Slide Giải Tích 1 / Top 6 # Xem Nhiều Nhất & Mới Nhất 5/2023 # Top View | Ictu-hanoi.edu.vn

Bài Tập Giải Tích 1

Hãy Phân Tích ưu Nhược Điểm Và Phạm Vi ứng Dụng Của Pp Giải Tích Và Pp Mô Ph, Phân Tích Những Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Trong Giai Đoạn Hiện Nay, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Hộp Chữ Nhật, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Lập Phương, Phân Tích Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Trong Sạch Vững Mạnh Trong Giai Đoạn Hiện Nay, Giải Tích, Bài Tập Giải Tích 1, Giải Tích – Tập 1, Bài 2 Giải Tích 12, Bài 5 Giải Tích 12, Giải Tích 1b, Giải Tích 1 7e, Giải Tích 1, Bài 4 Giải Tích 12, Đại Số Và Giải Tích 11, Đề Cương Giải Tích 3, Giải Tích Calculus 7e (tập 1), Bài 6 ôn Tập Chương 1 Giải Tích 12, Bài Giảng Giải Tích 3, Bài 8 ôn Tập Chương 1 Giải Tích 12, Bài Giảng Giải Tích 2, Đề Cương Bài Tập Giải Tích 2, Đề Cương Giải Tích 2, Bài 9 ôn Tập Chương 1 Giải Tích 12, Tài Liệu Giải Tích 3, Giải Tích – Tập 1 – Calculus 7e Pdf, Tài Liệu ôn Tập Giải Tích 1, Bài 5 Trang 44 Giải Tích 12, Bài 3 Trang 43 Giải Tích 12, Bài 3 Trang 24 Giải Tích 12, Bài 3 Trang 84 Giải Tích 12, Giải Tích Calculus 7e – Tập 1 Pdf, Bài 3 ôn Tập Chương 3 Giải Tích 12, Bài 4 Trang 61 Giải Tích 12, Toán Giải Tích 12, Toán Giải Tích 12 Bài 1, Giải Tích Tập 1 – Calculus, Bài 4 ôn Tập Chương 3 Giải Tích 12, Bài 4 Sgk Giải Tích 12 Trang 44, Bài 5 Trang 10 Giải Tích 12, Bài Giảng Giải Tích 1, Bài 5 ôn Tập Chương 1 Giải Tích 12, Bài 1 Sgk Giải Tích 12 Trang 43, Tài Liệu Giải Tích 2, Bài 4 Trang 10 Giải Tích 12, Bài Giải Giải Tích 2, Giải Bài Tập Giải Tích 2 7e, Giải Tích 2 Giáo Trình, Giải Tích 3 Giáo Trình, Cách Giải Bài Toán Quỹ Tích, Giải Tích 3 Giáo Trình Và 500 Bài Tập, Giải Bài Tập Phương Trình Tích, Giải Tích James Stewart, Giáo Trình Giải Tích 2, Giáo Trình Giải Tích 1, Giáo Trình Giải Tích 3, Đề Kiểm Tra Chương 2 Giải Tích 12, Đề Cương Giải Tích 3 Hust, Giáo Trình Giải Tích Tập 1, Giải Tích 1 Đại Học Khoa Học Tự Nhiên, Tài Liệu ôn Tập Chương 1 Giải Tích 12, Đề Cương Giải Tích 2 Sami, Phân Tích N Giai Thừa, Khóa Luận Giải Tích, Giải Bài Tập Diện Tích Hình Thoi Lớp 8, Tài Liệu Chuyên Toán Đại Số Và Giải Tích 11 Pdf, Tài Liệu Chuyên Toán Giải Tích 12 Pdf, Tài Liệu Chuyên Toán Giải Tích 12, Khóa Luận Tốt Nghiệp Giải Tích, Bài Tập Tài Liệu Chuyên Toán Giải Tích 12, Sách Tham Khảo Giải Tích 12, Sách Giáo Khoa Giải Tích 12, Bài Giảng Giải Tích 3 Bùi Xuân Diệu, Đáp án 80 Bài Toán Hình Học Giải Tích Phẳng, Nghị Quyết Liên Tịch Về Hòa Giải, Giáo Trình Giải Tích 2 Bùi Xuân Diệu, Bài Giải Diện Tích Hình Bình Hành, Hãy Phân Tích 5 Giai Đoạn/quan Điểm Marketing, Tài Liệu Giáo Khoa Chuyên Toán Giải Tích 12, Hãy Phân Tích Sự Khác Nhau Giữa Các Tầng Lớp Giai Cấp Trong Xã Hội, Phân Tích Giá Trị Tư Tưởng Hồ Chí Minh Trong Giai Đoạn Mới Hiện Nay, Báo Cáo Thành Tích Thực Hiện Đề án 89 Giai Đoạn 2012- 2020, Hãy Giải Thích Sự Hụt Thể Tích Trong Thí Nghiệm Trộn Rượu Và Nước, Phân Tích 01 Vụ án Phạm Tội Giết Người. Kiến Nghị Giải Pháp Để Hạn Chế, Dong Chi Hay Phan Tich Cac Giai Doan Phat Trien Chu Nghia Cong San Nhu The Nao, Phân Tích Những Nhiệm Vụ Chủ Yếu Xây Dựng Đảng Về Đạo Đức Trong Giai Đoạn Hiện Nay, Phan Tich Nhiem Vu Va Giai Phap Xay Dung Dang Trong Sach Hien Nay, Phân Tích Chủ Trương Và Kết Quả Đổi Mới Cơ Chế Quản Lý Sản Xuất Nông Nghiệp Nước Ta Giai Đoạn (1979-, Phân Tích Chủ Trươngvà Kết Quả Đổi Mới Cơ Chế Quản Lí Sản Xuất Nông Nghiệp Nước Ta Giai Đoạn 1979 19, Phân Tích Chủ Trương Và Kết Quả Đổi Mới Cơ Chế Quản Lý Sản Xuất Nông Nghiệp Nước Ta Giai Đoạn (1979-, Hãy Phân Tích Phương Hướng Giải Pháp Cơ Bản Phòng Chống Diễn Biến Hòa Bình Bạo Loạn Lật Đổ, Đồng Chí Hãy Phân Tích, Đánh Giá Thực Trạng Và Đưa Ra Các Kiến Nghị, Giải Pháp Để Nâng Cao Chất Lượn, Thực Trạng, Phân Tích Và Đề Xuất Những Giải Pháp Nâng Cao Hiệu Quả Hoạt Động Của Đội Ngũ Lãnh Đạo Cấ, Đồng Chí Hãy Phân Tích, Đánh Giá Thực Trạng Và Đưa Ra Các Kiến Nghị, Giải Pháp Để Nâng Cao Chất Lượn, Thực Trạng, Phân Tích Và Đề Xuất Những Giải Pháp Nâng Cao Hiệu Quả Hoạt Động Của Đội Ngũ Lãnh Đạo Cấ, Phân Tích Chủ Trương Của Đảng Và Kết Quả Thực Hiện Công Tác Thanh Niên Giai Đoạn 2011-2020, Phân Tích Nội Dung Phấn Đấu Rèn Luyện Của Đảng Viên Trong Giai Đoạn Hiện Nay, Hãy Giải Thích Khi Càng Lên Cao Thì Tỉ Lệ Thể Tích Khí Oxi Trong Không Khí Càng Gi, Hãy Tính Diện Tích Xung Quanh Và Thể Tích Của Một Khối Hình Lập Phương Có Diện Tích Toàn Phần Là 384, Giải Bài Tập Diện Tích Hình Tròn Hình Quạt Tròn,

Hãy Phân Tích ưu Nhược Điểm Và Phạm Vi ứng Dụng Của Pp Giải Tích Và Pp Mô Ph, Phân Tích Những Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Trong Giai Đoạn Hiện Nay, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Hộp Chữ Nhật, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Lập Phương, Phân Tích Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Trong Sạch Vững Mạnh Trong Giai Đoạn Hiện Nay, Giải Tích, Bài Tập Giải Tích 1, Giải Tích – Tập 1, Bài 2 Giải Tích 12, Bài 5 Giải Tích 12, Giải Tích 1b, Giải Tích 1 7e, Giải Tích 1, Bài 4 Giải Tích 12, Đại Số Và Giải Tích 11, Đề Cương Giải Tích 3, Giải Tích Calculus 7e (tập 1), Bài 6 ôn Tập Chương 1 Giải Tích 12, Bài Giảng Giải Tích 3, Bài 8 ôn Tập Chương 1 Giải Tích 12, Bài Giảng Giải Tích 2, Đề Cương Bài Tập Giải Tích 2, Đề Cương Giải Tích 2, Bài 9 ôn Tập Chương 1 Giải Tích 12, Tài Liệu Giải Tích 3, Giải Tích – Tập 1 – Calculus 7e Pdf, Tài Liệu ôn Tập Giải Tích 1, Bài 5 Trang 44 Giải Tích 12, Bài 3 Trang 43 Giải Tích 12, Bài 3 Trang 24 Giải Tích 12, Bài 3 Trang 84 Giải Tích 12, Giải Tích Calculus 7e – Tập 1 Pdf, Bài 3 ôn Tập Chương 3 Giải Tích 12, Bài 4 Trang 61 Giải Tích 12, Toán Giải Tích 12, Toán Giải Tích 12 Bài 1, Giải Tích Tập 1 – Calculus, Bài 4 ôn Tập Chương 3 Giải Tích 12, Bài 4 Sgk Giải Tích 12 Trang 44, Bài 5 Trang 10 Giải Tích 12, Bài Giảng Giải Tích 1, Bài 5 ôn Tập Chương 1 Giải Tích 12, Bài 1 Sgk Giải Tích 12 Trang 43, Tài Liệu Giải Tích 2, Bài 4 Trang 10 Giải Tích 12, Bài Giải Giải Tích 2, Giải Bài Tập Giải Tích 2 7e, Giải Tích 2 Giáo Trình, Giải Tích 3 Giáo Trình, Cách Giải Bài Toán Quỹ Tích,

Giáo Trình Giải Tích Tập 1

Giáo Trình Giải Tích 3, Giáo Trình Giải Tích Tập 1, Giải Tích 3 Giáo Trình Và 500 Bài Tập, Giải Tích 3 Giáo Trình, Giáo Trình Giải Tích 1, Giáo Trình Giải Tích 2, Giải Tích 2 Giáo Trình, Giáo Trình Giải Tích 2 Bùi Xuân Diệu, Giải Bài Tập Phương Trình Tích, Sách Giáo Khoa Giải Tích 12, Tài Liệu Giáo Khoa Chuyên Toán Giải Tích 12, Giáo Trình Phân Tích Hóa Lý, Giáo Trình âm Giai, Giải Giáo Trình Taxi3, Lời Giải Bài Tập Giáo Trình Lý Thuyết Thông Kê, Tờ Trình Xin Giải Thể Chi Đoàn Giáo Viên, Giáo Trình Cấu Trúc Dữ Liệu Và Giải Thuật, Giải Bài Tập Unit 3 Transport Giáo Trình Life, Hãy Phân Tích ưu Nhược Điểm Và Phạm Vi ứng Dụng Của Pp Giải Tích Và Pp Mô Ph, Quy Trình Giải Quyết Tai Nạn Giao Thông Đường Thủy , Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông Đường Bộ, Giáo Trình Kỹ Năng Giải Quyết Vụ Việc Dân Sự; Kinh Tế; Lao Động, Phân Tích Những Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Trong Giai Đoạn Hiện Nay, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Lập Phương, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Hộp Chữ Nhật, To Trinh De Nghi Ra Quyet Dinh Chu Tich Pho Chu Tich Hoi Chu Thap Do Cap Xa, To Trinh Phe Chuan Chuc Danh Chu Tich, Pho Chu Tịch Họi Chu Thap Dỏ, Phân Tích Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Trong Sạch Vững Mạnh Trong Giai Đoạn Hiện Nay, Thông Tư 73/2012/tt-bca Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông Đường Thuỷ, Thông Tư 73/2012/tt-bca Về Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Thủy Nội, Thông Tư 77/2012/tt-bca Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Bộ Của Cảnh, 77/2012/tt-bca Ngày 28 Tháng 12 Năm 2012 Quy Định Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông, Quyết Định 17/2007/qĐ-bca(c11) Về Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Thủy Do Bộ, Thông Tư Số 77/2012/tt-bca Ngày 28/12/2012 Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thôn, Thông Tư 73/2012/tt-bca Về Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Thủy Nội, Hông Tư 77/2012/tt-bca Ngày 05/12/2012 Quy Định Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông Đườ, Quyết Định 17/2007/qĐ-bca(c11) Về Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Thủy Do Bộ, Thông Tư 77/2012/tt-bca Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Bộ Của Cảnh, Thông Tư Số 73/2012/tt-bca Ngày 05/12/2012 Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thôn, Thông Tư Số 73/2012/tt-bca Ngày 05/12/2012 Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thôn, Thông Tư 77/2012/tt-bca Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Bộ Của Cảnh, Thông Tư Số 73/2012/tt-bca Quy Trình Giải Quyết Tai Nạn Giao Thông, Khái Niệm Chương Trình Giáo Dình Giáo Dục ,phát Triển Chương Trình Giáo Dục Của Cơ Sở Mầm Non, Các Đồng Chí Hẫy Trình Bày Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Tron Sạch Vững Mạnh Trong Giai Đoạn H, Bài Tập Giải Tích 1, Giải Tích, Đại Số Và Giải Tích 11, Giải Tích 1, Giải Tích – Tập 1, Bài 2 Giải Tích 12, Bài 4 Giải Tích 12, Giải Tích 1b, Giải Tích 1 7e, Bài 5 Giải Tích 12, Thông Tư Số 77/2012/tt-bca Ngày 0/12/2012 Quy Định Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông , Thông Tư Số 77/2012/tt-bca Ngày 28/12/2012 Quy Định Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông, Thông Tư Số 77/2012/tt-bca Ngày 05/12/2012 Quy Định Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông, Thông Tư Số 77/2012/tt-bca Ngày 0/12/2012 Quy Định Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông, Thông Tư 77/2012/tt-bca Ngày 05/12/2012 Quy Định Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông Đư, Thông Tư 77/2012/tt-bca Ngày 28/12/2012 Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đ, Thông Tư 77/2012/tt-bca Ngày 28/12/2012 Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đ, Bài 5 Trang 44 Giải Tích 12, Giải Tích Tập 1 – Calculus, Giải Tích Calculus 7e (tập 1), Giải Tích – Tập 1 – Calculus 7e Pdf, Toán Giải Tích 12, Bài 5 Trang 10 Giải Tích 12, Bài 5 ôn Tập Chương 1 Giải Tích 12, Bài 3 Trang 43 Giải Tích 12, Bài 3 Trang 84 Giải Tích 12, Bài 3 ôn Tập Chương 3 Giải Tích 12, Bài Giảng Giải Tích 1, Bài Giảng Giải Tích 2, Bài 4 Sgk Giải Tích 12 Trang 44, Bài Giảng Giải Tích 3, Bài 4 Trang 10 Giải Tích 12, Bài 4 Trang 61 Giải Tích 12, Bài 3 Trang 24 Giải Tích 12, Đề Cương Giải Tích 3, Tài Liệu Giải Tích 3, Toán Giải Tích 12 Bài 1, Bài 9 ôn Tập Chương 1 Giải Tích 12, Giải Tích Calculus 7e – Tập 1 Pdf, Tài Liệu Giải Tích 2, Bài 8 ôn Tập Chương 1 Giải Tích 12, Tài Liệu ôn Tập Giải Tích 1, Đề Cương Bài Tập Giải Tích 2, Bài 1 Sgk Giải Tích 12 Trang 43, Đề Cương Giải Tích 2, Bài 6 ôn Tập Chương 1 Giải Tích 12, Bài 4 ôn Tập Chương 3 Giải Tích 12, Bài Giải Giải Tích 2, Giải Bài Tập Giải Tích 2 7e, Giải Tích James Stewart, Khóa Luận Giải Tích, Đề Kiểm Tra Chương 2 Giải Tích 12, Giải Tích 1 Đại Học Khoa Học Tự Nhiên, Tài Liệu ôn Tập Chương 1 Giải Tích 12, Phân Tích N Giai Thừa, Đề Cương Giải Tích 2 Sami,

Giáo Trình Giải Tích 3, Giáo Trình Giải Tích Tập 1, Giải Tích 3 Giáo Trình Và 500 Bài Tập, Giải Tích 3 Giáo Trình, Giáo Trình Giải Tích 1, Giáo Trình Giải Tích 2, Giải Tích 2 Giáo Trình, Giáo Trình Giải Tích 2 Bùi Xuân Diệu, Giải Bài Tập Phương Trình Tích, Sách Giáo Khoa Giải Tích 12, Tài Liệu Giáo Khoa Chuyên Toán Giải Tích 12, Giáo Trình Phân Tích Hóa Lý, Giáo Trình âm Giai, Giải Giáo Trình Taxi3, Lời Giải Bài Tập Giáo Trình Lý Thuyết Thông Kê, Tờ Trình Xin Giải Thể Chi Đoàn Giáo Viên, Giáo Trình Cấu Trúc Dữ Liệu Và Giải Thuật, Giải Bài Tập Unit 3 Transport Giáo Trình Life, Hãy Phân Tích ưu Nhược Điểm Và Phạm Vi ứng Dụng Của Pp Giải Tích Và Pp Mô Ph, Quy Trình Giải Quyết Tai Nạn Giao Thông Đường Thủy , Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông Đường Bộ, Giáo Trình Kỹ Năng Giải Quyết Vụ Việc Dân Sự; Kinh Tế; Lao Động, Phân Tích Những Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Trong Giai Đoạn Hiện Nay, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Lập Phương, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Hộp Chữ Nhật, To Trinh De Nghi Ra Quyet Dinh Chu Tich Pho Chu Tich Hoi Chu Thap Do Cap Xa, To Trinh Phe Chuan Chuc Danh Chu Tich, Pho Chu Tịch Họi Chu Thap Dỏ, Phân Tích Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Trong Sạch Vững Mạnh Trong Giai Đoạn Hiện Nay, Thông Tư 73/2012/tt-bca Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông Đường Thuỷ, Thông Tư 73/2012/tt-bca Về Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Thủy Nội, Thông Tư 77/2012/tt-bca Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Bộ Của Cảnh, 77/2012/tt-bca Ngày 28 Tháng 12 Năm 2012 Quy Định Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông, Quyết Định 17/2007/qĐ-bca(c11) Về Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Thủy Do Bộ, Thông Tư Số 77/2012/tt-bca Ngày 28/12/2012 Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thôn, Thông Tư 73/2012/tt-bca Về Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Thủy Nội, Hông Tư 77/2012/tt-bca Ngày 05/12/2012 Quy Định Quy Trình Điều Tra Giải Quyết Tai Nạn Giao Thông Đườ, Quyết Định 17/2007/qĐ-bca(c11) Về Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Thủy Do Bộ, Thông Tư 77/2012/tt-bca Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Bộ Của Cảnh, Thông Tư Số 73/2012/tt-bca Ngày 05/12/2012 Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thôn, Thông Tư Số 73/2012/tt-bca Ngày 05/12/2012 Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thôn, Thông Tư 77/2012/tt-bca Quy Định Quy Trình Điều Tra, Giải Quyết Tai Nạn Giao Thông Đường Bộ Của Cảnh, Thông Tư Số 73/2012/tt-bca Quy Trình Giải Quyết Tai Nạn Giao Thông, Khái Niệm Chương Trình Giáo Dình Giáo Dục ,phát Triển Chương Trình Giáo Dục Của Cơ Sở Mầm Non, Các Đồng Chí Hẫy Trình Bày Nhiệm Vụ Và Giải Pháp Xây Dựng Đảng Tron Sạch Vững Mạnh Trong Giai Đoạn H, Bài Tập Giải Tích 1, Giải Tích, Đại Số Và Giải Tích 11, Giải Tích 1, Giải Tích – Tập 1, Bài 2 Giải Tích 12,

Giáo Trình Môn Giải Tích 1

2. Định nghĩa hàm nhiều biến 1. Tập hợp trong Rn CHƯƠNG II : HÀM SỐ NHIỀU BIẾN I. Các khái niệm mở đầu CHƯƠNG II : HÀM SỐ NHIỀU BIẾN I. CÁC KHÁI NIỆM MỞ ĐẦU 1.Tập hợp trong Rn 1.1. Khoảng cách giữa hai điểm Xét hai điểm M( x1, x2 , , xn ), N ( y1, y2 , , yn ) trong không gian Rn . Khoảng cách giữa M và N cho bởi công thức: Tính chất : Ba điểm A , B , C tùy ý trong Rn ta có : ( , ) 0 ( , ) ( , ) ( , ) ( , ) ( , ) d A B A B d A B d B A d A B d A C d C B                 1 2 2 22 1 1 1 , n i i n n i d M N x y x y x y                  CHƯƠNG II : HÀM SỐ NHIỀU BIẾN I. CÁC KHÁI NIỆM CƠ BẢN 1.Tập hợp trong Rn 1.2. Lân cận của một điểm. Tập hợp B(M0 , r) = gọi là hình cầu mở tâm M0 bán kính r . Lân cận của M0 là tất cả các tập hợp chứa một – lân cận B(M0, ) nào đó của M0. Chú ý :  Trong R hình dạng của B(x0, r) là khoảng (x0-r,x0 + r)  Trong R2 hình dạng của B(x0, r) là miền tròn không lấy những điểm nằm trên biên  Trong R3 hình dạng của B(x0, r) là quả cầu không lấy những điểm nằm trên biên (mặt cầu) x0 x0 x0   0: ( , )nM R d M M r   CHƯƠNG II : HÀM SỐ NHIỀU BIẾN I. CÁC KHÁI NIỆM CƠ BẢN 1.3. Điểm trong – Tập Mở . Điểm M0 gọi là điểm trong của tập A nếu : .Tập hợp tất cả các điểm trong gọi là miền trong của tập A và kí hiệu là int A . Tập A gọi là tập mở nếu mọi điểm của nó đều là điểm trong. 1.4. Điểm biên – Tập đóng Điểm M0 gọi là điểm biên của tập A nếu với mọi lân cận của M0 đều chứa những điểm thuộc A và những điểm không thuộc A trừ M0 . Tập hợp tất cả các điểm biên gọi là biên của tập A và kí hiệu là .Tập A gọi là đóng nếu nó chứa mọi điểm biên của nó . A 00 : ( , )B M A    CHƯƠNG II : HÀM SỐ NHIỀU BIẾN I. CÁC KHÁI NIỆM CƠ BẢN 1.5. Điểm Tụ – Điểm cô lập Đểm M0 gọi là điểm tụ của tập A nếu : Ngược lại, ta nói điểm M0 là điểm cô lập của A Chú ý :  Điểm tụ có thể là điểm trong hoặc điểm biên  Tập đóng chứa được mọi điểm tụ của nó  0 00 : ( , ) ( ) .    B M A M  1.6. Tâp bị chặn Tập E được gọi là một tập bị chặn nếu nó nằm trong một quả cầu nào đó B(xo,r) A CHƯƠNG II : HÀM SỐ NHIỀU BIẾN : I. CÁC KHÁI NIỆM CƠ BẢN 1.8. Tập liên thông : Tập A gọi là một tập liên thông nếu có thể nối hai điểm bất kỳ M , N bằng một đường liên tục nằm trong A ..Tập liên thông A gọi là đơn liên nếu nó được bao bởi một đường kín trong R2 ( hoặc một mặt kín trong R3 ). Ngược lại nếu nó được bao bởi nhiều đường , mặt khác nhau đôi một thì ta nói A là đa liên . M N Tập Liên Thông -Đơn Liên A Tập LT -Đa Liên 1.7. Tâp Compact Tập A được gọi là tập Compact nếu nó đóng và bị chặn 2. Định nghĩa hàm nhiều biến 2.1 Định nghĩa Xét không gian Euclide n chiều Rn . Một phần tử M Rn là một bộ gồm n thành phần .Hàm số n biến thực trên D Rn là một ánh xạ từ D vào R . Khi đó ta thường viết u = f(x1, x2 , , x n) hay u = f(M) .  Ì Chú ý :1) D gọi là miền xác định của hàm số . 2) Miền giá trị của hàm f là tập hợp các giá trị của u khi M chạy khắp miền D . 3) Trong giáo trình chỉ xét các hàm hai hoặc ba biến CHƯƠNG II : HÀM SỐ NHIỀU BIẾN : I. CÁC KHÁI NIỆM CƠ BẢN II. HÀM NHIỀU BIẾN 2.2. Cách cho một hàm nhiều biến Người ta có thể biểu diễn hàm nhiều biến bằng một hay nhiều biểu thức . Trong trường hợp này ta có thể hiểu D là tập các điểm M sao cho biểu thức của f có nghĩa . Ví dụ Trong các bài toán ứng dụng ta còn có thể dùng bảng để biểu diễn hàm nhiều biến Ví dụ CÁC VÍ DỤ-MXĐ Ví dụ 1 Tìm miền xác định của z = f(x,y) = 2 24 x y- – ( ){ }, : 2 2D x y x y 4= + £ GIẢI o x y Ví duï 2 : 2 2 2 2 4 ( , ) (0,0) ( ) 0 ( , ) (0,0)        x y khi x y z x y x y khi x y Ví duï 3 : lnz x y BÀI GIẢI D = R2 Ví dụ 2: z xaùc ñònh khi chúng tôi  0  Ví dụ 3 : 0 1 0 0 1            x y x y 1 o x y CÁC VÍ DỤ-MXĐ Ví dụ 1 Tìm miền xác định, miền giá trị của z = f(x,y) cho bằng bảng GIẢI (x,y) (1,2) (3,4) ( 5,6) (7,9) ( 12,14) f(x,y) 5 6 9 2 1 MXĐ: D={(1,2), (3,4),( 5,6), (7,9),( 12,14)} MGT : f(D)={ 5,6,9,2,1}

Giáo Án Giải Tích 12 Kì 1

Và vẽ đồ thị hàm số

Tiết 1+2: sự đồng biến, nghịch biến của hàm số – luyện tập

– Biết mối liên hệ giữa tính đồng biến, nghịch biến của một hàm số và dấu của

đạo hàm cấp một của nó.

– Biết cách xét tính đồng biến, nghịch biến của một hàm số trên một khoảng dựa

vào dấu đạo hàm cấp một của nó.

– Phát triển tư duy logic, óc tưởng tượng.

– Cẩn thận, chính xác, nghiêm túc.

II-Chuẩn bị của GV và HS

Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 1 Ngày soạn: 06/09/2008 Ngày giảng: 08/09/2008 Ch−ơng I: ứng dụng đạo hàm để khảo sát Và vẽ đồ thị hàm số Tiết 1+2: sự đồng biến, nghịch biến của hàm số - luyện tập I-Mục tiêu 1) Kiến thức - Biết mối liên hệ giữa tính đồng biến, nghịch biến của một hàm số và dấu của đạo hàm cấp một của nó. 2) Kỹ năng - Biết cách xét tính đồng biến, nghịch biến của một hàm số trên một khoảng dựa vào dấu đạo hàm cấp một của nó. 3) T− duy - Phát triển t− duy logic, óc t−ởng t−ợng. 4) Thái độ - Cẩn thận, chính xác, nghiêm túc. II-Chuẩn bị của GV và HS 1) Giáo viên Giáo án, SGV, phấn màu. 2) Học sinh Vở ghi, SGK. III-Ph−ơng pháp dạy học Gợi mở, vấn đáp giải quyết vấn đề đan xen HĐ nhóm. IV-Tiến trình bài học 1) Kiểm tra bài cũ (không) 2) Bài mới HĐ1: Nhắc lại định nghĩa HĐGV HĐHS Ghi bảng GV treo bảng phụ y x xx y=x 21 2 f(x )1 f(x )2 HXy chỉ ra các khoảng đồng biến, nghịch biến của hàm số y=x2? Lấy x1<x2 trong khoảng ( )0;+∞ nh− hình vẽ. HXy sao sánh 1( )f x và 2( )f x ? Cho HS nhận xét t−ơng tự nếu lấy x1<x2 trong khoảng Quan sát hình vẽ và trả lời câu hỏi. Hàm số đồng biến trên khoảng ( )0;+∞ và nghịch biến trên khoảng ( )0;−∞ . 1( )f x < 2( )f x Nhận xét t−ơng tự. I. Tính đơn điệu của hàm số Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 2 ( )0;−∞ ? Từ đó GV nhắc lại định nghĩa cho HS. Nếu hàm số ( )f x đồng biến (nghịch biến) trên K hXy nhận xét về dấu của tỷ số 2 1 2 1 ( ) ( )f x f x x x − − ? GV đ−a ra nhận xét nh− SGK. GV cho HS quan sát hình trên bảng phụ và nhận xét h−ớng đi của đồ thị trong các tr−ờng hợp HS đồng biến, nghịch biến? ( )f x đồng biến trên K thì 2 1 2 1 ( ) ( ) 0 f x f x x x − > − ( )f x nghịch biến trên K thì 2 1 2 1 ( ) ( ) 0 f x f x x x − < − HS đồng biến thì đồ thị HS đi lên từ trái sang phải. HS nghịch biến thì đồ thị HS đi xuống từ trái sang phải. 1) Nhắc lại định nghĩa Hàm số ( )y f x= đồng biến (tăng) trên K nếu với mỗi cặp 1 2,x x thuộc K mà 1x nhỏ hơn 2x thì 1( )f x nhỏ hơn 2( )f x , tức là 1 2 1 2( ) ( );x x f x f x< ⇒ < Hàm số ( )y f x= nghịch biến (giảm) trên K nếu với mỗi cặp 1 2,x x thuộc K mà 1x nhỏ hơn 2x thì 1( )f x lớn hơn 2( )f x , tức là 1 2 1 2( ) ( );x x f x f x Hàm số đồng biến hoặc nghịch biến trên K đ−ợc gọi chung là hàm số đơn điệu trên K. Nhận xét: a) ( )f x đồng biến trên K thì 2 1 2 1 ( ) ( ) 0 f x f x x x − > − ( )f x nghịch biến trên K thì 2 1 2 1 ( ) ( ) 0 f x f x x x − < − b) Hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải. Hàm số nghịch biến trên K thì đồ thị đi lên từ trái sang phải. HĐ2: Tính đơn điệu và dấu của đạo hàm Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 3 HĐGV HĐHS Ghi bảng GV treo bảng phụ trong hoạt động 1 và yêu cầu HS tính đạo hàm cấp 1 đồng thời xét dấu của đạo hàm và điền vào bảng sau: Dựa vào bảng kết quả hXy nhận xét: Khi y'<0, HS đồng biến hay nghịch biến? nghịch biến? GV tổng quát hóa vấn đề từ đó đ−a ra định lí: GV đặt câu hỏi mở rộng: Khi y'=0 thì HS đồng biến hay nghịch biến? Từ đó GV đ−a ra chú ý: Tính đạo hàm và xét dấu của đạo hàm. Điền kết quả vào bảng. Khi y'<0, HS nghịch biến. Nghe giảng, ghi nhận kiến thức. ' 0y y C= ⇒ = (hằng số) do đó HS ( )f x không đổi trên K. 2) Tính đơn điệu và dấu của đạo hàm Cho hàm số ( )y f x= có đạo hàm trên K. thuộc K thì hàm số f(x) đồng biến trên K. b) Nếu f'(x)<0 với mọi x thuộc K thì hàm số f(x) nghịch biến trên K. '( ) 0 ( ) đồng biến. '( ) 0 ( ) nghịch biến. f x f x f x f x > ⇒  < ⇒ Chú ý: Nếu '( ) 0,f x x K= ∀ ∈ thì ( )f x không đổi trên K. HĐ3: Bài tập luyện tập HĐGV HĐHS Ghi bảng GV đ−a ra bài tập vận dụng. Giải thích rõ cho HS ý nghĩa của việc tìm khoảng đơn điệu của hàm số. HXy tìm đạo hàm của Nghe giảng, ghi nhận kiến thức. y'=2x-4 Ví dụ 1: Tìm các khoảng đơn điệu của hàm số y=x2- 4x+5. Giải Đạo hàm: y'=2x-4 Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 4 hàm số? HXy xét dấu của đạo hàm? Từ bảng trên hXy suy ra bảng biến thiên của hàm số? Từ bảng biến thiên hXy nêu các khoảng đơn điệu (đồng biến hoặc nghịch biến) của hàm số? Qua ví dụ trên GV đặt vấn đề ng−ợc lại cho HS suy nghĩ thông qua việc phân tích ví dụ trong HĐ3 SGK. Qua đồ thị của hàm số y=x3 hXy nhận xét về tính đồng biến, nghịch biến của hàm số trên toàn tập xác định? Xét dấu của đạo hàm hàm số trên? Qua đó GV khái quát và đ−a ra chú ý: x −∞ 2 +∞ y' - 0 + Lên bảng vẽ bảng biến thiên của hàm số. Trả lời câu hỏi. Hàm số đồng biến trên toàn tập xác định. 2' 3 0,y x x= ≥ ∀ y'<0 khi x<2 y'=0 khi x=2 Vậy ta có bảng biến thiên: Vậy hàm số đồng biến trên khoảng ( )2;+∞ và nghịch biến trên khoảng ( );0−∞ . Chú ý: Giả sử hàm số ( )y f x= có đạo hàm trên K. Nếu ( )'( ) 0 ( ) 0 ,f x f x x K≥ ≤ ∀ ∈ và '( ) 0f x = chỉ tại một số hữu hạn điểm thì hàm số đồng biến (nghịch biến) trên K. 3) Củng cố, dặn dò - Ôn tập lại nội dung cơ bản đX học trong bài, đọc và xem lại các định lí và ví dụ trong bài. - Làm các bài tập 1, 2 SGK Tr10 và bài tập bổ sung. Bài tập bổ sung: Bài 1: Tìm các khoảng đơn điệu của các hàm số: a) y=x4+8x3+5 b) y=x-sinx Bài 2: Sử dụng tính đồng biến, nghịch biến của hàm số để chứng minh rằng với 1 2x x + ≥ Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 5 Ngày giảng: 09/09/2008 sự đồng biến, nghịch biến của hàm số - luyện tập (Tiết 2) 4) Kiểm tra bài cũ Câu hỏi: 1) HXy phát biểu định lý về sự liên hệ giữa tính đơn điệu của hàm số và dấu của đạo hàm? 2) Vận dụng giải bài tập sau: Xét tính đơn điệu của hàm số y=x3-3x2+5? 5) Bài mới HĐ3: Quy tắc xét tính đơn điệu của hàm số HĐGV HĐHS Ghi bảng Chia lớp thành 3 nhóm và tổ chức cho HS HĐ nhóm làm VD 2. GV nhận xét, chỉnh sửa bổ sung và đ−a ra đáp án bằng bảng phụ. Qua ví dụ trên GV yêu cầu HS khái quát các b−ớc để xét tính đơn điệu của hàm số. Tiến hành HĐ nhóm d−ới sự h−ớng dẫn của GV. Trình bày kết quả, bổ sung và nhận xét chéo. Khái quát các b−ớc. II. Quy tắc xét tính đơn điệu của hàm số Ví dụ 2: Xét tính đơn điệu của hàm số y=x3- 3x2+5? Giải Hàm số trên xác định với mọi x thuộc ℝ . Đạo hàm: y'=3x2-6x 0 ' 0 2 x y x = = ⇔  = Ta có bảng biến thiên Vậy hàm số đồng biến trên các khoảng ( );0−∞ và ( )2;+∞ , hàm số nghịch biến trên khoảng (0;2). 1) Quy tắc B1: Tìm tập xác định. B2: Tính đạo hàm '( )f x . Tìm các điểm ( 1,2,3,..., )ix i n= mà tại đó đạo hàm bằng 0 hoặc không xác định. B3: Sắp xếp các điểm ix Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 6 theo thứ tự tăng dần và lập bảng biến thiên. B4: Nêu kết luận về các khoảng đb, nb của hàm số. HĐ4: Bài tập áp dụng HĐGV HĐHS Ghi bảng GV đ−a ra bài tập vận dụng cho HS HĐ nhóm. Nhóm 1, 2, 3: Phần a) Nhóm 4, 5, 6: Phần b) GV nhận xét, chỉnh sửa, bổ sung và đ−a ra đáp án. GV chú ý cho HS cách điền các cận vào bảng biến thiên thông qua việc tính giới hạn. HĐ nhóm d−ới sự h−ớng dẫn của GV. Các nhóm trình bày kết quả và nhận xét chéo, bổ sung kết quả. Nghe giảng, tiếp thu kiến thức. 2) áp dụng Xét tính đơn điệu của các hàm số: a) 3 1 1 x y x + = − b) 2 2 1 x x y x − = − Giải: a) TXĐ: {1}D = ℝ Đạo hàm: ( )2 4 ' 0 1 y x − Bảng biến thiên: b) TXĐ: {1}D = ℝ Đạo hàm: ( ) 2 2 2 2 ' 1 x x y x − + − = − Bảng biến thiên: 6) Củng cố, dặn dò - Ôn tập lại các b−ớc để xét tính đơn điệu của hàm số và xem lại các ví dụ đX làm. - Làm các bài tập 3, 4, 5 SGK Tr10. Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 7 Ngày soạn: 09/09/2008 Ngày giảng: 11/09/2008 Tiết 3+4+5: cực trị của hàm số I- Mục tiêu 1) Kiến thức - Biết khái niệm điểm cực đại, cực tiểu, điểm cực trị của hàm số. - Biết các điều kiện đủ để hàm số có điểm cực trị. 2) Kỹ năng - Biết cách tìm điểm cực trị của hàm số. 3) T− duy - Phát triển t− duy logic, óc t−ởng t−ợng. 4) Thái độ - Cẩn thận, chính xác, nghiêm túc. II- Chuẩn bị của GV và HS 1) Giáo viên Giáo án, SGV, phấn màu. 2) Học sinh Vở ghi, SGK. III- Ph−ơng pháp dạy học Gợi mở, vấn đáp giải quyết vấn đề đan xen HĐ nhóm. IV- Tiến trình bài học 1) Kiểm tra bài cũ Câu hỏi: HXy nêu quy tắc xét tính đơn điệu của hàm số? áp dụng xét tính đơn điệu của hàm số y=-x2+1? 2) Bài mới HĐ1: Khái niệm cực đại, cực tiểu HĐGV HĐHS Ghi bảng GV cho HS quan sát đồ thị của hàm số y=-x2+1 và nêu nhận xét: HXy chỉ ra tọa độ của điểm "cao nhất" của đồ thị trong khoảng ( )1;1− ? Điểm này t−ơng ứng với x, y bằng bao nhiêu? Ta nói hàm số y=-x2+1 đạt cực đại tại x=0. T−ơng tự GV cho HS quan sát đồ thị của hàm số 3 22 3 3 x y x x= − + và cho 1 -1 1 y xO y=-x +12 Điểm "cao nhất" của đồ thị trong khoảng ( )1;1− là ( )0;1 . Điểm này t−ơng ứng với x=0; y=1. I. Khái niệm cực đại, cực tiểu Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 8 HS nhận xét t−ơng tự trong các khoảng 1 3 ; 2 2       và 3 ;4 2       ? Ta nói trên khoảng 1 3 ; 2 2       hàm số đạt cực đại tại x=1. Ta nói trên khoảng 3 ;4 2       hàm số đạt cực tiểu tại x=0. Từ đó GV đ−a ra định nghĩa: GV yâu cầu HS lên bảng lập bảng biến thiên của hàm số 3 22 3 3 x y x x= − + ? 1 2 2 3 3 4 Trong khoảng 1 3 ; 2 2       có điểm "cao nhất" là 4 1; 3       t−ơng ứng với 4 1; 3 x y= = . Trong khoảng có điểm "thấp nhất" là (0;3) t−ơng ứng với x=0; y=3. Lên bảng lập bảng biến thiên: x −∞ 1 3 +∞ y' + 0 - 0 + y −∞ 4 3 0 +∞ Định nghĩa: Cho HS ( )y f x= xác định và liên tục trên khoảng (a;b) (có thể a là −∞ , b là +∞ ) và điểm 0 ( ; )x a b∈ . sao cho f(x)<f(x0) với mọi 0 0( ; )x x h x h∈ − + và 0x x≠ thì ta nói hàm số f(x) đạt cực đại tại x0. b) Nếu tồn tại số với mọi 0 0( ; )x x h x h∈ − + và 0x x≠ thì ta nói hàm số f(x) đạt cực tiểu tại x0. Chú ý: 1)Nếu hàm số ( )f x đạt Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 9 GV phân biệt rõ cho HS các khái niệm điểm cực đại (cực tiểu) và khái niệm giá trị cực đại (cực tiểu) trên bảng biến thiên. Dựa vào bảng biến thiên hXy nhận xét: Tại các điểm mà HS đạt CĐ, CT t ... 3)( 2)] log 2 x x x x x x − − ≤ ⇔ − − ≤ ⇔ − − ≤ Giải BPT trên ta có: 1 4x≤ ≤ . Kết của BPT là: 3 4x< ≤ . Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 101 3) Củng cố, dặn dò - Xem lại cách giải bất PT lôgarit cơ bản và ph−ơng pháp giải một số bất PT lôgarit đơn giản. - Làm bài tập 2 SGK Tr90. Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 102 Ngày soạn: 30/11/2008 Ngày giảng: 02/12/2008 Tiết 37: bất ph−ơng trình mũ và bất ph−ơng trình Lôgarit (Tiếp) 1) Kiểm tra bài cũ Câu hỏi: Giải bất ph−ơng trình lôgarit sau: ( )1 2 log 2 1 1− ≥x ? 2) Bài mới HĐ1: Ôn tập lý thuyết HĐGV HĐHS Ghi bảng HXy nêu cách giải BPT mũ cơ bản? Với PT mũ ta có thể sử dụng ph−ơng pháp đ−a về cùng cơ số để giải một số BPT mũ cơ bản. HXy nêu cách giải BPT lôgarit cơ bản? Với PT mũ ta có thể sử dụng ph−ơng pháp đ−a về cùng cơ số để giải một số BPT lôgarit cơ bản. Nếu 0b ≤ , tập nghiệm của x∀ ∈ℝ . Với 0<a<1, nghiệm của bất PT là logax b< . Với 0<a<1 thì nghiệm của BPT là 0<x<ab. I. Lý thuyết 1. BPT mũ 2. BPT lôgarit HĐ2: Bài tập về BPT mũ HĐGV HĐHS Ghi bảng Chữa bài tập số 1 phần b) SGK Tr89: H−ớng dẫn HS đ−a về cùng II. Bài tập 1. Bài tập BPT mũ Bài 1 (SGK Tr89) Giải các BPT mũ: b) 22 3 7 9 9 7 x x−   ≥    BPT t−ơng đ−ơng: Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 103 HĐGV HĐHS Ghi bảng cơ số là 7 9 bằng cách đặt câu hỏi: 9 7 bằng 7 9 mũ bao nhiêu? Từ đó GV giải BPT trên: H−ớng dẫn HS làm các phần còn lại. 1 9 7 7 9 −   =     Quan sát và ghi nhận kiến thức. 22 3 1 7 7 9 9 x x− −    ≥        Vì cơ số 7 1 9 < nên ta có: 2 2 2 3 1 2 3 1 0 1 1 2 x x x x x − ≤ − ⇔ − + ≤ ⇔ ≤ ≤ Vậy nghiệm của BPT là: 1 1 2 x≤ ≤ HĐ2: Bài tập về BPT lôgarit HĐGV HĐHS Ghi bảng Chữa bài tập số 2 phần b) SGK Tr90: Từ đó GV giải BPT trên: H−ớng dẫn HS làm làm các phần còn lại. a) Đ−a về cùng cơ số 8 ( 82 log 16= ). c) Đ−a về cùng cơ số 0,2 hoặc cơ số 5 ( 1 0,2 5 = ) rồi sử dụng tính chất log log log ( . )a a ab c b c− = . d) Đặt ẩn phụ 3logt x= . Quan sát và ghi nhận kiến thức. Nghe giảng, ghi nhận kiến thức. 2. Bài tập BPT lôgarit Bài 2 (SGK Tr90) Giải các BPT lôgarit: b) 1 1 5 5 ĐK: 3 5 0 5 31 0 x x x Vì cơ số 1 1 5 < nên BPT t−ơng đ−ơng: 3 5 1 2x x x+ < + ⇔ < Kết hợp với điều kiện 5 3 BPT là: 5 2 3 x< < 3) Củng cố, dặn dò Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 104 - Hệ thống lại toàn bộ kiến thức trong bài. - Hoàn thiện những bài tập còn lại dựa vào h−ớng dẫn của GV. Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 105 Ngày soạn: 07/12/2008 Ngày giảng: 09/12/2008 Tiết 38+39: ôn tập học kỳ i I- Mục tiêu 1) Kiến thức - Hệ thống lại các kiến thức trong học kỳ I. 2) Kỹ năng - Rèn kỹ năng trình bày và kỹ năng áp dụng ph−ơng pháp giải các dạng toán cơ bản vào các bài cụ thể. 3) T− duy - Phát triển t− duy logic, óc t−ởng t−ợng. 4) Thái độ - Cẩn thận, chính xác, nghiêm túc. II- Chuẩn bị của GV và HS 1) Giáo viên Giáo án, SGV, phấn màu. 2) Học sinh Vở ghi, SGK. III- Ph−ơng pháp dạy học Gợi mở, vấn đáp giải quyết vấn đề đan xen HĐ nhóm. IV- Tiến trình bài học 1) Kiểm tra bài cũ (không) 2) Bài mới HĐ1: Ôn tập lại về khảo sát hàm số HĐGV HĐHS Ghi bảng HXy nêu các b−ớc để khảo sát hàm số? 1. Tập xác định Tìm tập xác định của hàm số. 2. Sự biến thiên * Xét chiều biến thiên của hàm số: + Tính đạo hàm y'; + Tìm các điểm tại đó y'=0 hoặc không xác định; + Xét dấu đạo hàm y' và suy ra chiều biến thiên của hàm số. * Tìm cực trị. * Tìm các giới hạn tại vô cực, các giới hạn vô cực và tìm tiệm cận (nếu có). * Lập bảng biến thiên. (Ghi các kết quả tìm đ−ợc vào bảng biến thiên). 3. Đồ thị Khảo sát hàm số Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 106 HĐGV HĐHS Ghi bảng Yêu cầu HS nhắc lại các chú ý khi khảo sát một số hàm th−ờng gặp? Dựa vào kết quả khảo sát để vẽ đồ thị của hàm số. Nhắc lại các chú ý khi khảo sát một số hàm th−ờng gặp. HĐ2: Bài tập về khảo sát hàm số HĐGV HĐHS Ghi bảng GV đ−a ra ví dụ đại diện cho HS nhớ lại về khảo sát hàm số. Xác định đạo hàm y' và giải PT y'=0? Xác định dấu của y'? KL về tính ĐB, NB của hàm số? Từ đó suy ra các điểm cực trị của hàm số? Tính các giới hạn đặc biệt? HXy lập bảng biến thiên của HS? 3' 4 16y x x= − 0 ' 0 2 x y x = = ⇔  = ± Dấu của y': -2 0 2 x + - +- Hàm số ĐB trên các khoảng ( 2;0)− và (2; )+∞ , NB trên khoảng ( ; 2)−∞ − và (0;2) . HS đạt cực đại tại CĐ0; 7x y= = . HS đạt cực tiểu tại CT2; 9x y= ± = − . lim x y →±∞ = +∞ Lên bảng lập bảng biến thiên của hàm số. VD1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số 4 28 7y x x= − + . Giải: (1) Tập xác định: D =ℝ (2) Sự biến thiên Chiều biến thiên 3 2' 4 16 4 ( 4)y x x x x= − = − 0 ' 0 2 x y x = = ⇔  = ± Dấu của 'y : -2 0 2 x + - +- Hàm số ĐB trên các khoảng ( 2;0)− và (2; )+∞ , NB trên các khoảng ( ; 2)−∞ − và (0;2) . * Cực trị HS đạt cực đại tại CĐ0; 7x y= = . HS đạt cực tiểu tại CT2; 9x y= ± = − . * Giới hạn tại vô cực 4 2 4 8 7 lim lim 1 x x y x x x→−∞ →−∞   = − +    = +∞ 4 2 4 8 7 lim lim 1 x x y x x x→+∞ →+∞   = − +    = +∞ * Bảng biến thiên Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 107 HĐGV HĐHS Ghi bảng HXy tìm giao của đồ thị hàm số với trục tung? HXy tìm giao của đồ thị hàm số với trục hoành? GV h−ớng dẫn HS vẽ đồ thị của hàm số. Nhấn mạnh lại cho HS đồ thị hàm số luôn đối xứng qua trục tung. Cho x=0 và tìm y. Cho y=0, giải PT thu đ−ợc để tìm x. Quan sát, ghi nhận kiến thức. (3) Đồ thị Cho 0 7x y= ⇒ = , vậy đồ thị hàm số cắt trục Oy tại điểm (0;7). Cho 1 0 7 x y x = ± = ⇒  = ± vậy đồ thị hàm số cắt Ox tại (-1;0),(1;0),( 7;0)− và ( 7;0) . Đồ thị: 1 7 -9 y x -1 O -2 2 HĐGV HĐHS Ghi bảng GV đ−a ra ví dụ: Nhắc lại ph−ơng pháp làm bài tập dạng trên? H−ớng dẫn HS biến đổi PT trên về dạng: − + = +4 28 7 7x x m rồi sử dụng đồ thị để biện luận. HXy dựa vào đồ thị biện luận số nghiệm của PT trên? Biện luận dựa theo hình vẽ. Khi 7 -9 m + < hay -16m < thì PT vô nghiệm. Khi 7 9 7 7 m m + = − hay có hai nghiệm. Khi 7 7m + = hay 0m = thì PT có 3 nghiệm. Khi 9 7 7m− < + < hay VD2: Dựa vào đồ thị đX khảo sát ở trên hXy biện luận theo tham số m số nghiệm của PT: − = 4 28x x m Giải: Ta đ−a PT về dạng: − + = +4 28 7 7x x m 1 -9 -2 y=m+7 Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 108 HĐGV HĐHS Ghi bảng H−ớng dẫn HS một số khảo sát hàm số cho HS nh− viết PTTT, tìm GTLN, GTNN của hàm số, các trị. 16 0m− < < thì PT có 4 nghiệm. Ghi nhận kiến thức. 3) Củng cố, dặn dò Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 109 Ngày soạn: 14/12/2008 Ngày giảng: 16/12/2008 Tiết 39: ôn tập học kỳ i (Tiếp) 1) Kiểm tra bài cũ Câu hỏi: CM rằng HS 2y x x= − + nghịch biến trên khoảng (3;5)? 2) Bài mới HĐ1: Ôn tập lại về mũ và lôgarit HĐGV HĐHS Ghi bảng HXy nêu các tính chất của lũy thừa và lôgarit? HXy nhắc lại các kiến thức cơ bản về PT mũ và PT lôgarit (các dạng, cách giải,...) Tính chất của lũy thừa: Cho ,a b là những số thực; ,α β là những số thực tùy ý. Khi đó ta luôn có: .a a aα β α β+= a a a α α β β − = ( ) .a aβα α β= ( . ) .a b a bα α α= a a b b α α α   =    Tính chất của lôgarit: log 1 0 a = , log 1 a a = loga ba b= , ( )loga aα α= Cho ba số d−ơng 1 2, ,a b b với 1a ≠ ta có: ( )1 2 1 2log log loga a ab b b b= + 1 2 2 1 2 2 2 log log logb b b b   = −    Cho hai số d−ơng , ; 1a b a ≠ . Với mọi α ta đều có log loga ab b α α= Nhắc lại kiến thức. PT, BPT mũ và lôgarit HĐ2: Bài tập về PT mũ và PT lôgarit HĐGV HĐHS Ghi bảng GV thông qua ví dụ đại Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 110 HĐGV HĐHS Ghi bảng diện cho HS nhớ lại cách giải PT mũ: H−ớng dẫn HS 22log x chính là 22(log )x từ đó dẫn HS đến việc đặt 2log x t= . t có cần điều kiện không? HXy thay trở lại để tìm x? Ta có lấy cả hai nghiệm không? GV thông qua ví dụ đại diện cho HS nhớ lại cách giải PT lôgarit: H−ớng dẫn HS đ−a về cùng cơ số 3: Đây là PT lôgarit cơ bản. HXy giải PT trên? Cho HS nhắc lại một số PP giải PT lôgarit? ( )2 25 5= xx Không cần điều kiện. Thay trở lại để tìm x. Lấy cả hai nghiệm. Ta biến đổi 29 33 1log log log 2 = =x x x 43=x Nhắc lại về một số PP giải PT lôgarit. VD1: Giải ph−ơng trình: 2 2 2log 3log 2 0− + =x x Giải: Đặt 2log x t= . Ta có ph−ơng trình: 2 3 2 0− + =t t 1 2 t t = ⇔  = Thay trở lại ta có: 1 2 2 2 log 1 2 2 log 2 2 4 x x x x = = = ⇔  = = =  Vậy PT có hai nghiệm x=2 và x=4. VD2: Giải ph−ơng trình: 3 9log log 6+ =x x Giải: Ta biến đổi ph−ơng trình nh− sau: 23 3log log 6+ =x x 3 3 1log log 6 2 ⇔ + =x x 3 3 log 6 2 ⇔ =x 3log 4⇔ =x 43⇔ =x Vậy PT có nghiệm 43=x . HĐ3: Bài tập về BPT mũ và BPT lôgarit HĐGV HĐHS Ghi bảng GV đ−a ra bài tập đại diện: Ta dùng ph−ơng pháp nào để giải? Yêu cầu HS lên bảng để giải? GV nhận xét, bổ sung nếu có. Qua bài tập trên GV nhắc Đ−a về cùng cơ số 2. Lên bảng trình bày lời giải. Nhận xét bài làm. VD3: Giải BPT: 2 0,5log log 1x x− ≤ Giải: 2 2log log 1BPT x x⇔ + ≤ 2 2 2log 1 2 2 2 x x x ⇔ ≤ ⇔ ≤ ⇔ − ≤ ≤ ta có nghiệm của BPT là: 0 2x< ≤ hay (0; 2]x∈ Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 111 HĐGV HĐHS Ghi bảng lại về ph−ơng pháp giải BPT mũ cho HS. Ghi nhận kiến thức. 3) Củng cố, dặn dò