Toán Lớp 5 Có Lời Giải / Top 11 # Xem Nhiều Nhất & Mới Nhất 6/2023 # Top View | Ictu-hanoi.edu.vn

Skkn Giải Toán Có Lời Văn Lớp 5

SÁNG KIẾN KINH NGHIỆMĐề tài

HƯỚNG DẪN HỌC SINH THỰC HIỆN TỐT CÁCH GIẢI BÀI TOÁN CÓ LỜI VĂN – LỚP 5( Dạng toán : ” Toán chuyển động đều ” )

I /- ĐẶT VẤN ĐỀ :Toán học có vị trí rất quan trọng phù hợp với cuộc sống thực tiễn, đó cũng là công cụ cần thiết cho các môn học khác và để giúp cho học sinh nhận thức thế giới xung quanh, để hoạt động có hiệu quả trong mọi lĩnh vực.Khả năng giáo dục nhiều mặt của môn toán rất to lớn: Nó phát triển tư duy, trí tuệ, có vai trò quan trọng trong việc rèn luyện tính suy luận, tính khoa học toàn diện, chính xác, tư duy độc lập sáng tạo, linh hoạt, góp phần giáo dục tính nhẫn nại, ý chí vượt khó khăn.Từ vị trí và nhiệm vụ vô cùng quan trọng của môn toán, vấn đề đặt ra cho người thầy là làm thế nào để giờ dạy – học toán có hiệu quả cao, học sinh phát triển tính tích cực, chủ động sáng tạo trong việc chiếm lĩnh kiến thức toán học. Theo tôi, các phương pháp dạy học bao giờ cũng phải xuất phát từ vị trí, mục đích và nhiệm vụ, mục tiêu giáo dục của bài học môn toán. Nó không phải là cách thức truyền thụ kiến thức, cách giải toán đơn thuần mà là phương tiện tinh vi để tổ chức hoạt động nhận thức tích cực, độc lập và giáo dục phong cách làm việc một cách khoa học, hiệu quả.Hiện nay, giáo dục tiểu học đang thực hiện yêu cầu đổi mới phương pháp dạy học theo hướng phát huy tính tích cực của học sinh, làm cho hoạt động dạy học trên lớp “nhẹ nhàng, tự nhiên, hiệu quả”. Để đạt được yêu cầu đó, giáo viên phải có phương pháp và hình thức dạy học để vừa nâng cao hiệu quả cho học sinh, vừa phù hợp với đặc điểm tâm sinh lý của lứa tuổi tiểu học và trình độ nhận thức của học sinh, để đáp ứng với công cuộc đổi mới của đất nước nói chung và của ngành giáo dục tiểu học nói riêng.Trong chương trình môn toán tiểu học, giải toán có lời văn giữ một vai trò quan trọng . Thông qua việc giải toán, học sinh tiểu học thấy được nhiều khái niệm trong toán học như các số, các phép tính, các đại lượng, các yếu tố hình học . . . đều có nguồn gốc trong cuộc sống hiện thực, trong thực tiễn hoạt động của con người, thấy được mối quan hệ biện chứng giữa các sự kiện, giữa cái đã cho và cái phải tìm. Qua việc giải toán sẽ rèn luyện cho học sinh năng lực tư duy và những đức tính của con người mới, có ý thức vượt khó khăn, đức tính cẩn thận, làm việc có kế hoạch, thói quen xét đoán có căn cứ, thói quen tự kiểm tra kết quả công việc mình làm và độc lập suy nghĩ, óc sáng tạo giúp học sinh vận dụng các kiến thức, rèn luyện kĩ năng tính toán, kĩ năng ngôn ngữ. Đồng thời qua việc giải toán của học sinh mà giáo viên có thể dễ dàng phát hiện những ưu điểm, thiếu sót của các em về kiến thức, kĩ năng, tư duy để giúp học sinh phát huy những mặt được và khắc phục những mặt thiếu sót.Chính vì vậy, tôi chọn đề tài ” Hướng dẫn học sinh thực hiện tốt cách giải bài toán có lời văn lớp 5 ( Dạng: Toán chuyển động đều ) ” với mong muốn đưa ra giải pháp nhằm nâng cao chất lượng học toán và giúp học sinh lớp 5 biết cách giải bài toán có lời văn đạt hiệu quả cao hơn. Nhưng trong thực tế giảng dạy môn Toán – giải bài toán có lời văn, bản thân tôi cũng gặp nhiều khó khăn như sau :

II / – KHÓ KHĂN: Đa số học sinh xem môn toán là môn học khó khăn, dễ chán. Trình độ nhận thức của học sinh không đồng đều : một số học sinh còn chậm, nhút nhát, kĩ năng tóm tắt bài toán còn hạn chế, chưa có thói quen đọc và tìm hiểu bài toán, dẫn tới thường nhầm lẫn giữa các dạng toán, lựa chọn phép tính còn sai, chưa bám sát vào yêu cầu bài toán để tìm lời giải thích hợp với các phép tính. Một số em tiếp thu bài một cách thụ động, ghi nhớ bài còn máy móc nên còn chóng quên các dạng bài toán.Từ những khó khăn trên, để giúp học sinh có kĩ năng giải bài toán có lời văn ở lớp 5, với dạng bài toán ” chuyển động đều ” đạt hiệu quả, bản thân tôi đã thực hiện và tổ chức các hoạt động như sau:

III / – GIẢI PHÁP KHẮC PHỤC:Giải toán đối với học sinh là một hoạt động trí tuệ khó khăn, phức tạp. Việc hình thành kĩ năng giải toán khó hơn nhiều so với kĩ năng tính vì bài

500 Bài Toán Nâng Cao Lớp 5 Có Lời Giải

500 bài Toán nâng cao lớp 5 có lời giải

Bồi dưỡng học sinh giỏi Toán lớp 5

Bài Toán nâng cao lớp 5 có đáp án

Giải bài tập SGK Toán lớp 5

50 bài toán bồi dưỡng học sinh giỏi lớp 5 (có lời giải)

15 đề luyện thi học sinh giỏi môn Toán lớp 5

Bộ đề bồi dưỡng học sinh giỏi môn Tiếng Việt lớp 5

500 BÀI TOÁN LỚP 5 NÂNG CAO CHỌN LỌC

Bài 1: Số có 1995 chữ số 7 khi chia cho 15 thì phần thập phân của thương là bao nhiêu?

Giải: Gọi số có 1995 chữ số 7 là A. Ta có:

Một số chia hết cho 3 khi tổng các chữ số của số đó chia hết cho 3. Tổng các chữ số của A là 1995 x 7. Vì 1995 chia hết cho 3 nên 1995 x 7 chia hết cho 3.

Do đó A = 777…77777 chia hết cho 3.

1995 chữ số 7

Một số hoặc chia hết cho 3 hoặc chia cho 3 cho số dư là 1 hoặc 2.

Chữ số tận cùng của A là 7 không chia hết cho 3, nhưng A chia hết cho 3 nên trong phép chia của A cho 3 thì số cuối cùng chia cho 3 phải là 27. Vậy chữ số tận cùng của thương trong phép chia A cho 3 là 9, mà 9 x 2 = 18, do đó số A/3 x 0,2 là số có phần thập phân là 8.

Vì vậy khi chia A = 777…77777 cho 15 sẽ được thương có phần thập phân là 8.

1995 chữ số 7

Nhận xét: Điều mấu chốt trong lời giải bài toán trên là việc biến đổi A/15 = A/3 x 0,2. Sau đó là chứng minh A chia hết cho 3 và tìm chữ số tận cùng của thương trong phép chia A cho 3. Ta có thể mở rộng bài toán trên tới bài toán sau:

Bài 2 (1*): Tìm phần thập phân của thương trong phép chia số A cho 15 biết rằng số A gồm n chữ số a và A chia hết cho 3?

Nếu kí hiệu A = chúng tôi và giả thiết A chia hết cho 3 (tức là n x a chia hết cho 3), thì khi đó tương tự như cách giải bài toán n chữ số a

1 ta tìm được phần thập phân của thương khi chia A cho 15 như sau:

– Với a = 1 thì phần thập phân là 4 (A = 111…1111, với n chia hết cho 3) n chữ số 1

– Với a = 2 thì phần thập phân là 8 (A = 222…2222, với n chia hết cho 3). n chữ số 2

– Với a = 3 thì phần thập phân là 2 (A = 333…3333 , với n tùy ý). n chữ số 3

– Với a = 4 thì phần thập phân là 6 (A = 444…4444 , với n chia hết cho 3) n chữ số 4

– Với a = 5 thì phần thập phân là 0 (A = 555…5555, với n chia hết cho 3). n chữ số 5

– Với a = 6 thì phần thập phân là 4 (A = 666…6666, với n tùy ý) n chữ số 6

– Với a = 7 thì phần thập phân là 8 (A = 777…7777, với n chia hết cho 3) n chữ số 7

– Với a = 8 thì phần thập phân là 2 (A = 888…8888, với n chia hết cho 3) n chữ số 8

– Với a = 9 thì phần thập phân là 6 (A = 999…9999, với n tùy ý). n chữ số 9

Trong các bài toán 1 và 2 (1*) ở trên thì số chia đều là 15. Bây giờ ta xét tiếp một ví dụ mà số chia không phải là 15.

Bài 4: Cho mảnh bìa hình vuông ABCD. Hãy cắt từ mảnh bìa đó một hình vuông sao cho diện tích còn lại bằng diện tích của mảnh bìa đã cho.

Bài giải:

Theo đầu bài thì hình vuông ABCD được ghép bởi 2 hình vuông nhỏ và 4 tam giác (trong đó có 2 tam giác to, 2 tam giác con). Ta thấy có thể ghép 4 tam giác con để được tam giác to đồng thời cũng ghép 4 tam giác con để được 1 hình vuông nhỏ. Vậy diện tích của hình vuông ABCD chính là diện tích của 2 + 2 x 4 + 2 x 4 = 18 (tam giác con). Do đó diện tích của hình vuông ABCD là:

18 x (10 x 10) / 2 = 900 (cm 2)

Bài 5: Tuổi ông hơn tuổi cháu là 66 năm. Biết rằng tuổi ông bao nhiêu năm thì tuổi cháu bấy nhiêu tháng. Hãy tính tuổi ông và tuổi cháu (tương tự bài Tính tuổi – cuộc thi Giải toán qua thư TTT số 1).

Giải

Giả sử cháu 1 tuổi (tức là 12 tháng) thì ông 12 tuổi.

Lúc đó ông hơn cháu: 12 – 1 = 11 (tuổi)

Nhưng thực ra ông hơn cháu 66 tuổi, tức là gấp 6 lần 11 tuổi (66 : 11 = 6).

Do đó thực ra tuổi ông là: 12 x 6 = 72 (tuổi)

Còn tuổi cháu là: 1 x 6 = 6 (tuổi)

thử lại 6 tuổi = 72 tháng; 72 – 6 = 66 (tuổi)

Đáp số: Ông: 72 tuổi

Cháu: 6 tuổi

Bài 6: Một vị phụ huynh học sinh hỏi thầy giáo: “Thưa thầy, trong lớp có bao nhiêu học sinh?” Thầy cười và trả lời:”Nếu có thêm một số trẻ em bằng số hiện có và thêm một nửa số đó, rồi lại thêm 1/4 số đó, rồi cả thêm con của quý vị (một lần nữa) thì sẽ vừa tròn 100″. Hỏi lớp có bao nhiêu học sinh?

Giải:

Theo đầu bài thì tổng của tất cả số HS và tất cả số HS và 1/2 số HS và 1/4 số HS của lớp sẽ bằng: 100 – 1 = 99 (em)

Để tìm được số HS của lớp ta có thể tìm trước 1/4 số HS cả lớp.

Giả sử 1/4 số HS của lớp là 1 em thì cả lớp có 4 HS

Vậy: 1/4 số HS của lứop là: 4 : 2 = 2 (em).

Suy ra tổng nói trên bằng : 4 + 4 + 2 + 1 = 11 (em)

Nhưng thực tế thì tổng ấy phải bằng 99 em, gấp 9 lần 11 em (99 : 11 = 9)

Suy ra số HS của lớp là: 4 x 9 = 36 (em)

Thử lại: 36 + 36 = 36/2 + 36/4 + 1 = 100

Đáp số: 36 học sinh.

Bài 7: Tham gia hội khoẻ Phù Đổng huyện có tất cả 222 cầu thủ thi đấu hai môn: Bóng đá và bóng chuyền. Mỗi đội bóng đá có 11 người. Mỗi đội bóng chuyền có 6 người. Biết rằng có cả thảy 27 đội bóng, hãy tính số đội bóng đá, số đội bóng chuyền.

Giải

Giả sử có 7 đội bóng đá, thế thì số đội bóng chuyền là:

27 – 7 = 20 (đội bóng chuyền)

Lúc đó tổng số cầu thủ là: 7 x 11 + 20 x 6 = 197 (người)

Nhưng thực tế có tới 222 người nên ta phải tìm cách tăng thêm: 222 – 197 = 25 (người), mà tổng số đội vẫn không đổi.

Ta thấy nếu thay một đội bóng chuyền bằng một đội bóng đá thì tổng số đội vẫn không thay đổi nhưng tổng số người sẽ tăng thêm: 11 – 6 = 5 (người)

Vậy muốn cho tổng số người tăng thêm 25 thì số dội bống chuyền phải thay bằng đọi bóng đá là:

25 : 5 = 3 (đội)

Do đó, số đội bóng chuyền là: 20 – 5 = 15 (đội)

Còn số đội bóng đá là: 7 + 5 = 12 (đội)

Đáp số: 12 đội bóng đá, 15 đội bóng chuyền.

Một Số Bài Toán Giải Có Lời Văn Lớp 5

Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tiếp, Lười Giải Phiếu Bài Tập Toán Cuối Tuần Toán 4tuân 16, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Toán Đại 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Toán Lớp 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tt, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Giải Toán Lớp 5 Toán Phát Chiển Năng Lực Tư Tuần 14 Đến 15,16, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình, Các Dạng Toán Và Phương Pháp Giải Toán 8 Tập 1, Các Dạng Toán Và Phương Pháp Giải Toán 6, Các Dạng Toán Và Phương Pháp Giải Toán 8, Phương Pháp Giải Toán Qua Các Bài Toán Olympic, Toán Lớp 5 Bài Giải Toán Về Tỉ Số Phần Trăm, Giải Toán Cuối Tuần 12 Lớp 3 Môn Toán, Toán Lớp 3 Bài ôn Tập Về Giải Toán Trang 176, Giải Bài Giải Toán Lớp 3, Giải Toán Lớp 4 Bài Giải, Giải Phiếu Bài Tập Toán Cuối Tuần Lớp 4 Môn Toán Tuần 20, Giải Bài Tập Toán 11, Giải Bài Tập Toán 8, Giải Bài Tập Toán 8 Sgk, Giải Bài Tập Toán 8 Tập 2, Toán Lớp 6 Giải Bài Tập, Giải Bài 2 Toán 9, Bài Giải Kế Toán Chi Phí Ueh, Giải Bài Tập Toán Kì 2, Giải Bài Tập Toán 9, Giải Bài Tập 62 Toán 9 Tập 2, Toán 7 Giải Bài Tập, Giải Bài Tập Toán Lớp 1 Bài 71, Toán Lớp 5 Giải Bài Tập, Giải Bài Tập Toán Bài 101, Giải Bài Tập Toán Lớp 1, Giải Bài Tập Toán Bài 99, Giải Bài Tập Toán 9 Tập 2, Giải Bài Tập Toán 7 Tập 2, Giải Bài Tập Toán 7 Sgk, Giải Bài 30 Sgk Toán 9 Tập 2, Giải Bài 31 Sgk Toán 8 Tập 2, Giải Bài Tập Toán 5, Toán 12 Bài 5 Giải Bài Tập, Giải Bài 31 Sgk Toán 9, Giải Bài Tập Toán 6, Bài Giải Mẫu Toán Lớp 5, Giải Bài Tập 51 Sgk Toán 8 Tập 2, Giải Bài 31 Sgk Toán 9 Tập 2, Bài Giải Toán Bài Thơ, Giải Bài Tập 52 Sgk Toán 8 Tập 2, Giải Bài Tập 55 Sgk Toán 8 Tập 2, Giải Bài Tập Toán 6 Tập 2, Giải Bài Tập Toán 7, Giải Toán 9, Toán 6 Giải Bài Tập, Giải Bài Tập ôn Tập Toán Lớp 7, Giải Bài Toán Tìm X Lớp 5, Giải Bài Tập Toán Lớp 6, Bài Giải Bài Tập Toán Lớp 4 Tập 2, Bài Giải Bài Tập Toán Lớp 5, Bài Giải Bài Tập Toán Lớp 5 Tập 2, Bài Giải Bài Tập Toán Lớp 6, Bài Giải Bài Tập Toán Lớp 7, Giải Bài Toán Vận Tải, Giải Bài Tập Toán Lớp 5 Bài 102, Bài Giải Bài Tập Toán Lớp 4, Giải Bài Tập Toán 6 Sgk, Giải Bài Tập Toán Lớp 5 Tập 2, Giải Bài Tập Toán Lớp 5 Bài 99, Giải Bài Toán Tìm Y, Giải Bài Tập Toán Lớp 5 Bài 98, Giải Bài Tập Toán Lớp 5 Bài 96, Giải Bài Toán Tìm Y Lớp 2, Giải Bài Toán Tối ưu, Giải Bài Tập Toán Lớp 5 Bài 92, Giải Bài Toán X Lớp 2, Giải Bài Toán Y, Gợi ý Giải Đề Thi Môn Toán, Giải Bài Tập Toán Lớp 4, Giải Bài Tập 9 Toán, Bài Giải Đề Thi Toán Lớp 10, Toán 8 Giải Bài Tập Sgk, Toán Lớp 7 Giải Bài Tập, Giải Bài Tập Toán Lớp 3 Tập 2, Giải Bài Tập Toán Lớp 3 Bài 100, Giải Bài Tập Toán Lớp 3, Giải Bài Tập Toán Lớp 4 Bài 100, Giải Bài Tập Toán Lớp 4 Bài 103, Giải Bài Tập Toán Lớp 5 Bài 101, Giải Bài Tập Toán Lớp 5, Giải Bài Tập Toán Lớp 4 Tập 2, Giải Bài Tập 8 Toán, Giải Bài Tập Toán Lớp 4 Bài 95, Giải Các Bài Toán Khó, Giải Bài Tập Toán In Lớp 5, Toán 9 Giải Bài Tập Sgk, Giải Bài Tập Toán Lớp 2, Toán Lớp 2 Bài Giải, Giải Bài Tập Sgk Toán 8,

Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tiếp, Lười Giải Phiếu Bài Tập Toán Cuối Tuần Toán 4tuân 16, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Toán Đại 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Toán Lớp 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tt, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Giải Toán Lớp 5 Toán Phát Chiển Năng Lực Tư Tuần 14 Đến 15,16, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình, Các Dạng Toán Và Phương Pháp Giải Toán 8 Tập 1, Các Dạng Toán Và Phương Pháp Giải Toán 6, Các Dạng Toán Và Phương Pháp Giải Toán 8, Phương Pháp Giải Toán Qua Các Bài Toán Olympic, Toán Lớp 5 Bài Giải Toán Về Tỉ Số Phần Trăm, Giải Toán Cuối Tuần 12 Lớp 3 Môn Toán, Toán Lớp 3 Bài ôn Tập Về Giải Toán Trang 176, Giải Bài Giải Toán Lớp 3, Giải Toán Lớp 4 Bài Giải, Giải Phiếu Bài Tập Toán Cuối Tuần Lớp 4 Môn Toán Tuần 20, Giải Bài Tập Toán 11, Giải Bài Tập Toán 8, Giải Bài Tập Toán 8 Sgk, Giải Bài Tập Toán 8 Tập 2, Toán Lớp 6 Giải Bài Tập, Giải Bài 2 Toán 9, Bài Giải Kế Toán Chi Phí Ueh, Giải Bài Tập Toán Kì 2, Giải Bài Tập Toán 9, Giải Bài Tập 62 Toán 9 Tập 2, Toán 7 Giải Bài Tập, Giải Bài Tập Toán Lớp 1 Bài 71, Toán Lớp 5 Giải Bài Tập, Giải Bài Tập Toán Bài 101, Giải Bài Tập Toán Lớp 1, Giải Bài Tập Toán Bài 99, Giải Bài Tập Toán 9 Tập 2, Giải Bài Tập Toán 7 Tập 2, Giải Bài Tập Toán 7 Sgk, Giải Bài 30 Sgk Toán 9 Tập 2, Giải Bài 31 Sgk Toán 8 Tập 2, Giải Bài Tập Toán 5, Toán 12 Bài 5 Giải Bài Tập, Giải Bài 31 Sgk Toán 9, Giải Bài Tập Toán 6, Bài Giải Mẫu Toán Lớp 5, Giải Bài Tập 51 Sgk Toán 8 Tập 2, Giải Bài 31 Sgk Toán 9 Tập 2, Bài Giải Toán Bài Thơ,

Skkn Nâng Cao Chất Lượng Giải Toán Có Lời Văn Lớp 5

SÁNG KIẾN KINH NGHIỆM

ĐỀ TÀI: “MỘT SỐ BIỆN PHÁP NÂNG CAO CHẤT LƯỢNG GIẢI TOÁN CÓ LỜI VĂN KHỐI 5″

thực tế GV còn cho HS tìm một số ví dụ trong thực tế để các em khắc sâu khái niệm và cảm thấy toán học thật gần gũi với cuộc sống. -Gv cần dựavào tình hình của lớp để có phương pháp cụ thể kết hợp với sự nhận thức của học chúng tôi cần thực hiên lược đồ 4 bước giải toán: tìm hiểu đề -tóm tắt bài toán lập kế hoạch giải-tìm lời giải và giải bài toán ( thử lại).Định hướng cho học sinh thói quen phân tích -tổng hợp để hình thành khả năng trừu tượng hoá-khái quát hoá vấn đề . Đồng thời gv có thể liên hệ vào thực tế để học sinh cảm thấy giải toán gần gũi với cuộc sống .Thông thường giải toán có lời văn HS thấy khó khăn khi lập luận vấn đề nên đặt lời giải thường bị sai, tên đơn vị không phù hợp với đề bài, cách trình bày bài toán nên khi dạy HS giải toán GV cần lưu ý các bài toán mẫu; Cách trình bày bảng phù hợp để HS học tập cách trình bày. Mỗi dạng bài GV cần lưu ý các điểm nhấn để HS khắc sâu kiến thức đồng thời định hướng cho các em dễ dàng nhận ra dạng toán và tìm được nhiều cách giải. Đối với loại toán hợp: -Khi dạy các bài toán trong tiết luyện tập chủ yếu giáo viên giúp học sinh vận dụng các kiến thức đã học để làm bài tập . Để giúp học sinh làm tốt bài tập GV cần thực hiện các bước sau: Yêu cầu HS đọc kĩ đề- xác định những từ quan trọng . -Nhận dạng toán (Tìm được cách tính phù hợp với dạng toán) -Tóm tắt bài toán ( Dựa vào các dạng toán để có cách tóm tắt phù hợp) -Lập kế hoạch giải ( Xác lập mối liên hệ giữa cái đã cho và cái phải tìm).Đây là bước quan trọng giúp HS giải quyết vấn đề .GV định hướng cho HS cách lập luận vấn đề, đây là bước HS đòi hỏi phải tư duy dưới sự giúp đỡ của GV . -Yêu cầu HS tìm lời giải và giải bài tập.

Đối với bài tập cùng dạng gv giúp học sinh tâp trung làmbài sau đó các bài còn lại hs tư phân tích và tự làm . Đối với dạng bài phức tạp gv cần giúp HS nắm vững được yêu cầu bài toán. Ví dụ các bài toán cắt ghép hình lớp 5. GV cần giúp HS lập kế hoạch giải bằng cách đặt câu hỏi để giúp HS giải quyết vấn đề.Trong các bước giải toán thuộc dạng bài này GV coi trọng bước lập kế hoạch giải. -Ví dụ: Lớp 5 A có 35 học sinh. Số học sinh nam bằng số học sinh nữ. Hỏi số học sinh nữ nhiều hơn số học sinh nam là bao nhiêu? (SGK toán 5/

)

-Bước 1: GV yêu cầu HS đọc kĩ đề bài ( cho HS trao đổi yêu cầu bài toán : bài toán cho biết gì? Hỏi gì? Bài toán này thuộc dạng toán nào?) -Tóm tắt bài toán ( Bằng sơ đồ thể hiện tổng và tỉ số). -Bước 2: Lập kế hoạch giải: GV hướng dẫn HS lập kế hoạch giải bằng cách đưa ra các câu hỏi đàm thoại và GV hình thành lược đồ từ cuối. H: Muốn biết số HS nữ nhiều hơn số HS nam là bao nhiêu ta làm như thế nào? ( Lấy số HS nữ của lớp trừ đi số HS nam của lớp.) H: Số HS nữ biết chưa? Số HS nam biết chưa?( Chưa) H: Muốn biết số HS nữ, số HS nam ta dựa vào dạng toán đã học?(Tổng và tỉ số) H: Muốn biết số HS nữ( nam) của lớp ta làm như thế nào?( Dựa vào số HS cả lớp vàsố HS nam bằng số HS nữ.)

Yêu cầu hS nhắc lại cách tìm số lớn, số bé trong dạng toán tìm hai số khi biết tổng và tỉ số.

GV lập lược đồ:

Muốn tìm số HS nữ nhiều hơn số HS nam:

Số HS nữ- số HS nam

Số HS cả lớp: tổng số phần x 4

Số HS cả lớp- số HS nữ.

Bước 3: GV yêu cầu HS giải bài tập: Số học sinh nữ của lớp 5 A là: 35: (3+4) x 4= 20 ( học sinh) Số học sinh nam của lớp đó là: 35-20=15 ( em) Số học sinh nữ nhiều hơn số học sinh nam:

20-15 = 5 ( học sinh) Đáp số: 15 học sinh. Bước 4 : Thử lại: 15+25= 35(hs) 15: 20 = Tóm lại: Giải toán có lời văn là một dạng toán giúp HS vừa trau dồi kĩ năng tính toán vừa bồi dưỡng vốn ngôn ngữ, tư duy cho học sinh. Vì vậy khi hướng dẫn HS giải toán GV cần chuẩn bị: * Đối với giáo viên + Về kiến thức: -Nắm chắc nội dung kiến thức của tiết dạy,( các thuật ngữ , các khái niệm sử dụng trong bài) dự kiến trước các tình huống xảy ra. -Cần có các điểm nhấn để học sinh khắc sâu các dạng bài. -Ngôn ngữ sử dụng phải ngắn gọn, dễ hiểu( phần giải thích các thuật ngữ; hệ thống câu hỏi,…) -Trong quá trình hướng dẫn HS giải toán , GV cần vận dụng lược đồ 4 bước để hình thành thói quen phân tích tổng hợp khi giải toán. -Lưu ý cách trình bày bảng. +Về phương tiện: -GV cần chuẩn bị các phương tiện giảng dạy phù hợp với tiết học để nâng cao hiệu quả tiết dạy( bài toán , các công thức, quy tắc, mô hình, bảng nhóm, phấn màu…) .

-Cần sắp xếp thời gian sử dụng các phương tiện để phát huy hết hiệu quả của đồ dùng. + Về hình thức tổ chức: -GV tổ chức các hình thức phù hợp với tình hình của lớp( hình thức cả lớp, nhóm 2, nhóm tổ, nhóm các đối tượng HS, …). Để phát huy hết hiệu quả tiết dạy. +Về phương pháp: Coi trọng các phương pháp vấn đáp , luyện tập thực hành. Cần phối hợp linh hoạt các phương pháp để nâng cao chất lượng tiết dạy. + Đối với HS: Yêu cầu HS tính toán chính xác. -Học thuộc các quy tắc, nắm chắc các dạng bài đã học. -Rèn thói quen phân tích tổng hợp đối với các bài toán có lời văn.