trước hết ta tìm 2 x, rồi tìm x

Dạng 7, dạng 8 chỉ nêu ra nhưng không đề cập đến phương pháp giải ở đề tài này

Dạng 9: Giải bài toán phối hợp các phép cộng, trừ, nhân, chia và toán luỹ thừa, tìm x có chứa dấu giá trị tuyệt đối.

Chú ý: Với dạng có rất nhiều dấu ngoặc như ví dụ 1 trên ta yêu cầu học sinh ưu tiên tìm phần trong ngoặc theo thứ tự:

Với bài toán có chứa dấu GTTĐ như ở ví dụ 3 trên các em cần áp dụng định nghĩa gí trị tuyệt đối của một số nguyên a để phá dấu giá trị truyệt đối.

Đối với học sinh lớp 6 đây là dạng toán khó vì trong một bài toán thường gặp nhiều phép toán chính vì vậy đòi hỏi học sinh phải nắm chắc thứ tự thực hiện các phép toán nhận biết tốt vị trí của x trong bài toán, từ đó mới xây dựng các bước giải và tiến hành giải bài toán.

Ví dụ: Bài tập 74 ( sgk tr 32). Tìm số tự nhiên x biết:

a) 12 x – 33 = 3 2 . 3 3

b) ( 3 x – 2 4 ). 7 3 = 2 . 7 4

Giải a) 12 x – 33 = 9.27

12x – 33 = 243

12 x = 243 + 33

12 x = 276

x = 276 : 12

b) ( 3 x – 2 4 ). 7 3 = 2 .7 4

( 3 x – 2 4 ) = 2 . 7

3 x – 16 = 14

3x = 14 + 16

3x = 30

Bước 1: Ta tìm biểu thức chứa x bằng cách thực hiện các phép toán luỹ thừa.

Bước 2: Tìm số bị trừ biết hiệu và số trừ.

Bước 3: Tìm thừa số x biết tích và thừa số kia.

III. Kết luận

Như chúng ta đã biết dạng toán “tìm x ” ở lớp 6 sẽ là dạng toán giải phương trình sau này khi các em học lên các lớp trên. Nếu ở lớp 6 mà các em được làm thành thạo dạng toán này thì khi học lên các lớp trên các em sẽ làm tốt hơn nếu gặp các bài toán giải phương trình. Do đó việc giải các bài tập ” tìm x ” sẽ là nền tảng cho học sinh giải phương trình sau này.

Trong nội dung chuyên đề nêu trên chắc còn nhiều thiếu sót do trình độ còn hạn chế, rất mong nhận được sự đóng góp ý kiến của các thầy cô giáo và bạn bè đồng nghiệp để tôi được tích luỹ thêm kinh nghiệm cho bản thân.

Xin chân thành cảm ơn!

Thạch vĩnh, ngày 08 tháng 09 năm 2018

Người viết

Nguyễn Thị Anh

Поделитесь с Вашими друзьями:

Bài Giải Toán Tìm X Lớp 2

Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tiếp, Lười Giải Phiếu Bài Tập Toán Cuối Tuần Toán 4tuân 16, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Toán Đại 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tt, Toán Lớp 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Giải Toán Lớp 5 Toán Phát Chiển Năng Lực Tư Tuần 14 Đến 15,16, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình, Các Dạng Toán Và Phương Pháp Giải Toán 6, Các Dạng Toán Và Phương Pháp Giải Toán 8, Các Dạng Toán Và Phương Pháp Giải Toán 8 Tập 1, Phương Pháp Giải Toán Qua Các Bài Toán Olympic, Giải Toán Cuối Tuần 12 Lớp 3 Môn Toán, Toán Lớp 5 Bài Giải Toán Về Tỉ Số Phần Trăm, Toán Lớp 3 Bài ôn Tập Về Giải Toán Trang 176, Giải Toán Lớp 4 Bài Giải, Giải Bài Giải Toán Lớp 3, Giải Phiếu Bài Tập Toán Cuối Tuần Lớp 4 Môn Toán Tuần 20, Bài Giải Vở Bài Tập Toán Lớp 5, Giải Toán 8 Tập 2 Bài 1, Giải Bài Tập Toán Lớp 4 Tập 2, Gợi ý Giải Đề Thi Môn Toán Vào Lớp 10, Giải Bài Tập Toán 6 Sgk, Giải Bài Tập 5 Toán 12, Giải Bài Tập Toán, Bài ôn Tập Về Giải Toán, Giải Toán 8 Bài 3 Tập 2, Giải Toán 7 Tập 2 Bài 2, Giải Bài Tập 3 Toán 11, Giải Toán 7 Tập 2 Bài 1, Giải Bài Tập Toán 0, Bài Giải Đề Thi Toán Lớp 10, Giải Toán 8 Tập 2 Bài 3, Giải Bài Tập 1 Toán 12, Bài Giải Vở Bài Tập Toán Lớp 5 Tập 2, Giải Bài Toán Tìm Y, Giải Bài Toán Tìm Y Lớp 2, Giải Bài Toán Tối ưu, Giải Vở ô Li Toán Lớp 4, Giải Bài Tập 40 Sgk Toán 8 Tập 2, Giải Bài Toán Vận Tải, Giải Bài Toán X Lớp 2, Giải Bài Toán Y, Giải Các Bài Toán Khó, Bài Giải Toán Lớp 7 Đại Số, Giải Bài Tập ôn Tập Toán Lớp 7, Một Số Bài Toán Giải Có Lời Văn Lớp 5, Giải Bài Tập Toán 10, Bài Giải Bài Tập Toán Lớp 5 Tập 2, Giải Vở ô Li Bài Tập Toán Lớp 3, Giải Vở ô Li Bài Tập Toán Lớp 1, Giải Bài Tập 17 Sgk Toán 9 Tập 2, Giải Bài Tập Toán 5, Giải Bài Tập Toán 10 Sgk Đại Số, Bài 9 ôn Tập Về Giải Toán, Bài 9 ôn Tập Về Giải Toán Lớp 5, Giải Bài Tập 10 Toán, Giải Bài Tập ở Sgk Toán 7, Giải Bài Tập Sgk Toán 9, Giai Toan, Giải Bài Tập Toán 11, Gợi ý Giải Đề Thi Môn Toán, Giải Vở ô Li Bài Tập Toán Lớp 2, Giải Vở ô Li Bài Tập Toán Lớp 4, Giải Bài Tập Kế Toán Chi Phí, Giải Bài Tập 8 Toán, Giải Bài Tập Toán In Lớp 5, Toán 8 Giải Bài Tập Sgk, Đáp án Giải Vở Bài Tập Toán Lớp 5, Đáp án Giải Toán Vật Lý 10 Tập 2, Bài Giải Bài Tập Toán Lớp 7, Bài Giải Bài Tập Toán Lớp 6, Giải Bài Tập Toán 6, Bài Giải Bài Tập Toán Lớp 5, Bài Giải Bài Tập Toán Lớp 4 Tập 2, Bài Giải Bài Tập Toán Lớp 4, Giải Vở ô Li Bài Tập Toán Lớp 5, Giải Toán 8 Tập 2 Bài 5, Giải Bài Toán Lớp 6, Giải Bài Tập 62 Toán 9 Tập 2, Bài Giải Toán Có Lời Văn Lớp 3, Giải Bài Tập Sgk Toán 8, Bài Giải Toán Đố Lớp 1, Bài Giải Toán Đố Lớp 2, Bài Giải Toán Lớp 1, Giải Bài Toán Lớp 3 Tìm X, Bài Giải Toán Lớp 1 Tập 2, Bài Giải Toán Lớp 10, Bài Giải Toán Lớp 2, Bài Giải Toán Lớp 2 Tìm X, Giải Bài Toán Lớp 3, Giải Bài Toán Lớp 2 Tìm Y, Giải Bài Toán Lớp 2 Tìm X, Giải Bài Toán Lớp 2, Bài Giải Toán Có Lời Văn Lớp 1, Bài Giải Toán Có Lời Văn, Giải Bài Toán Lớp 6 Tập 2,

Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tiếp, Lười Giải Phiếu Bài Tập Toán Cuối Tuần Toán 4tuân 16, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Toán Đại 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tt, Toán Lớp 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Giải Toán Lớp 5 Toán Phát Chiển Năng Lực Tư Tuần 14 Đến 15,16, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình, Các Dạng Toán Và Phương Pháp Giải Toán 6, Các Dạng Toán Và Phương Pháp Giải Toán 8, Các Dạng Toán Và Phương Pháp Giải Toán 8 Tập 1, Phương Pháp Giải Toán Qua Các Bài Toán Olympic, Giải Toán Cuối Tuần 12 Lớp 3 Môn Toán, Toán Lớp 5 Bài Giải Toán Về Tỉ Số Phần Trăm, Toán Lớp 3 Bài ôn Tập Về Giải Toán Trang 176, Giải Toán Lớp 4 Bài Giải, Giải Bài Giải Toán Lớp 3, Giải Phiếu Bài Tập Toán Cuối Tuần Lớp 4 Môn Toán Tuần 20, Bài Giải Vở Bài Tập Toán Lớp 5, Giải Toán 8 Tập 2 Bài 1, Giải Bài Tập Toán Lớp 4 Tập 2, Gợi ý Giải Đề Thi Môn Toán Vào Lớp 10, Giải Bài Tập Toán 6 Sgk, Giải Bài Tập 5 Toán 12, Giải Bài Tập Toán, Bài ôn Tập Về Giải Toán, Giải Toán 8 Bài 3 Tập 2, Giải Toán 7 Tập 2 Bài 2, Giải Bài Tập 3 Toán 11, Giải Toán 7 Tập 2 Bài 1, Giải Bài Tập Toán 0, Bài Giải Đề Thi Toán Lớp 10, Giải Toán 8 Tập 2 Bài 3, Giải Bài Tập 1 Toán 12, Bài Giải Vở Bài Tập Toán Lớp 5 Tập 2, Giải Bài Toán Tìm Y, Giải Bài Toán Tìm Y Lớp 2, Giải Bài Toán Tối ưu, Giải Vở ô Li Toán Lớp 4, Giải Bài Tập 40 Sgk Toán 8 Tập 2, Giải Bài Toán Vận Tải, Giải Bài Toán X Lớp 2, Giải Bài Toán Y, Giải Các Bài Toán Khó, Bài Giải Toán Lớp 7 Đại Số, Giải Bài Tập ôn Tập Toán Lớp 7, Một Số Bài Toán Giải Có Lời Văn Lớp 5,

Hướng Dẫn Học Sinh Trung Bình, Yếu Và Kém Giải Một Số Dạng Toán Tìm X Ở Lớp 6

– Sau khi cho học sinh nắm được các dạng toán tìm x cơ bản và đã làm được bài tập của các dạng toán này một cách thành thạo thì việc nâng cao các bài toán tìm x là một điều quan trọng và không thể thiếu khi hướng dẫn cho học sinh trung bình và yếu kém. Giáo viên đóng vai trò là người dẫn dắt, chỉ đường cho học sinh với phương pháp: ” Chuyển bài toán lạ, phức tạp và chưa biết cách giải về dạng toán quen thuộc, đơn giản đã bết cách giải”.

– Sau khi đã dạy xong 6 dạng toán trên, giáo viên đưa ra các bài tập sau:

Bài tập 5: Tìm số tự nhiên x, biết

6.x + 20 = 50 (được phát triển từ bài toán: x + 20 = 50)

+ Gặp bài tập này học sinh sẽ cảm thấy bỡ ngỡ vì bài toán mình đã làm có dạng là x + 20 = 50, còn đây là 6.x + 20 = 50

– Giáo viên hướng dẫn học sinh: Nếu coi tích 6.x như một số hạng chưa biết, thì bài toán có dạng nào?

+ Học sinh thấy ngay đây là dạng toán I

đặc thù riêng lẻ. Mặt khác cần khuyến khích học sinh tìm hiểu các giải để học sinh phát huy được khả năng tư duy linh hoạt, nhạy bén khi trình bày bài giải bài toán. Tạo được lòng say mê, sáng tạo, ngày càng tự tin, không còn tâm lý e ngại đối với các bài toán tìm x. Học sinh thấy được môn toán rất gần gũi với các môn học khác và thực tiễn trong cuộc sống b, Nhiệm vụ của đề tài Nhiệm vụ của đề tài là đưa ra phương pháp giải và cách trình bày bài giải của một số dạng toán tìm x cơ bản mà học sinh trung bình và yếu, kém thường hay gặp ở chương trình toán lớp 6 mà học sinh còn chưa biết cách giải hay thường hiểu sai về phương pháp giải các dạng toán đó. 3. Đối tượng nghiên cứu Học sinh có học lực trung bình và yếu, kém của hai lớp 6A và 6B trường THCS Băng Adrênh- Krông Ana - Đăklăk. 4. Giới hạn phạm vi nghiên cứu Đề tài được áp dụng trong một số dạng toán tìm số tự nhiên x ở chương trình toán lớp 6 mà học sinh trung bình và yếu, kém vẫn chưa thể tự mình giải và trình bày bài giải được. 5. Phương pháp nghiên cứu - Tìm hiểu tình hình học tập của học sinh. - Cách hình thành kĩ năng giải toán cho học sinh thông qua các tiết luyện tập - Học hỏi kinh nghiệm thông qua dự giờ, rút kinh nghiệm từ đồng nghiệp. - Phương pháp đọc sách và tài liệu - Nói chuyện cởi mở với học sinh, tìm hiểu suy nghĩ của các em về dạng toán tìm x. - Triển khai nội dung đề tài và kiểm tra, đối chiếu kết quả học tập của học sinh từ đầu năm học đến cuối năm học của các năm học trước. II. Phần nội dung 1. Cơ sở lí luận Từ năm 2002 đến nay, chương trình sách giáo khoa có nhiều thay đổi, đặc biệt là những năm gần đây, việc giảm tải, thay đổi khung phân phối chương trình đồng nghĩa với việc thay đổi cách nhìn, cách học, cách dạy của thầy và trò. Trước tình hình đó môn toán cũng không nằm ngoài xu hướng đó. Để dạy và học tốt môn toán lớp 6, nhất là các dạng toán tìm x, đòi hỏi cả thầy và trò phải nỗ lực nghiên cứu, tìm hiểu tài liệu một cách sâu sắc. Trước khi học "tường minh" về phương trình và bất phương trình, học sinh đã được làm quen một cách "ẩn tàng" về phương trình và bất phương trình ở dạng toán "Tìm một số chưa biết trong một đẳng thức", mà ta hay gọi là các bài toán tìm x. Các bài toán "tìm x" ở lớp 6 và ở tiểu học là cơ sở để học sinh dần dần học tốt phương trình và bất phương trình ở lớp 8. Đồng thời giúp các em làm quen và rèn luyện cách giải phương trình sau này thông qua giải các bài toán tìm x. Lý thuyết phương trình không chỉ là cơ sở để xây dựng đại số mà còn giữ vai trò quan trọng trong các bộ môn khác của toán học và trong cuộc sống. Người ta nghiên cứu không chỉ phương trình đại số mà còn nghiên cứu những phương trình vi phân, phương trình tích phân, phương trình hàm... Tuy nhiên, với trình độ hiện nay của học sinh, nhất là học sinh trung bình và yếu, kém không thể tự mình lĩnh hội một khối lượng lớn kiến thức cùng một lúc. Vì vậy, rèn luyện kĩ năng giải toán tìm x trong chương trình toán lớp 6 là một vấn đề quan trọng trong việc dạy và học môn toán lớp 6. Tạo nền tảng kiến thức vững chắc cho học sinh bước vào các năm học tiếp theo. 2. Thực trạng Trong quá trình học toán, học sinh hiểu phần lý thuyết có khi chưa chắc chắn hoặc còn mơ hồ về các định nghĩa, các khái niệm, các công thức nên thường dẫn đến sai lầm khi làm bài tập. Có những dạng bài tập tìm x, nếu học sinh không chú tâm để ý hay chủ quan xem nhẹ hoặc làm theo cảm nhận tương tự là có thể vấp phải sai lầm. Đa số học sinh cảm thấy khó học dạng bài toán tìm x này do các em đã mất gốc ở tiểu học. Do các e không chịu học phần định nghĩa, khái niệm, tính chất ở các phép toán cộng, trừ, nhân, chia đã học ở tiểu học, ở lớp 6, mà đây lại là vấn đề quan trọng yêu cầu học sinh phải nắm và hiểu được trước khi làm bài tập. Khối lớp 6 có số lượng học sinh không đồng đều về nhận thức và học lực nên gây khó khăn cho giáo viên trong việc lựa chọn phương pháp phù hợp. Nhiều học sinh có hoàn cảnh khó khăn cả về vật chất lẫn tinh thần do đó việc đầu tư về thời gian và sách vở cho học tập bị hạn chế nhiều và ảnh hưởng không nhỏ đến sự nhận thức và phát triển của các em. Sau khi nhận lớp và dạy một thời gian tôi đã tiến hành điều tra cơ bản thì thấy: + Lớp 6A: Số em không thể giải, không thể tự trình bày giải bài toán tìm x chiếm khoảng 75%, số học sinh nắm chắc kiến thức và biết vận dụng vào bài tập có khoảng 25%, số học sinh biết phối hợp các kiến thức, kỹ năng giải các bài toán tìm x chiếm khoảng 15%. + Lớp 6B: Số em không thể giải, không thể tự trình bày giải bài toán tìm x chiếm khoảng 65%, số học sinh nắm chắc kiến thức và biết vận dụng vào bài tập có khoảng 35%, số học sinh biết phối hợp các kiến thức, kỹ năng giải các bài toán tìm x chiếm khoảng 20%. Số học sinh trung bình và yếu, kém tập trung ở cả hai lớp nên gây khó khăn trong quá trình giảng dạy, cũng như việc truyền đạt các phương pháp giải các dạng toán tìm x cho học sinh. Đối với học sinh khá giỏi thì việc làm các dạng bài tập này không có gì khó khăn nhưng đối với học sinh trung bình và yếu, kém thì đây là dạng toán khó. Nếu giảng giải sâu về phương pháp thì gây nhàm chán cho học sinh khá, giỏi. 3. Nội dung và hình thức của giải pháp: a. Mục tiêu của giải pháp - Đầu tiên cần cho học sinh trung bình và yếu, kém nắm chắc phương pháp giải những dạng toán tìm x cơ bản đã được học ở tiểu học. - Chuyển thể từ dạng toán tìm x phức tạp thành dạng toán tìm x đơn giản đã biết cách giải. Giáo viên đưa liều lượng kiến thức vừa phải, thích hợp với năng lực và điều kiện của học sinh. - Tạo hứng thú cho học sinh bằng cách cho các bài tập dễ rồi tăng dần lượng kiến thức. Tạo cho học sinh cảm giác yêu thích dạng toán này rồi mới phát triển nâng cao. - Tạo tâm lí cho học sinh đây là một dạng toán dễ, không có gì khó khăn khi giải và trình bày. Cần khuyến khích học sinh tự giải và tự trình bày sau khi giáo viên đã giảng giải. - Giáo viên đóng vai trò là người hướng dẫn, dẫn dắt học sinh tìm ra lời giải bài toán, học sinh chủ động lĩnh hội kiến thức. - Giáo viên luôn tạo môi trường thân thiện giữa thầy và trò. Không quá tỏ vẻ xa cách hay quá lớn lao và cao cả đối với học sinh. Luôn tạo cho học sinh một cảm giác gần gũi, không làm cho học sinh cảm thấy sợ hãi. Dạy thật, học thật ngay từ đầu. Dạy theo điều kiện thực tế không quá áp đặt chủ quan. Nội dung và cách thức thực hiện giải pháp. Dạng 1: " Tìm một số chưa biết của một tổng". Ví dụ: Số hạng 1 Số hạng 2 Tổng - Muốn tìm số hạng 1 ta làm thế nào? HS: Tổng - số hạng 2 - Muốn tìm số hạng 2 ta làm thế nào? HS: Tổng - số hạng 1 - Nếu thay hoặc , muốn tìm x ta làm thế nào? HS: Tổng - số hạng đã biết Vì thế giáo viên đưa ra công thức tổng quát cho dạng toán này: Nếu (b,c là các số đã biết) ( dạng I) (Muốn tìm một số chưa biết của tổng, ta lấy tổng trừ đi số hạng đã biết) - Sau khi đưa ra công thức tổng quát và phát biểu lại thành lời, học sinh sẽ dễ dàng làm các bài tập thuộc dạng này, ví dụ: Bài tập 1: Tìm số tự nhiên x, biết: a, x + 20 = 50 b, 30 + x = 50 Học sinh sẽ dễ dàng giải nhờ công thức tổng quát đã cho: " Muốn tìm một số chưa biết của tổng, ta lấy tổng trừ đi số hạng đã biết". Giải: a, x + 20 = 50 x = 50 - 20 x = 30 b, 30 + x = 50 x = 50 - 30 x = 25 Dạng 2: "Tìm một số chưa biết trong một hiệu" Ví dụ : Số bị trừ Số trừ Hiệu - Muốn tìm số trừ ta làm thế nào? HS: Số trừ = số bị trừ - hiệu - Muốn tìm số bị trừ ta làm thế nào? HS: Số bị trừ = Số trừ + Hiệu - Nếu thay muốn tìm x ta làm thế nào? HS: Hiệu + số trừ - Nếu thay , muốn tìm x ta làm thế nào? HS: Số bị trừ - Hiệu + Xuất phát từ ví dụ trên, giáo viên đưa ra công thức tổng quát: ( Số bị trừ bằng Hiệu trừ đi số trừ) ( Số trừ bằng số bị trừ trừ đi hiệu) (b, c là các số đã biết) + Đối với dạng toán này học sinh trung bình và yếu, kém rất hay nhầm lẫn giữa số trừ và số bị trừ, ví dụ: Tìm số tự nhiên x, biết: 95 - x = 60 - Học sinh thường thực hiện: x = 60 - 95 và dẫn đến học sinh không tìm được kết quả của bài toán. + Nhưng khi cho học sinh học thuộc công thức và phát biểu thành lời được thì học sinh sẽ dễ dàng làm bài, ví dụ: Bài tập áp dụng : Tìm số tự nhiên x, biết: x - 15 = 35 50 - x = 35 + Giáo viên đạt câu hỏi hướng dẫn học sinh: - Ở câu a, x đóng vai trò là số gì trong hiệu. Muốn tìm x ta làm như thế nào? - Ở câu b, x đóng vai trò là số gì trong hiệu. Muốn tìm x ta làm như thế nào? + Học sinh dễ dàng trả lời; - Ở câu a, x đóng vai trò là số bị trừ trong hiệu. Muốn tìm x, ta lấy hiệu cộng với số trừ - Ở câu b, x đóng vai trò là số trừ trong hiệu. Muốn tìm x, ta lấy số bị trừ trừ đi hiệu. Giải: a) x - 15 = 35 x = 35 + 15 x = 50 b) 50 - x = 35 x = 50 - 35 x = 15 Dạng 3: "Tìm một thừa số chưa biết trong một tích " Ví dụ : Thừa số 1 Thừa số 2 Tích - Muốn tìm thừa số 1 ta làm thế nào? HS: Thừa số 1 = Tích : thừa số 2. - Muốn tìm thừa số 2 ta làm thế nào? HS: Thừa số 2 = Tích : thừa số 1 - Nếu thay thì x đóng vai trò là thừa số 1 hay thừa số 2, lúc này muốn tìm x ta làm thế nào? HS: + x là thừa số 1 + Tìm x = tích : thừa số 2 + Xuất phát từ ví dụ trên, giáo viên đưa ra công thức tổng quát cho học sinh Nếu (b,c là các số đã biết) (dạng IV) (Muốn tìm một thừa số chưa biết của tích, ta lấy tích chia cho thừa số đã biết) + Sau khi nắm vững công thức và có thể phát biểu thành lời công thức trên, học sinh dễ dàng làm các bài tập thuộc dạng toán này, ví dụ: Bài tập áp dụng Tìm số tự nhiên x, biết: 6x = 60 b) 6(x - 2) = 60 + Giáo viên có thể đặt câu hỏi gợi ý: Muốn tìm thừa số chưa biết của một tích ta làm như thế nào? - Học sinh có thể trả lời ngay: Muốn tìm một thừa số chưa biết của tích, ta lấy tích chia cho thừa số đã biết. Và giải bài toán. Giải: a) 6x = 60 x = 60 : 6 x = 10 - Ở câu b, học sinh sẽ thấy bỡ ngỡ, nên giáo viên sẽ hướng dẫn cho học sinh: Nếu coi (x - 2) là một thừa số chưa biết, thì x - 2 tính như thế nào. Học sinh sẽ hiểu và tính được ngay: x - 2 = 12, bài toán quay về dạng toán 2 mà học sinh đã biết cách giải. b) 6(x - 2)= 60 x - 2 = 60 : 6 x - 2 = 10 (Dạng II) x = 10 + 2 x = 12 + Ở câu b, khi chưa được học công thức tổng quát, nhiều học sinh yếu kém thường tính toán sai một cách đáng tiếc như sau: 6(x - 2) = 60. 6x = 60 - 2 6x = 58 x = 58:6 Dạng 4: "Nếu tích của hai thừa số bằng 0 thì ít nhất một thừa số bằng 0" + Giáo viên cho bài tập sau: Bài tập 1: Tìm số tự nhiên x, biết: a, x . 52 =0 b, (x - 27).52 = 0 + Ở câu a, học sinh có thể biết được ngay x = 0 + Ở câu b, giáo viên hướng dẫn học sinh: Nếu xem x - 27 như một thừa số chưa biết, thừa số 52 khác 0, vậy thừa số x - 27 = ? (Thừa số chưa biết phải bằng 0). Khi đó, học sinh có thể tự giải như sau: Giải: b, (x - 27).52 = 0 x - 27 = 0 x = 0 + 27 x = 27 + Giáo viên có thể nâng cao thêm cho học sinh bằng cách thay x - 27 bằng 3x - 27 trong bài tập 1 (b) ta được bài tập sau Bài tập 2: Tìm số tự nhiên x, biết: a, (3x - 27).52 = 0 + Hay thay thừa số 52 bằng thừa số x chưa biết trong bài tập 3.1 (b) ta được bài tập sau Bài tập 3.2: Tìm số tự nhiên x, biết: b, (x - 27).x = 0 Dạng 5 : "Tìm một số chưa biết trong một thương " Ví dụ 1: Số bị chia số chia Thương - Muốn tìm số bị chia ta làm thế nào? HS: Số bị chia = Thương . số chia - Muốn tìm số chia ta làm thế nào? HS: Số chia = Số bị chia : thương - Nếu thay thì x đóng vai trò là số bị chia hay số chia, lúc này muốn tìm x ta làm thế nào? HS: + x là số bị chia + Tìm x = thương . số chia + Xuất phát từ ví dụ trên, giáo viên đưa ra cho học sinh nắm công thức: (b,c là các số đã biết) (Muốn tìm số bị chia, ta lấy thương nhân với số chia) (Muốn tìm số chia, ta lấy số bị chia chia cho thương) (b,c là các số đã biết) + Khi chưa học phương pháp giải dạng toán 6, học sinh yếu, kém rất hay nhầm lẫn giữa số bị chia và số chia nên thường tính toán nhầm như ví dụ sau: Ví dụ 2: Tìm số tự nhiên x, biết: a, 36 : x = 12. - Học sinh thường giải bài toán này như sau: 36 : x = 12 x = 12 . 36 x = 432 + Sau khi học xong các dạng toán 5 và 6, học sinh có thể tự làm bài tập ở dạng này một cách dễ dàng, ví dụ: Bài tập : Tìm số tự nhiên x, biết: a, x : 3 = 12 b, 36 : x = 12 + Giáo viên đạt câu hỏi hướng dẫn học sinh: - Ở câu a, x đóng vai trò là số gì của phép chia. Muốn tìm x ta làm như thế nào? - Ở câu b, x đóng vai trò là số gì của phép chia. Muốn tìm x ta làm như thế nào? + Học sinh dễ dàng trả lời; - Ở câu a, x đóng vai trò là số bị chia trong phép chia. Muốn tìm x, ta lấy thương nhân với số chia - Ở câu b, x đóng vai trò là số chia của phép chia. Muốn tìm x, ta lấy số bị chia chia cho thương. Giải: a, x : 3 = 12 x = 12 . 3 x = 36 b, 36 : x = 12 x= 36 : 12 x= 3 4. Phát triển các dạng toán tìm x - Sau khi cho học sinh nắm được các dạng toán tìm x cơ bản và đã làm được bài tập của các dạng toán này một cách thành thạo thì việc nâng cao các bài toán tìm x là một điều quan trọng và không thể thiếu khi hướng dẫn cho học sinh trung bình và yếu kém. Giáo viên đóng vai trò là người dẫn dắt, chỉ đường cho học sinh với phương pháp: " Chuyển bài toán lạ, phức tạp và chưa biết cách giải về dạng toán quen thuộc, đơn giản đã bết cách giải". - Sau khi đã dạy xong 6 dạng toán trên, giáo viên đưa ra các bài tập sau: Bài tập 5: Tìm số tự nhiên x, biết 6.x + 20 = 50 (được phát triển từ bài toán: x + 20 = 50) + Gặp bài tập này học sinh sẽ cảm thấy bỡ ngỡ vì bài toán mình đã làm có dạng là x + 20 = 50, còn đây là 6.x + 20 = 50 - Giáo viên hướng dẫn học sinh: Nếu coi tích 6.x như một số hạng chưa biết, thì bài toán có dạng nào? + Học sinh thấy ngay đây là dạng toán I - Giáo viên yêu cầu học sinh tìm 6x + Học sinh sẽ tìm được 6.x = 30 và thấy ngay đây lại là dạng toán IV đã biết cách giải, và học sinh có thể trình bày: x + 20 = 50 x = 50 - 20 x = 30 (Dạng IV) x = 30:6 x = 5 Bài tập 6: Tìm số tự nhiên x, biết: (x - 2) + 20 = 50 (Phát triển từ bài toán 6x + 20 = 50) + Vì học sinh đã giải được bài tập 5, nên đối với bài này, học sinh cũng hiểu rằng phải xem 6(x - 2) là một số hạng chưa biết và tìm 6(x - 2). Sau đó bài toán được đưa về dạng toán 4. và đã biết cách giải như bài tập 3câu b. (x - 2) + 20 = 50 (x - 2) = 50 - 20 (x - 2) = 30 (Bài tập 3 câu b) x - 2 = 30:6 x - 2 = 5 x = 7 Bài tập 7: Tìm số tự nhiên x, biết: (7x - 2).6 + 20 = 50 (Phát triển từ bài tập 6: 6(x - 2) + 20 = 50) + Ở bài tập này học sinh thấy ngay sẽ phải giải như bài tập 6 Giải: (7x - 2).6 + 20 = 50 (7x - 2).6 = 50 - 20 (7x - 2).6 = 30 7x - 2 = 30 : 6 7x - 2 = 5 7x = 7 x = 1 Bài tập 8: Tìm số tự nhiên x, biết: 5x - 15 = 35 (Phát triển từ bài tập 2: x - 15 = 35) + Khi làm được bài tập 5, học sinh hiểu bài này thuộc dạng toán 2 và sẽ giải được như sau: 5x - 15 = 35 5x = 35 + 15 5x = 50 (Dạng IV) x = 50: 5 x = 10 Bài tập 9: Tìm số tự nhiên x, biết: 5x - 15 = 33 + 23 (Phát triển từ bài tập 8: x - 15 = 35) + Áp dụng quy tắc thứ tự thực hiện phép tính học sinh sẽ dễ dàng đưa bài toán trên về bài tập 8. Bài tập 10: Tìm số tự nhiên x, biết: (5x - 15) : 7 = 5 (Phát triển từ bài tập 8: 5x - 15 = 35) + Khi gặp bài toán này học sinh sẽ cảm thấy lúng túng và không biết cách giải, giáo viên sẽ gợi ý cho học sinh: "Nếu coi (5x - 15) là số bị chia thì bài toán này thuộc dạng toán nào? ". Học sinh có thể biết ngay đây là dạng toán 5 và đã biết cách giải. Học sinh có thể làm được như sau: (5x - 15) : 7 = 5 5x - 15 = 5 . 7 5x - 15 = 35 + Tới đây, học sinh thấy ngay bài toán đã được đưa về Bài tập 8 đã giải được ở trên. Bài tập 11: Tìm số tự nhiên x, biết: (5x - 15) . 72 = 5 . 73 (Phát triển từ bài tập 8: 5x - 15 = 35) + Ở bài tập này, giáo viên hướng dẫn học sinh áp dụng quy tắc thứ tự thực hiện phép tính (tính trong ngoặc trước) để đưa bài toán về bài tâp 8. Và học sinh có thể trình bày như sau: (5x - 15) . 72 = 5 . 73 (5x - 15) = 5. 73:72 (5x - 15) = 5 .(73:72) (5x - 15) = 5 . 7 5x - 15 = 35 (Bài tập 8) Như vậy, với cách phát triển các dạng bài tập như trên thì các bài tập tìm x sẽ trở nên dễ dàng hơn với các em. Các em có thể tự làm tốt, tự trình bày được các bài giải tìm x một cách dễ dàng. Đối với học sinh khá giỏi thì các em được luyện tập kĩ năng tính toán và có thể tự ra đề cho mình làm. Kết quả khảo nghiệm, giá trị khoa học của vấn đề nghiên cứu, phạm vi và hiệu quả ứng dụng, Trong quá trình giảng dạy học kỳ I vừa qua khi áp dụng kinh nghiệm của mình để soạn giảng và vận dụng vào thực tế tôi nhận thấy có sự thay đổi đáng mừng: - Học sinh đã có khả năng hạn chế hoặc không để xảy ra những sai lầm đáng tiếc trong khi làm bài tập tìm x khi làm bài ở lớp, ở nhà hay bài kiểm tra. Tuy nhiên vẫn còn một số trường hợp học sinh vẫn còn mắc phải sai lầm bởi tính chủ quan, xem nhẹ hay làm bài theo cảm nhận thói quen. - Học sinh đã có thái độ học tập tích cực, thích thú hơn trong tiết học khi gặp những bài toán tìm x. Chủ động nêu lên những thắc mắc, khó khăn khi gặp bài tập lạ với giáo viên, các em hưởng ứng rất nhiệt tình. Bên cạnh đó các bài tập tìm x mà giáo viên giao về nhà đã được các em làm một cách nghiêm túc, tự giác học bài và nắm được phương pháp giải cơ bản của mỗi dạng toán. Tuy nhiên một số em vẫn còn mắc sai lầm ở khâu tính toán cộng trừ, nhân, chia. - Phần lớn chất lượng các bài kiểm tra 15 phút và một tiết đã được nâng lên, các em đã xác định đúng hướng đi bài toán, số học sinh biết trình bày bài giải dạng toán tìm x một cách rõ ràng, mạch lạc và có lôgic được tăng lên đáng kể. III. Kết luận và kiến nghị 1. Kết luận: - Đối với học sinh trung bình và yếu kém, việc tự tìm hiểu và khám phá kiến thức mới là rất khó khăn. Chính vì thế nên tôi nghiên cứu đề tài này để giúp các em có một cái nhìn tổng quát hơn về các bài tập tìm x. Mỗi bài tập là một dạng toán nhất định và luôn luôn có cách giải. Để giải được các bài tập tìm x, đòi hỏi các em phải học, phải nắm chắc được các dạng toán và phương pháp giải của nó. Và có một cái nhìn trực quan, tư duy để khi gặp một bài tập cụ thể thì các em có thể định hướng được mình đang gặp dạng bài tập nào, từ đó đưa ra cách giải phù hợp. - Sau khi nghiên cứu và triển khai vấn đề này bản thân tôi nhận thấy: để tạo cho học sinh hứng thú học học tập bộ môn toán, đặc biệt đối với những bài toán tìm x, giáo viên phải từng bước tạo hứng thú cho học sinh qua việc tìm hiểu kiến thức mới, thông qua các buổi thực hành, qua việc phân loại bài tập, thông qua các tiết luyện tập ... . Đồng thời phải luôn gần gũi, tìm hiểu những khó khăn, sở thích của học sinh để từ đó có những biện pháp phù hợp hơn. Bên cạnh đó cần có thời lượng phù hợp áp dụng kiến thức, áp dụng phương pháp giải vào các bài toán tìm x mà học sinh gặp phải để học sinh thấy được tính khoa học, giá trị thực tiễn của phương pháp. - Sau khi tiến hành luyện tập để hình thành kĩ năng giải các dạng toán tìm x cho học sinh tôi nhận thấy: + Đa số các em nắm vững và làm được hầu hết các bài tập tìm x mà giáo viên đưa ra (Dạng bài tập không quá khó). + Nhớ được các thao tác giải bài tập từng dạng cụ thể. + Hầu hết các em nắm vững kiến thức thứ tự thực hiện phép tính áp dụng vào giải các bài tập tìm x. + Học sinh giải toán nhanh và trình bày rõ ràng hơn. + Các em thích thú học toán hơn. 2. Kiến nghị: - Đề nghị cụm chuyên môn của huyện, tổ chuyên môn, nhóm chuyên môn của trường triển khai các chuyên đề nhiều hơn nữa để chúng tôi có cơ hội trao đổi, học hỏi kinh nghiệm từ đồng nghiệp, từ các môn học khác. - Đề nghị hội phụ huynh học sinh cần quan tâm hơn nữa đến việc học tập của con em mình. - Đề nghị ban giám hiệu nhà trường mở và duy trì các lớp học hai buổi, vận động học sinh đi học đây đủ để các em có điều kiện học tập, p