Lời Giải Hay Toán 8 Hình / Top 15 Xem Nhiều Nhất & Mới Nhất 9/2023 # Top Trend | Ictu-hanoi.edu.vn

Tuyển Tập Các Lời Giải Hay Cho Các Bài Toán Hình Học Phẳng Khó

Tuyển tập các lời giải hay cho các bài toán hình học phẳng khó(Số 1)(Tháng 9/2023) Đôi điều về chuyên mục: Trong tuyển tập lớn này, tôi sẽ mỗi tháng đưa ra năm lời giải cho năm bài toán khác nhau mà tôi cho là hay. Sau một tháng nhận email phản hồi của các bạn(các lời giải khác mà các bạn nghĩ là hay hơn,mở rộng các bài toán,…), tôi sẽ biên tập lại chúng để viết chúng trong phần phản hồi bạn đọc ở số tiếp theo. Cuối mỗi tháng sẽ có list bài của tháng sau để các bạn tiện theo dõi. Bài toán 1(Nguyễn Văn Linh): Cho tam giác ABC nội tiếp đường tròn (O) có trực tâm H. P là một điểm thuộc cung BC không chứa A của (O)(P 6= B, C).P 0 đối xứng P qua BC. (OP P 0 ) cắt AP tại G. Chứng minh rằng trực tâm tam giác AGO nằm trên HP 0 .

Lời giải(Nguyễn Duy Khương): Gọi AH cắt (AGO) tại điểm J khác A. Thế thì: ∠JOG = ∠HAG = ∠GP P 0 (do AH//P P 0 )=180◦ − ∠GOP 0 do đó O, P 0 , J thẳng hàng. Lại có: ∠GJO = ∠P AO = ∠GP O = ∠GP 0 O do đó tam giác GJP 0 cân tại G. Lại có: ∠JGP 0 = ∠AOP = 2∠ACP . Lại có: ∠AHP 0 = ∠HP P 0 = ∠ACP (do 1

nếu gọi AH cắt lại (O) tại D thì HDP P 0 là hình thang cân nên dĩ nhiên ∠HP P 0 = ∠ACP ) do đó G là tâm (JHP 0 ). Ta gọi K là giao (JHP 0 ) cắt (AGO) tại điểm K khác J. Lại có: ∠GKO = ∠OAG = ∠GP O = ∠GP 0 O do đó ∠OP 0 K = ∠OKP 0 nên OK = OP 0 vậy khi đó dĩ nhiên K đối xứng P 0 qua GO từ đó GK = GH = GP 0 mà ∠GHJ = ∠GJH = 180◦ − ∠AJG = ∠AOG = ∠AKG vậy thì K cũng đối xứng H qua AG. Vậy theo định lí về đường thẳng Steiner thì trực tâm tam giác AGO nằm trên HP 0 (đpcm). Nhận xét: Ở lời giải trên tác giả đã có một lời giải khác với lời giải gốc của người ra đề. Điểm thú vị của lời giải trên chính là việc không cần nhất thiết chỉ ra trực tâm của tam giác đó. Bài toán 2(Kiểm tra trường hè Titan tháng 8/2023): Cho tam giác ABC nội tiếp đường tròn (O) có: H là trực tâm và AM là trung tuyến tam giác ABC. AM cắt lại (O) tại điểm N . Ba đường thẳng: qua H vuông góc AN, BC, KN cắt nhau tạo thành tam giác XY Z. Chứng minh rằng: (XY Z) tiếp xúc (O).

Lời giải(Nguyễn Duy Khương): Gọi tia M H cắt (O) tại điểm J, gọi AD là đường cao của tam giác ABC. Hiển nhiên ta có: AJ, HP, M D là các đường cao của tam giác AHM suy ra AJ, HP, BC đồng quy tại điểm Y . Hay là A, J, Y thẳng hàng. Ta đi chứng minh rằng J thuộc (XY Z). Ta có: HDY J nội tiếp do đó XY JZ nội tiếp khi và chỉ khi:

2

(JX, KX) ≡ (AH, JH)(modπ) hay là tứ giác JHKX nội tiếp. Lại có: (JK, XK) ≡ (JA, N A) ≡ (JD, Y D) ≡ (JH, Y H)(modπ) vậy ta có: JHKX nội tiếp hay là J thuộc (XY Z). Vậy tức là J thuộc (XY Z) và (O). Vì J thuộc (O) và (XY Z) mà A, J, Y thẳng hàng nên khi gọi Y G, AL là các đường kính (XY Z) và (O) thì GJL ⊥ Y A, ta có: ∠JGY = ∠JXY = ∠JKA = ∠JLA do đó GY kAL vậy hiển nhiên 4GJY ∼ 4AJL do I, O lần lượt là trung điểm GY và AL nên ∠IJY = ∠OJA hay là thu được I, J, O thẳng hàng hay (XY Z) tiếp xúc (O)(đpcm). Nhận xét: Bài toán này hay nhưng không quá khó rất phù hợp để lấy làm bài thi trong 1 đề kiểm tra định kì. Ở bài toán trên ta thấy được tiếp điểm J sinh ra cực kì hay và hợp lí. Cách giải trên tuy dài hơn lời giải gốc xong lại thể hiện tư duy chứng minh tiếp xúc rất hay đó là sử dụng vị tự. Độc giả có thể tham khảo lời giải gốc và của bài toán mở rộng ở đây [1]. Bài toán 3(Trịnh Huy Vũ): Cho tam giác ABC có đường cao AH. Gọi X, Y lần lượt là chân đường vuông góc hạ từ H xuống AC, AB. Z là giao điểm của BX và CY . Chứng minh rằng (XY Z) tiếp xúc (A; AH).

Lời giải(Nguyễn Duy Khương): Quay trở lại bài toán: Gọi XY cắt BC tại điểm L. Gọi LA cắt (ABC) tại điểm P . Lấy J đối xứng H qua LA. Ta có: tứ giác AY HX nội tiếp nên ∠Y XH = ∠HAB = ∠Y HL do đó ta có: LH 2 = chúng tôi = chúng tôi = LP .LA do đó P thuộc (AH). Do J đối xứng H qua LA nên theo phép vị tự tỉ số 2 3

tâm H thì J thuộc (A; AH). Lại có: J đối xứng H qua AL nên ∠LJA = 90◦ suy ra LJ là tiếp tuyến đến (A; AH). Gọi T là tâm (BCXY ) theo định lí Bocard thì Z là trực tâm tam giác ALT . Gọi T Z cắt AL tại điểm P 0 . Gọi AT cắt LZ tại Q thì LP 0 .LA = chúng tôi = LM .LN (hệ thức M aclaurin)= chúng tôi = chúng tôi suy ra P 0 thuộc (O) do đó P trùng P 0 . Vậy T, Z, P, H thẳng hàng. Do đó P, J, Z, H thẳng hàng. Ta chỉ cần chứng minh J thuộc (XY Z) khi đó hiển nhiên LJ là tiếp tuyến tới (XY Z). Tứ giác LXZY nội tiếp khi và chỉ khi ∠ZJY = ∠ZXY = ∠ZCH hay tứ giác JCHY nội tiếp hay Z có cùng phương tích tới 2 đường tròn (BCXY ) và (A; AH). Gọi (A; AH) cắt (BCXY ) tại các điểm M, N . Ta có: AH 2 = AM 2 = AN 2 = chúng tôi = AY .AB do đó AM, AN lần lượt là tiếp tuyến đến (BCXY ). Do đó quen thuộc là ta thấy rằng: BX, CY, M N đồng quy tại 1 điểm chính là Z(Gọi M N cắt Y B, CX tại các điểm E, F sử dụng hàng điều hoà cơ bản ta có: (AEY B) = (AF XC) = −1 do đó BX, CY, M N đồng quy). Vậy hiển nhiên: phương tích từ Z tới (BCXY )=phương tích từ Z tới (A; AH) do đó tứ giác JCHY nội tiếp và do đó JXY Z nội tiếp vậy mà dễ thấy LJ là tiếp tuyến tới (XY Z) do đó (XY Z) tiếp xúc (A; AH) tại J(đpcm). Nhận xét: Bài toán này tiếp tục là một lời giải mới được tác giả đề xuất khác với chứng minh gốc. Điểm thú vị trong chứng minh mới là việc chứng minh sử dụng nhuần nhuyễn các công cụ tỉ số kép và phương tích để thu được kết luận quan trọng là J thuộc (XY Z). Lời giải gốc của tác giả Nguyễn Văn Linh sử dụng phép nghịch đảo . Bài toán 4(Thành Phố Hồ Chí Minh TST 2011): Cho tam giác ABC nhọn. Lấy D là 1 điểm bất kì trên đoạn BC không trùng B, C. Lấy E là 1 điểm trên đoạn AD (E không trùng A, D). Gọi (DEB) cắt AB tại F khác B và gọi (DEC) cắt AC tại G khác C. EC cắt GD tại I và F D cắt BE tại H. Gọi J là tâm đường tròn ngoại tiếp tam giác EBC. Chứng minh rằng: AJ vuông góc HI.

4

6

Lời giải(Nguyễn Duy Khương): Gọi H là trực tâm tam giác ABC và AH cắt BC tại D thế thì do BV 2 = BS 2 = chúng tôi = BD.BC(do BC tiếp xúc (AES) nên BV 2 = BS 2 = chúng tôi do đó (V S, DC) = −1 và do đó ta có DV .DS = DB.DC(theo hệ thức M aclaurin) do đó H là trực tâm tam giác AV S. Ta gọi SE cắt (AEF ) tại R, gọi AS cắt (AEF ) tại điểm thứ hai Y . Điều phải chứng minh tương đương R thuộc V F . Ta có: chúng tôi = SY .SA = chúng tôi (do tứ giác AY DV nội tiếp) suy ra REDV là một tứ giác nội tiếp. Chú ý rằng tứ giác HEBD nội tiếp nên ta có: (V R, ER) ≡ −(ED, BD)(modπ) lại có REHF nội tiếp do đó (ER, F R) ≡ −(EH, F H)(modπ) từ đó ta có: (V R, ER) ≡ (F R, ER)(modπ) hay là V, R, F thẳng hàng. Nhận xét: Bài toán lần đầu tiên xuất hiện trên group Bài toán hay-Lời giải đẹp[3]. Lời giải trên được tác giả đề nghị không phải là ngắn gọn nhất. Có thể kể đến ý tưởng biến đổi tỉ số phương tích của tác giả Mẫn Bá Tuấn-học sinh chuyên Toán THPT chuyên ĐHSP Hà Nội. Ở đây xin nêu cách này bởi sự khai thác triệt để giả thiết tiếp xúc trong đề bài.

Các bài toán đề nghị tháng sau :

7

Bài toán 6(Hà Nội TST 2023-2023): Cho đường tròn đường kính AB. Lấy điểm C trên nửa đường tròn này sao cho 90◦ < ∠AOC < 180◦ . Lấy K là 1 điểm thay đổi trên đoạn OC. Vẽ các tiếp tuyến AD, AE đến đường tròn (K; KC). Chứng minh rằng DE, AC, BK đồng quy tại 1 điểm. Bài toán 7(Trần Quang Hùng-T12/466-THTT): Cho tam giác ABC nhọn không cân nội tiếp đường tròn (O). Lấy P là 1 điểm thuộc tam giác ABC sao cho AP vuông góc BC. Kẻ P E, P F lần lượt vuông góc AB, AC( E, F thuộc AB và AC). Đường tròn ngoại tiếp tam giác AEF cắt lại (O) tại G. Chứng minh rằng GP, BE, CF đồng quy tại 1 điểm. Bài toán 8(Trích HNEU TST 2014-2023): Cho tam giác ABC có các đường cao AD, BE, CF . Các đường tròn đường kính AB và AC cắt các tia DF và DE tại các điểm Q và P . Gọi N là tâm ngoại tiếp tam giác DEF . Chứng minh rằng: AN ⊥ P Q. Bài toán 9(Đề thi chọn HSG khối 10,chuyên ĐHSP,2023-2023):Cho tứ giác ABCD nội tiếp đường tròn (O). M, N lần lượt là trung điểm AB và CD. Giả sử AD cắt BC tại E và 2 đường chéo cắt nhau tại điểm F . EF cắt AB và CD lần lượt tại các điểm P và Q. a) Chứng minh rằng M, N, P, Q nội tiếp đường tròn tâm T . b) Chứng minh rằng OT, N P, M Q đồng quy. Bài toán 10(Nguyễn Duy Khương): Cho tam giác ABC sao cho AB + AC = 2BC. Tam giác nội tiếp trong đường tròn (O) và ngoại tiếp đường tròn (I). (I) tiếp xúc BC, CA, AB tại D, E, F . AI cắt lại đường tròn (O) tại J khác A. Một đường thẳng d qua A song song với BC cắt EF tại M .Chứng minh rằng:∠JDM = 90◦ .

8

1

Lời giải 1(Nguyễn Duy Khương): Gọi BK cắt lại (O) tại điểm thứ hai J. Gọi JA cắt DE tại điểm N . Do ∠KJA = ∠KDA = 90◦ do đó tứ giác JADE nội tiếp. Do (O) tiếp xúc (K) nên áp dụng tính chất trục đẳng phương thì tiếp tuyến chung tại C của (O), (K),DE và JA đồng quy tại 1 điểm N . Gọi DE cắt BK tại điểm M . Kẻ tiếp tuyến thứ hai N S tới (K) thế thì do N C đã là tiếp tuyến tới (K) nên ta có: DSCE là 1 tứ giác điều hoà do đó hiển nhiên là ta có: A, S, C thẳng hàng. Gọi M là giao điểm của BK và DE. Gọi I là trung điểm DE. Do M là trực tâm tam giác AN K nên: M N.M I = M J.M K = M D.M E(do A, J, K, D, E đồng viên). Vậy ta thu được: (N M, DE) = −1(theo hệ thức M aclaurin) suy ra: C(N M, DE) = −1 mà ở trên ta đã chỉ ra được: C(N S, DE) = −1. Do đó: S, C, M thẳng hàng. Vậy AC, BK, DE đồng quy tại điểm M (đpcm).

2

Tuyển Chọn Các Bài Toán Hay Về Hình Học Phẳng Có Lời Giải Hướng Dẫn

Các kì thi HSG tỉnh và thành phố nhằm chọn ra đội tuyển tham dự kỳ thi học sinh giỏi Quốc gia trong năm học 2010 – 2011 đã diễn ra sôi nổi vào những ngày cuối năm trước và đã để lại nhi ề u ấn tượng sâu sắc. Bên cạnh những bất đẳng thức, những hệ phương trình hay những bài toán số học, tổ hợp, ta không thể quên được dạng toán vô cùng quen thuộc, vô cùng thú vị và cũng xuất hiện thường trực hơn cả, đó chính là những bài toán hình học phẳng. Nhìn xuyên suốt qua các bài toán ấy, ta sẽ phát hiện ra sự xuất hiện của những đường tròn, những tam giác, tứ giác; cùng với những sự k ế t hợp đặc biệt, chúng đã tạo ra nhi ề u vấn đ ề thật đẹp và thật hấp dẫn. Có nhi ề u bài phát biểu thật đơn giản nhưng ẩn chứa đằng sau đó là những quan hệ khó và chỉ có thể giải được nhờ những định lý, những ki ế n thức ở mức độ nâng cao như: định lý Euler, đường tròn mixtilinear, định lý Desargues, điểm Miquel,… Rồi cũng có những bài phát biểu thật dài, hình vẽ thì phức tạp nhưng lại được giải quy ế t bằng một sự k ế t hợp ngắn gọn và khéo léo của những đi ề u quen thuộc để tạo nên lời giải ấn tượng.

Nhằm tạo cho các bạn yêu Toán có một tài liệu tham khảo đầy đủ và hoàn chỉnh v ề những nội dung này, chúng tôi đã dành thời gian để tập hợp các bài toán, trình bày lời giải thật chi ti ế t và sắp x ế p chúng một cách tương đối theo mức độ dễ đ ế n khó v ề lượng ki ế n thức cần dùng cũng như hướng ti ế p cận. Với ề nội dung, mong rằng “ề u hơn nét đẹp cực kì quy ế n rũ của bộ môn này! hơn 50 bài toán đa dạng v ề hình thức và phong phú v Tuyển chọn các bài toán hình học phẳng trong đ ề thi học sinh giỏi các tỉnh, thành phố năm học 2010 – 2011” sẽ giúp cho các bạn có dịp thưởng thức, cảm nhận, ngắm nhìn nhi

Xin chân thành cảm ơn các tác giả đ ề bài, các thành viên của diễn đàn http://forum.mathscope.org đã gửi các đ ề toán và trình bày lời giải lên diễn đàn.

Cảm ơn các bạn.

Phan Đức Minh – Lê Phúc Lữ

Lời Giải Hay Cho Một Bài Toán Hay Loigiaihaychomotbaitoan Doc

Cho elíp và đ iểm I(1; 2). Viết phương trình đ ường thẳng đ i qua I biết rằng đ ường thẳng đ ó cắt elíp tại hai đ iểm A, B mà I là trung đ iểm của đ oạn thẳng AB.

( với (E) : , và I(1; 1) ) .

Cho elíp (E) : . Viết phương trình đ ường thẳng đ i qua đ iểm I(0 ; 1) và cắt elíp (E) tại hai đ iểm P và Q sao cho I là trung đ iểm của đ oạn PQ.

Đ ây là một bài toán hay và có nhiều cách giải . Cụ thể :

Đ ường thẳng d đ i qua I có phương trình tham số :

Đ ể tìm tọa đ ộ giao đ iểm A, B của d với elíp , ta giải phương trình

hay (1)

Phương trình (1) luôn có hai nghiệm trái dấu.

Nếu và là hai nghiệm của phương trình trên thì và . Khi đ ó và . Muốn I là trung đ iểm của AB thì hay . Theo đ ịnh lí Viét, hai nghiệm và của phương trình (1) có tổng khi và chỉ khi . Ta có thể chọn b = – 9 và a = 32.

Vậy đ ường thẳng d có phương trình , hay :

Phương trình đ ường thẳng : y = kx + 1 ( : x = 0 không thích hợp )

Phương trình hoành đ ộ giao đ iểm : (

Phương trình luôn có hai nghiệm trái dấu : ( vì p < 0 )

. Vậy PT Đ T : y = 1

BÀI TOÁN TỔNG QUÁT :

Vì I thuộc miền trong của elip (E ) nên lấy tùy ý điểm thì đường thẳng IM luôn cắt (E) tại điểm thứ hai là M'(x’ ; y’) . Nếu M'(x’ ; y’) là điểm đối xứng với M qua I thì có : ; M’

Ta có :

(1)

Tọa độ của M và của I thỏa PT (1) . Do đó PT (1) là PT của đường thẳng MM’.

( Áp dụng PT(1) cho a , b , , tương ứng trong các đề bài trên , ta tìm được ngay phương trình của các đường thẳng là : 9x + 32y – 73 = 0 ; 4x + 5y – 9 = 0 ; y = 1 )

Cho đường cong (C) : y = f(x) và điểm I . Viết phương trình

đường thẳng đi qua điểm I và cắt (C) tại hai điểm M , N sao cho , với k cho trước thỏa , .

Cách giải cũng chỉ việc sử dụng công thức và dùng điều kiện hai điểm M , N cùng nằm trên (C ) . ( Hiển nhiên đường thẳng có tồn tại hay không là còn phụ thuộc vào giá trị của tham số k )

Lời Giải Hay Toán 9 Sbt

Lớp 1-2-3

Lớp 1

Giải bài tập Toán lớp 1 Đề thi Toán lớp 1 Đề thi Tiếng Việt lớp 1 Đề thi Tiếng Anh lớp 1 Giải Tự nhiên và Xã hội 1 Giải VBT Tự nhiên và Xã hội 1 Giải VBT Đạo Đức 1

Lớp 2

Giải bài tập Toán lớp 2 Đề kiểm tra Toán 2 Giải bài tập sgk Tiếng Việt 2 Đề kiểm tra Tiếng Việt 2 Giải Tự nhiên và Xã hội 2

Vở bài tập

Giải VBT các môn lớp 2

Lớp 3

Soạn Tiếng Việt lớp 3 Văn mẫu lớp 3 Giải Toán lớp 3 Giải Tiếng Anh 3 Giải Tự nhiên và Xã hội 3 Giải Tin học 3

Vở bài tập

Giải SBT & VBT các môn lớp 3

Đề kiểm tra

Đề kiểm tra các môn lớp 3 Lớp 4

Sách giáo khoa

Soạn Tiếng Việt lớp 4 Văn mẫu lớp 4 Giải Toán lớp 4

 

Giải Tiếng Anh 4 mới Giải Khoa học 4 Giải Lịch Sử và Địa Lí 4

 

Giải Tin học 4 Giải Đạo Đức 4

Sách/Vở bài tập

Giải SBT & VBT các môn lớp 4

Đề kiểm tra

Đề kiểm tra các môn lớp 4 Lớp 5

Sách giáo khoa

Soạn Tiếng Việt lớp 5 Văn mẫu lớp 5 Giải Toán lớp 5

 

Giải Tiếng Anh 5 mới Giải Khoa học 5 Giải Lịch Sử 5

 

Giải Địa Lí 5 Giải Đạo Đức 5 Giải Tin học 5

Sách/Vở bài tập

Giải SBT & VBT các môn lớp 5

Đề kiểm tra

Đề kiểm tra các môn lớp 5 Lớp 6

Sách giáo khoa

Soạn Văn 6 (hay nhất) Soạn Văn 6 (ngắn nhất) Soạn Văn 6 (siêu ngắn) Soạn Văn 6 (cực ngắn) Văn mẫu lớp 6

 

Giải Toán 6 Giải Vật Lí 6 Giải Sinh 6 Giải Địa Lí 6 Giải Tiếng Anh 6

 

Giải Tiếng Anh 6 mới Giải Lịch sử 6 Giải Tin học 6 Giải GDCD 6 Giải Công nghệ 6

Sách/Vở bài tập

Giải SBT & VBT các môn lớp 6

Đề kiểm tra

Đề kiểm tra các môn lớp 6

Chuyên đề & Trắc nghiệm

Chuyên đề & Trắc nghiệm các môn lớp 6 Lớp 7

Sách giáo khoa

Soạn Văn 7 (hay nhất) Soạn Văn 7 (ngắn nhất) Soạn Văn 7 (siêu ngắn) Soạn Văn 7 cực ngắn Văn mẫu lớp 7

 

Giải Toán 7 Giải Vật Lí 7 Giải Sinh 7 Giải Địa Lí 7 Giải Tiếng Anh 7

 

Giải Tiếng Anh 7 mới Giải Lịch sử 7 Giải Tin học 7 Giải GDCD 7 Giải Công nghệ 7

Sách/Vở bài tập

Giải SBT & VBT các môn lớp 7

Đề kiểm tra

Đề kiểm tra các môn lớp 7

Chuyên đề & Trắc nghiệm

Chuyên đề & Trắc nghiệm các môn lớp 7 Lớp 8

Sách giáo khoa

Soạn Văn 8 (hay nhất) Soạn Văn 8 (ngắn nhất) Soạn Văn 8 (siêu ngắn) Soạn Văn 8 (cực ngắn) Văn mẫu lớp 8 Giải Toán 8

 

Giải Vật Lí 8 Giải Hóa 8 Giải Sinh 8 Giải Địa Lí 8 Giải Tiếng Anh 8

 

Giải Tiếng Anh 8 mới Giải Lịch sử 8 Giải Tin học 8 Giải GDCD 8 Giải Công nghệ 8

Sách/Vở bài tập

Giải SBT & VBT các môn lớp 8

Đề kiểm tra

Đề kiểm tra các môn lớp 8

Chuyên đề & Trắc nghiệm

Chuyên đề & Trắc nghiệm các môn lớp 8 Lớp 9

Sách giáo khoa

Soạn Văn 9 (hay nhất) Soạn Văn 9 (ngắn nhất) Soạn Văn 9 (siêu ngắn) Soạn Văn 9 (cực ngắn) Văn mẫu lớp 9 Giải Toán 9

 

Giải Vật Lí 9 Giải Hóa 9 Giải Sinh 9 Giải Địa Lí 9 Giải Tiếng Anh 9

 

Giải Tiếng Anh 9 mới Giải Lịch sử 9 Giải Tin học 9 Giải GDCD 9 Giải Công nghệ 9

Sách/Vở bài tập

Giải SBT & VBT các môn lớp 9

Đề kiểm tra

Đề kiểm tra các môn lớp 9

Chuyên đề & Trắc nghiệm

Chuyên đề & Trắc nghiệm các môn lớp 9 Lớp 10

Sách giáo khoa

Soạn Văn 10 (hay nhất) Soạn Văn 10 (ngắn nhất) Soạn Văn 10 (siêu ngắn) Soạn Văn 10 (cực ngắn) Văn mẫu lớp 10 Giải Toán 10 Giải Toán 10 nâng cao

 

Giải Vật Lí 10 Giải Vật Lí 10 nâng cao Giải Hóa 10 Giải Hóa 10 nâng cao Giải Sinh 10 Giải Sinh 10 nâng cao Giải Địa Lí 10

 

Giải Tiếng Anh 10 Giải Tiếng Anh 10 mới Giải Lịch sử 10 Giải Tin học 10 Giải GDCD 10 Giải Công nghệ 10

Sách/Vở bài tập

Giải SBT & VBT các môn lớp 10

Đề kiểm tra

Đề kiểm tra các môn lớp 10

Chuyên đề & Trắc nghiệm

Chuyên đề & Trắc nghiệm các môn lớp 10 Lớp 11

Sách giáo khoa

Soạn Văn 11 (hay nhất) Soạn Văn 11 (ngắn nhất) Soạn Văn 11 (siêu ngắn) Soạn Văn 11 (cực ngắn) Văn mẫu lớp 11 Giải Toán 11 Giải Toán 11 nâng cao

 

Giải Vật Lí 11 Giải Vật Lí 11 nâng cao Giải Hóa 11 Giải Hóa 11 nâng cao Giải Sinh 11 Giải Sinh 11 nâng cao Giải Địa Lí 11

 

Giải Tiếng Anh 11 Giải Tiếng Anh 11 mới Giải Lịch sử 11 Giải Tin học 11 Giải GDCD 11 Giải Công nghệ 11

Sách/Vở bài tập

Giải SBT & VBT các môn lớp 11

Đề kiểm tra

Đề kiểm tra các môn lớp 11

Chuyên đề & Trắc nghiệm

Chuyên đề & Trắc nghiệm các môn lớp 11 Lớp 12

Sách giáo khoa

Soạn Văn 12 (hay nhất) Soạn Văn 12 (ngắn nhất) Soạn Văn 12 (siêu ngắn) Soạn Văn 12 (cực ngắn) Văn mẫu lớp 12 Giải Toán 12 Giải Toán 12 nâng cao

 

Giải Vật Lí 12 Giải Vật Lí 12 nâng cao Giải Hóa 12 Giải Hóa 12 nâng cao Giải Sinh 12 Giải Sinh 12 nâng cao Giải Địa Lí 12

 

Giải Tiếng Anh 12 Giải Tiếng Anh 12 mới Giải Lịch sử 12 Giải Tin học 12 Giải GDCD 12 Giải Công nghệ 12

Sách/Vở bài tập

Giải SBT & VBT các môn lớp 12

Đề kiểm tra

Đề kiểm tra các môn lớp 12

Chuyên đề & Trắc nghiệm

Chuyên đề & Trắc nghiệm các môn lớp 12 IT

Ngữ pháp Tiếng Anh

Ngữ pháp Tiếng Anh cơ bản, nâng cao

Lập trình Java

Học lập trình Java

Phát triển web

Phát triển web

Lập trình C, C++, Python

Học lập trình C, C++, Python

Cơ sở dữ liệu

Cơ sở dữ liệu

Lời Giải Hay Toán 8 Sách Bài Tập 1, Tập 2, Sách Bài Tập Toán 8

Giải bài tập sách giáo khoa Toán 7 trang 56 

Giải sách bài tập Toán 7 trang 6 tập 1 

Giải vở bài tập Toán 8 trang 6 tập 1 câu 9, 10

Giải bài tập Toán 1 trang 6 tập 2 câu 9, 10

Bài tập Toán 8 trang 6 tập 1 câu 9

Cho a và b là hai số tự nhiên. Biết a chia cho 3 dư 1; b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2.

Đang xem: Lời giải hay toán 8 sách bài tập

Bài tập Toán 8 trang 6 tập 1 câu 10

Chứng minh rằng biểu thức n(2n – 3) – 2n(n + 1) luôn chia hết cho 5 với mọi số nguyên n.

Giải sách bài tập toán lớp 8 tập 1 trang 6 câu 9, 10

Giải sách bài tập Toán 8 trang 6 tập 1 câu 9

Ta có: a chia cho 3 dư 1 ⇒ a = 3q + 1 (q ∈N)

b chia cho 3 dư 2 ⇒ b = 3k + 2 (k ∈N)

a.b = (3q +1)(3k + 2) = 9qk + 6q + 3k +2

Vì 9 ⋮ 3 nên 9qk ⋮ 3

Vì 6 ⋮ 3 nên 6q ⋮ 3

Vì 3⋮ 3 nên 3k ⋮ 3

Vậy a.b = 9qk + 6q + 3k + 2 = 3(3qk + 2q + k) +2 chia cho 3 dư 2.(đpcm)

Giải sách bài tập Toán 8 trang 6 tập 1 câu 10

Ta có: n(2n – 3) – 2n(n + 1) = 2n2 – 3n – 2n2 – 2n = – 5n

Vì -5 ⋮ 5 nên -5n ⋮ 5 với mọi n ∈ Z .

Cách sử dụng sách giải Toán 8 học kỳ 1 hiệu quả cho con

Cách sử dụng sách giải Toán 8 học kỳ 1 hiệu quả cho con

+ Dành thời gian hướng dẫn con cách tham khảo sách như thế nào chứ không phải mua sách về và để con tự đọc. Nếu để con tự học với sách tham khảo rất dễ phản tác dụng.

+ Sách tham khảo rất đa dạng, có loại chỉ gợi ý, có loại giải chi tiết, có sách kết hợp cả hai. Dù là sách gợi ý hay sách giải thì mỗi loại đều có giá trị riêng. Phụ huynh có vai trò giám sát định hướng cho con trong trường hợp nào thì dùng bài gợi ý, trường hợp nào thì đọc bài giải.

Ví dụ: Trước khi cho con đọc bài văn mẫu thì nên để con đọc bài gợi ý, tự làm bài; sau đó đọc văn mẫu để bổ sung thêm những ý thiếu hụt và học cách diễn đạt, cách sử dụng câu, từ.

+ Trong môn Văn nếu quá phụ thuộc vào các cuốn giải văn mẫu, đọc để thuộc lòng và vận dụng máy móc vào các bài tập làm văn thì rất nguy hiểm.

Phụ huynh chỉ nên mua những cuốn sách gợi ý cách làm bài chứ không nên mua sách văn mẫu, vì nó dễ khiến học sinh bắt chước, làm triệt tiêu đi tư duy sáng tạo và mất dần cảm xúc. Chỉ nên cho học sinh đọc các bài văn mẫu để học hỏi chứ tuyệt đối không khuyến khích con sử dụng cho bài văn của mình.

+ Trong môn Toán nếu con có lực học khá, giỏi thì nên mua sách giải sẵn các bài toán từ sách giáo khoa hoặc toán nâng cao để con tự đọc, tìm hiểu. Sau đó nói con trình bày lại. Quan trọng nhất là phải hiểu chứ không phải thuộc.

Nếu học sinh trung bình, yếu thì phải có người giảng giải, kèm cặp thêm. Những sách trình bày nhiều cách giải cho một bài toán thì chỉ phù hợp với học sinh khá giỏi.