Toán Hình 7 Có Lời Giải / Top 11 # Xem Nhiều Nhất & Mới Nhất 6/2023 # Top View | Ictu-hanoi.edu.vn

Các Bài Toán Hình Học Lớp 9 Có Lời Giải

, Working at Trường Đại học Công nghệ Thông tin và Truyền thông – Đại học Thái Nguyên

Published on

Cac bai-toan-hinh-hoc-on-thi-vao-lop-10

4. N y x O K F E M BA 3. Rõ ràng đây là câu hỏi khó đối với một số em, kể cả khi hiểu rồi vẫn không biết giải như thế nào , có nhiều em may mắn hơn vẽ ngẫu nhiên lại rơi đúng vào hình 3 ở trên từ đó nghĩ ngay được vị trí điểm C trên nửa đường tròn. Khi gặp loại toán này đòi hỏi phải tư duy cao hơn. Thông thường nghĩ nếu có kết quả của bài toán thì sẽ xảy ra điều gì ? Kết hợp với các giả thiết và các kết quả từ các câu trên ta tìm được lời giải của bài toán. Với bài tập trên phát hiện M là trực tâm của tam giác không phải là khó, tuy nhiên cần kết hợp với bài tập 13 trang 72 sách Toán 9T2 và giả thiết M là điểm chính giữa cung AC ta tìm được vị trí của C ngay. Với cách trình bày dưới mệnh đề “khi và chỉ khi” kết hợp với suy luận cho ta lời giải chặt chẽ hơn. Em vẫn có thể viết lời giải cách khác bằng cách đưa ra nhận định trước rồi chứng minh với nhận định đó thì có kết quả , tuy nhiên phải trình bày phần đảo: Điểm C nằm trên nửa đường tròn mà thì AD là tiếp tuyến. Chứng minh nhận định đó xong ta lại trình bày phần đảo: AD là tiếp tuyến thì . Từ đó kết luận. 4. Phát hiện diện tích phần tam giác ADC ở ngoài đường tròn (O) chính là hiệu của diện tích tứ giác AOCD và diện tích hình quạt AOC thì bài toán dễ tính hơn so với cách tính tam giác ADC trừ cho diện tích viên phân cung AC. Bài 3 Cho nửa đường tròn (O) đường kính AB = a. Gọi Ax, By là các tia vuông góc với AB ( Ax, By thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (O) (M khác A và B) kẻ tiếp tuyến với nửa đường tròn (O); nó cắt Ax, By lần lượt ở E và F. 1. Chứng minh: 2. Chứng minh tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. 3. Gọi K là giao điểm của AF và BE, chứng minh . 4. Khi MB = .MA, tính diện tích tam giác KAB theo a. BÀI GIẢI CHI TIẾT 1. Chứng minh: . EA, EM là hai tiếp tuyến của đường tròn (O) cắt nhau ở E nên OE là phân giác của . Tương tự: OF là phân giác của . Mà và kề bù nên: (đpcm) hình 4 2. Chứng minh: Tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. ” 0 60BC =” 0 60BC = · 0 EOF 90= MK AB⊥ 3 · 0 EOF 90= ·AOM ·BOM ·AOM·BOM· 0 90EOF =

5. Ta có: (tính chất tiếp tuyến) Tứ giác AEMO có nên nội tiếp được trong một đường tròn. Tam giác AMB và tam giác EOF có:, (cùng chắn cung MO của đường tròn ngoại tiếp tứ giác AEMO. Vậy Tam giác AMB và tam giác EOF đồng dạng (g.g). 3. Gọi K là giao điểm của AF và BE, chứng minh . Tam giác AEK có AE

6. x H Q I N M O C BA K x H Q I N M O C BA Nếu chú ý MK là đường thẳng chứa đường cao của tam giác AMB do câu 3 và tam giác AKB và AMB có chung đáy AB thì các em sẽ nghĩ ngay đến định lí: Nếu hai tam giác có chung đáy thì tỉ số diện tích hai tam giác bằng tỉ số hai đường cao tương ứng, bài toán qui về tính diện tích tam giác AMB không phải là khó phải không các em? Bài 4 Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC (C là tiếp điểm). Hạ CH vuông góc với AB, đường thẳng MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Gọi giao điểm của MO và AC là I. Chứng minh rằng: a) Tứ giác AMQI nội tiếp. b) . c) CN = NH. (Trích đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của sở GD&ĐT Tỉnh Bắc Ninh) BÀI GIẢI CHI TIẾT a) Chứng minh tứ giác AMQI nội tiếp: Ta có: MA = MC (tính chất hai tếp tuyến cắt nhau) OA = OC (bán kính đường tròn (O)) Do đó: MO AC . (góc nội tiếp chắn nửa đường tròn (O)) . Hai đỉnh I và Q cùng nhìn AM dưới Hình 5 một góc vuông nên tứ giác AMQI nội tiếp được trong một đường tròn. b) Chứng minh:. Tứ giác AMQI nội tiếp nên Hình 6 (cùng phụ ) (2). có OA = OC nên cân ở O. (3). Từ (1), (2) và (3) suy ra . c) Chứng minh CN = NH. Gọi K là giao điểm của BC và tia Ax. Ta có: (góc nội tiếp chắn nửa đường tròn(O)). AC BK , AC OM OM

8. · · · · CDB CAB CAB CFA  =  = x F E D C B O A Từ (1) và (2) suy ra: chúng tôi = chúng tôi c) Chứng minh tứ giác CDEF nội tiếp: Ta có: (hai góc nội tiếp cùng chắn cung BC) ( cùng phụ ) Do đó tứ giác CDEF nội tiếp. Cách khác và có: chung và (suy từ chúng tôi = chúng tôi nên chúng đồng dạng (c.g.c). Suy ra: . Vậy tứ giác CDEF là tứ giác nội tiếp. d) Xác định số đo của góc ABC để tứ giác AOCD là hình thoi: Ta có: (do BD là phân giác ) . Tứ giác AOCD là hình thoi OA = AD = DC = OC AD = DC = R Vậy thì tứ giác AOCD là hình thoi. Tính diện tích hình thoi AOCD theo R: . Sthoi AOCD = (đvdt). Hình 8 Lời bàn 1. Với câu 1, từ gt BD là phân giác góc ABC kết hợp với tam giác cân ta nghĩ ngay đến cần chứng minh hai góc so le trong và bằng nhau. 2. Việc chú ý đến các góc nội tiếp chắn nửa đường tròn kết hợp với tam giác AEB, FAB vuông do Ax là tiếp tuyến gợi ý ngay đến hệ thức lượng trong tam giác vuông quen thuộc. Tuy nhiên vẫn có thể chứng minh hai tam giác BDC và BFE đồng dạng trước rồi suy ra chúng tôi = chúng tôi Với cách thực hiện này có ưu việc hơn là giải luôn được câu 3. Các em thử thực hiện xem sao? 3. Khi giải được câu 2 thì câu 3 có thể sử dụng câu 2 , hoặc có thể chứng minh như bài giải. 4. Câu 4 với đề yêu cầu xác định số đo của góc ABC để tứ giác AOCD trở thành hình thoi không phải là khó. Từ việc suy luận AD = CD = R nghĩ ngay đến cung AC bằng 1200 từ đó suy ra số đo góc ABC ·FAC· ·CDB CFA⇒ = ∆DBC∆FBE∆ µBBD BC BF BE = · ·EFBCDB = · ·ABD CBD=·ABC” “AD CD⇒ = ⇔ ⇔” ” 0 60AD DC⇔ = =” 0 120AC⇔ =· 0 60ABC⇔ = · 0 60ABC = ” 0 120 3AC AC R= ⇒ = 2 1 1 3 . . . 3 2 2 2 R OD AC R R= = ·ODB·OBD ” 0 120 3AC AC R= ⇒ =

9. H N F E CB A bằng 600 . Tính diện tích hình thoi chỉ cần nhớ công thức, nhớ các kiến thức đặc biệt mà trong quá trình ôn tập thầy cô giáo bổ sung như ,…….. các em sẽ tính được dễ dàng. Bài 6 Cho tam giác ABC có ba góc nhọn. Đường tròn đường kính BC cắt cạnh AB, AC lần lượt tại E và F ; BF cắt EC tại H. Tia AH cắt đường thẳng BC tại N. a) Chứng minh tứ giác HFCN nội tiếp. b) Chứng minh FB là phân giác của . c) Giả sử AH = BC . Tính số đo góc của ∆ABC. BÀI GIẢI CHI TIẾT a) Chứng minh tứ giác HFCN nội tiếp: Ta có : (góc nội tiếp chắn nửa đường tròn đường kính BC) Tứ giác HFCN có nên nội tiếp được trong đường tròn đường kính HC) (đpcm). b) Chứng minh FB là tia phân giác của góc EFN: Ta có (hai góc nội tiếp cùng chắn của đường tròn đường kính BC). (hai góc nội tiếp cùng chắn của đường tròn đường kính HC). Suy ra: . Vậy FB là tia phân giác của góc EFN (đpcm) c) Giả sử AH = BC. Tính số đo góc BAC của tam giác ABC: FAH và FBC có: , AH = BC (gt), (cùng phụ ). Vậy FAH = FBC (cạnh huyền- góc nhọn). Suy ra: FA = FB. AFB vuông tại F; FA = FB nên vuông cân. Do đó . Bài 7 (Các em tự giải) Cho tam giác ABC nhọn, các đường cao BD và CE cát nhau tại H. a) Chứng minh tứ giác BCDE nội tiếp. b) Chứng minh AD. AC = AE. AB. c) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh OA DE. ·EFN ·BAC · · 0 90BFC BEC= = · · 0 180HFC HNC+ = · ·EFB ECB=”BE · ·ECB BFN=¼HN · ·EFB BFN= ∆∆· · 0 AFH 90BFC= =· ·FAH FBC=·ACB∆∆ ∆· 0 45BAC = ⊥

10. =

11. O P K M H A C B Bài 9 Cho tam giác ABC ( ) nội tiếp trong nửa đường tròn tâm O đường kính AB. Dựng tiếp tuyến với đường tròn (O) tại C và gọi H là chân đường vuông góc kẻ từ A đến tiếp tuyến đó. AH cắt đường tròn (O) tại M (M ≠ A). Đường vuông góc với AC kẻ từ M cắt AC tại K và AB tại P. a) Chứng minh tứ giác MKCH nội tiếp. b) Chứng minh ∆MAP cân. c) Tìm điều kiện của ∆ABC để ba điểm M, K, O thẳng hàng. BÀI GIẢI a) Chứng minh tứ giác MKCH nội tiếp: Ta có : (gt), (gt) Tứ giác MKCH có tổng hai góc đối nhau bằng 1800 nên nội tiếp được trong một đường tròn. b) Chứng minh tam giác MAP cân: AH

12. / /

13. H / / = = P O K I N M C BA a) Chứng minh tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó: Ta có (góc nội tiếp chắn nửa đường tròn (O)). Do đó: Tứ giác ICPN có nên nội tiếp được trong một đường tròn. Tâm K của đường tròn ngoại tiếp tứ giác ICPN là trung điểm của đoạn thẳng IP. b) Chứng minh KN là tiếp tuyến của đường tròn (O). Tam giác INP vuông tại N, K là trung điểm IP nên . Vậy tam giác IKN cân ở K . Do đó (1). Mặt khác (hai góc nội tiếp cùng chắn cung PN đường tròn (K)) (2) N là trung điểm cung CB nên . Vậy NCB cân tại N. Do đó : (3). Từ (1), (2) và (3) suy ra , hai góc này ở vị trí đồng vị nên KN

14. / /

15. 60° O J IN M B A a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). b) Kẻ các đường kính MOI của đường tròn (O; R) và MBJ của đường tròn (B; BM). Chứng minh N, I và J thẳng hàng và JI . JN = 6R2 c) Tính phần diện tích của hình tròn (B; BM) nằm bên ngoài đường tròn (O; R) theo R. BÀI GIẢI a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). Ta có . (góc nội tiếp chắn nửa đường tròn(O)). Điểm M và N thuộc (B;BM); AM MB và AN NB. Nên AM; AN là các tiếp tuyến của (B; BM). b) Chứng minh N; I; J thẳng hàng và JI .JN = 6R2 . (các góc nội tiếp chắn nửa đường tròn tâm O và tâm B). Nên IN MN và JN MN . Vậy ba điểm N; I và J thẳng hàng. Tam giác MJI có BO là đường trung bình nên IJ = 2BO = 2R. Tam giác AMO cân ở O (vì OM = OA), nên tam giác MAO đều. AB MN tại H (tính chất dây chung của hai đường tròn (O) và (B) cắt nhau). Nên OH = . Vậy HB = HO + OB = . Vậy JI . JN = 2R . 3R = 6R2 c) Tính diện tích phần hình tròn (B; BM) nằm ngoài đường tròn (O; R) theo R: Gọi S là diện tích phần hình tròn nằm (B; BM) nằm bên ngoài hình tròn (O; R). S1 là diện tích hình tròn tâm (B; BM). S2 là diện tích hình quạt MBN. S3 ; S4 là diện tích hai viên phân cung MB và NB của đường tròn (O; R). Ta có : S = S1 – (S2 + S3 + S4). Tính S1: . Vậy: S1 = . Tính S2: S2 = = Tính S3: S3 = Squạt MOB – SMOB. Squạt MOB = . OA = OB SMOB = SAMB = = = Vậy S3 = = S4 (do tính chất đối xứng). Từ đó S = S1 – (S2 + 2S3) · · 0 90AMB ANB= = ⊥ ⊥ · · 0 90MNI MNJ= =⊥⊥ · 0 60MAO = ⊥ 1 1 2 2 OA R= 3 2 2 R R R+ = 3 2. 3 2 R NJ R⇒ = = · “0 0 60 120MAB MB= ⇒ =3MB R⇒ = ( ) 2 2 3 3R Rπ π= · 0 60MBN = ⇒ ( ) 2 0 0 3 60 360 Rπ 2 2 Rπ · 0 120MOB = ⇒2 0 2 0 .120 360 3 R Rπ π = ⇒1 2 1 1 . . . 2 2 AM MB 1 . 3 4 R R 2 3 4 R 2 3 Rπ 2 3 4 R −

16. _

17. E I K H ON M D C BA S1 là diện tích nửa hình tròn đường kính MB. S2 là diện tích viên phân MDB. Ta có S = S1 – S2 . Tính S1: . Vậy S1 = . Tính S2: S2 = SquạtMOB – SMOB = = . S = ( ) = . Bài 15 Cho đường tròn (O) đường kính AB bằng 6cm . Gọi H làđiểm nằm giữa A và B sao cho AH = 1cm. Qua H vẽ đường thẳng vuông góc với AB , đường thẳng này cắt đường tròn (O) tại C và D. Hai đường thẳng BC và DA cắt nhau tại M. Từ M hạ đường vuông góc MN với đường thẳng AB ( N thuộc thẳng AB). a) Chứng minh MNAC là tứ giác nội tiếp. b) Tính độ dài đoạn thẳng CH và tính tg. c) Chứng minh NC là tiếp tuyến của đường tròn (O). d) Tiếp tuyến tại A của đường tròn (O) cắt NC ở E. Chứng minh đường thẳng EB đi qua trung điểm của đoạn thẳng CH. BÀI GIẢI a) Chứng minh tứ giác MNAC nội tiếp: (góc nội tiếp chắn nửa đường tròn) Suy ra . Tứ giác MNAC có nên nội tiếp được trong một đường tròn. b) Tính CH và tg ABC. AB = 6 (cm) ; AH = 1 (cm) HB = 5 (cm). Tam giác ACB vuông ở C, CH AB CH2 = AH . BH = 1 . 5 = 5 (cm). Do đó tg ABC = . c) Chứng minh NC là tiếp tuyến của đường tròn (O): Ta có (hai góc nội tiếp cùng chắn cung AN của đường tròn ngoại tiếp tứ giác MNAC). (so le trong của MN

18. / /? _ αK E H M O D C B A Gọi K là giao điểm của AE và BC; I là giao điểm của CH và EB. KE//CD (cùngvới AB) (đồng vị). (cùng chắn cung BD). (đối đỉnh) và (cùng chắn ). Suy ra: cân ở E. Do đó EK = EC. Mà EC = EA (tính chất hai tiếp tuyến cắt nhau) nên EK = EA. có CI

Tuyển Chọn Các Bài Toán Hay Về Hình Học Phẳng Có Lời Giải Hướng Dẫn

Các kì thi HSG tỉnh và thành phố nhằm chọn ra đội tuyển tham dự kỳ thi học sinh giỏi Quốc gia trong năm học 2010 – 2011 đã diễn ra sôi nổi vào những ngày cuối năm trước và đã để lại nhi ề u ấn tượng sâu sắc. Bên cạnh những bất đẳng thức, những hệ phương trình hay những bài toán số học, tổ hợp, ta không thể quên được dạng toán vô cùng quen thuộc, vô cùng thú vị và cũng xuất hiện thường trực hơn cả, đó chính là những bài toán hình học phẳng. Nhìn xuyên suốt qua các bài toán ấy, ta sẽ phát hiện ra sự xuất hiện của những đường tròn, những tam giác, tứ giác; cùng với những sự k ế t hợp đặc biệt, chúng đã tạo ra nhi ề u vấn đ ề thật đẹp và thật hấp dẫn. Có nhi ề u bài phát biểu thật đơn giản nhưng ẩn chứa đằng sau đó là những quan hệ khó và chỉ có thể giải được nhờ những định lý, những ki ế n thức ở mức độ nâng cao như: định lý Euler, đường tròn mixtilinear, định lý Desargues, điểm Miquel,… Rồi cũng có những bài phát biểu thật dài, hình vẽ thì phức tạp nhưng lại được giải quy ế t bằng một sự k ế t hợp ngắn gọn và khéo léo của những đi ề u quen thuộc để tạo nên lời giải ấn tượng.

Nhằm tạo cho các bạn yêu Toán có một tài liệu tham khảo đầy đủ và hoàn chỉnh v ề những nội dung này, chúng tôi đã dành thời gian để tập hợp các bài toán, trình bày lời giải thật chi ti ế t và sắp x ế p chúng một cách tương đối theo mức độ dễ đ ế n khó v ề lượng ki ế n thức cần dùng cũng như hướng ti ế p cận. Với ề nội dung, mong rằng “ề u hơn nét đẹp cực kì quy ế n rũ của bộ môn này! hơn 50 bài toán đa dạng v ề hình thức và phong phú v Tuyển chọn các bài toán hình học phẳng trong đ ề thi học sinh giỏi các tỉnh, thành phố năm học 2010 – 2011” sẽ giúp cho các bạn có dịp thưởng thức, cảm nhận, ngắm nhìn nhi

Xin chân thành cảm ơn các tác giả đ ề bài, các thành viên của diễn đàn http://forum.mathscope.org đã gửi các đ ề toán và trình bày lời giải lên diễn đàn.

Cảm ơn các bạn.

Phan Đức Minh – Lê Phúc Lữ

Cách Giải Bài Tập Về Mô Hình Is Lm Có Lời Giải Dễ Hiểu

Bài tập về mô hình IS LM là một phần của môn học Kinh tế vĩ mô, đây được xem là môn học gây nhiều khó khăn cho sinh viên bởi sự phức tạp của môn học. Kinh tế vĩ mô có hai dạng bài tập chủ yếu. Một dạng là về chính sách tài khóa, tổng cầu cũng như là xác định cân bằng. Dạng tiếp theo là về cung, lãi suất và các chính sách về tiền tệ. Để tìm hiểu bài tập về mô hình IS LM chúng ta sẽ tìm hiểu lần lượt các dạng bài tập và lời giải sau đây.

Dạng 1: Công thức chung thường được sử dụng cho bài tập về mô hình IS LM là AD=c+I+G+Ex-Im.

Bài tập ví dụ: Trong nền kinh tế mở, biết: C=145+o,75Yd; I=135; G=550; Ex= 298; MPM=0.4.

Yêu cầu:

Tính hàm số tổng cầu và sản lượng cân bằng. 

Giả sử xu hướng nhập khẩu cận biên giảm xuống còn 0,25; sản lượng cân bằng và cán cân thương mại thay đổi như thế nào?

Nếu sản lượng tiềm năng là 1685 thì nền kinh tế bị tác động như thế nào bởi việc thay đổi xu hướng nhập khẩu cận biên?

Chính phủ sẽ đưa ra chính sách ứng phó như thế nào nếu muốn mục tiêu của là đảm bảo sản lượng thực tế bằng sản lượng tiềm năng? Hãy giải thích và minh họa bằng đồ thị.

Như vậy bài tập về mô hình IS LM có lời giải như sau:

Chính phủ sẽ thực hiện chính sách tài khóa thắt chặt hoặc thắt chặt lại tiền tệ.

Dạng 2: sử dụng phương trình đường thẳng IS, LM.

Bài tập về mô hình IS LM ví dụ:

C=150+0,7Yd; G=150; Ex=290; Im=0,14; MD=40+ 0,2Y-10i; T=20+0,2Y; I=80-12i; MS=200; P=1.

Yêu cầu:

Viết phương trình IS; LM. Tính lãi suất và sản lượng, biểu diễn trên biểu đồ các chỉ số ấy.

Khi Chính phủ tăng chi tiêu thêm 60, sản lượng và lãi suất thay đổi như thế nào? Việc Chính phủ thực hiện chính sách trên đã gây ra tác động gì đối với nền kinh tế? Nếu không có tác động này thì mức sản lượng cao nhất có thể đạt được là bao nhiêu? Để đạt được mức sản lượng này thì Chính phủ phải có những biện pháp gì?

Lời giải cho bài tập về mô hình IS LM ở dạng 2:

Phương trình đường IS:AD=C+I+G+Ex-Im=656-12i+0,42Y

Lãi suất và sản lượng là nghiệm của hệ PT IS và LM: Y=1034; i=4,68.

Lãi suất và sản lượng cân bằng mới là nghiệm của hệ phương trình IS1 và LM: Y1=1107; i1=6,15.

Nhận xét: G tăng, nền kinh tế tăng trưởng nhưng rơi vào lạm phát. 

Hiện tượng thoái lui đầu tư với quy mô bằng 1137,65-1107=30,65.

MS tăng=MS(E2)-MS(E1).

Skkn Giải Toán Có Lời Văn

I. TÊN ĐỀ TÀI:MỘT SỐ BIỆN PHÁP RÈN KĨ NĂNG GIẢI TOÁN CÓ LỜI VĂN Ở LỚP 4

II. ĐẶT VẤN ĐỀ: Hồ Chủ Tịch người thầy vĩ đại của Đảng, của Cách mạng Việt Nam đã nói: ” Muốn có đạo đức Cách mạng thì phải có tri thức”. Thật vậy, tri thức trong xã hội là chìa khóa vạn năng để mở tất cả các cửa của vũ trụ, của loài người. Muốn có tri thức thì phải học và phải học thật tốt. Việc học phải trải qua quá trình nghiền ngẫm, suy luận, tìm tòi mới có được. Một trong những nhiệm vụ quan trọng nhất của nhà trường hiện nay là hình thành, phát triển trí tuệ cho học sinh. Những nghiên cứu gần đây Hồ Ngọc Đại,…. cho thấy chỉ thực hiện nhiệm vụ đó bằng cách tổ chức hoạt động học tập ngay từ khi trẻ tới trường tiểu học.Các môn học nói chung, môn Toán nói riêng tùy theo đặc trưng bộ môn đều có nhiệum vụ, thông qua việc trau dồi kiến thức, rèn luyện kĩ năng và góp phần tích cực vào việc đào tạo con người. Quan điểm dạy Toán, dạy người cũng được Đảng ta nhiều lần nhấn mạnh. Trong thư gửi các bạn trẻ yêu Toán, đồng chí Phạm Văn Đồng đã nói về khả năng giáo dục của môn Toán như sau: ” Trong các môn Khoa học và Kĩ thuật, Toán học giữ một vai trò nổi bật. Nó có tác dụng lớn đối với các ngành khoa học khác, đối với kĩ thuật, sản xuất và chiến đấu. Nó còn là môn thể thao trí tuệ giúp chúng ta nhiều trong việc rèn luyện phương pháp suy nghĩ, phương pháp suy luận, học tập và giải quyết vấn đề. Toán còn giúp cho ta rèn luyện đức tính quý báu như: cần cù, nhẫn nại, tự lực cánh sinh, ý chí vượt khó, yêu thích chính xác, ham chuộng chân lí. Dù các bạn phụ vụ ngành nào, công tác gì thì kiến thức và phương pháp Toán học cũng cần cho các bạn”. Môn Toán có một vị trí quan trọng như vậy cho nên chúng ta cần xây dựng một nền tảng vững chắc ngay từ những lớp đầu cấp một cách rõ ràng, ngắn gọn và logic. Thế nhưng trong thực tế ở những năm qua và cả năm học này tôi được phân công phụ trách lớp 4/2 với 40 học sinh. Qua khảo sát chất lượng đầu năm tôi thấy chất lượng giải toán của lớp mình phụ trách chưa đạt yêu cầu. Và đây cũng là điều làm tôi suy nghĩ nhiều vì nếu các em giải toán còn yếu thì làm sao có thể tiếp thu được các bài toán bằng cách dựa vào sơ đồ đoạn thẳng, dùng chữ thay số, rút về đơn vị ….. đồng thời nó còn ảnh hưởng đến các môn học khác như Tập làm văn, Luyện từ và câu…. Chính vì thế tôi đã nghiên cứu và chọn đề tài:

MỘT SỐ BIỆN PHÁP RÈN KĨ NĂNG GIẢI TOÁN CÓ LỜI VĂN Ở LỚP 4

III. CƠ SỞ LÝ LUẬN: Dạy Toán ở tiểu học nói chung, ở lớp 4 nói riêng nhằm giúp cho học sinh vận dụng những kiến thức về toán vào các tình huống thực tiễn đa dạng, phong phú, những vấn đề thường gặp trong cuộc sống. Nhờ giải toán, học sinh có điều kiện phát triển năng lực tư duy, rèn luyện phương pháp suy luận và những phẩm chất cần thiết của người lao động mới. Vì giải toán là một hoạt động bao gồm những thao tác: xác lập mối quan hệ giữa các dữ liệu, giữa cái đã cho với cái cần tìm, trên cơ sở đó chọn được phép tính tích hợp và trả lời đúng câu hỏi của bài toán. Để tiến hành thực hiện đổi mới phương pháp trong giảng dạy môn Toán lớp 4, bản thân đã tích hợp nhiều yếu tố, phương pháp nhằm tìm ra một hướng đi tích hợp, với mục đích mong muốn giúp các em nắm vững kĩ năng giải toán có lời văn ở lớp 4 thông qua các cơ sở sau: – Dựa vào SGK Toán 4, SGV Toán 4, sách tham khảo giảng dạy, chương trình bồi dưỡng thường xuyên chu kỳ III, sách bài tập toán 4,…..

IV. CƠ SỞ THỰC TIỄN: Tình hình dạy học giải toán của giáo viên hiện nay đang được áp dụng phương pháp nêu vấn đề để rồi học sinh tự tìm hướng giải quyết. Song học sinh lại lúng túng với phương pháp này vì các em không biết tìm ” khóa” để mở bài toán ( đặc biệt toán hợp ). Nếu giáo viên giảng giải nhiều sẽ bị coi là không đổi mới phương pháp và cũng đồng thời không phát huy được tính tích cực trong học tập của học sinh. Bản thân học sinh không biết cách trình bày bài giải thế nào hoặc không xác định được dạng toán điển hình để có những bước tính phù hợp. Đó chính là những khó khăn khi dạy toán ở tiểu học