Toan Lop 5 Loi Giai Hay / Top 9 # Xem Nhiều Nhất & Mới Nhất 5/2023 # Top View | Ictu-hanoi.edu.vn

Chuyen De ” Giai Toan Co Loi Van Lop 2

PHÒNG GD&ĐT HUYỆN CÙ LAO DUNGTRƯỜNG TIỂU HỌC AN THẠNH 2CHÀO MỪNG CÁC ĐỒNG CHÍ ĐẾN VỚI CHUYÊN ĐỀ KHỐI 2Phương pháp dạy “Giải toán có lời văn” lớp 2

G.V – Tổ trưởng: Lâm Thị NhiễuI/ LÝ DO CHỌN ĐỀ TÀI: Trong các môn học ở tiểu học, môn toán chiếm vị trí rất quan trọng. Ở môn học này trọng tâm là rèn cho học sinh có kỹ năng tính toán; đồng thời tạo cho các em có thói quen suy nghĩ độc lập,cẩn thận và sáng tạo trong quá trình giải toán. Bên cạnh đó giáo viên phát hiện những ưu điểm hoặc những thiếu sót giúp học sinh khắc phục kịp thời những hạn chế các em mắc phải.

– Có nhiều phương pháp nhưng không có phương pháp nào là tối ưu cả, trọng tâm việc dạy học người giáo viên phải biết kết hợp nhiều phương pháp một cách linh hoạt và sáng tạo thì mới đạt hiệu quả cao . 1/ Tìm cách giải bài toán : 1.1.Chọn phép tính giải thích hợp: Sau khi hướng dẫn học sinh tìm hiểu đề toán để xác định cái đã cho và cái cần tìm nhằm giúp học sinh lựa chọn phép tính thích hợp: chọn ” phép cộng” nếu bài toán yêu cầu ” nhiều hơn” hoặc ” gộp”, ” tất cả”; chọn ” tính trừ” nếu ” bớt” hoặc ” tìm phần còn lại” hay là ” ít hơn”.V/ BIỆN PHÁP THỰC HIỆN:

Vườn nhà Mai có 17 cây cam, vườn nhà Hoa có ít hơn vườn nhà Mai 7 cây cam. Hỏi vườn nhà Hoa có mấy cây cam? *** + Bài toán cho biết gì? * vườn nhà Mai có 17 cây cam. + Bài toán còn cho biết gì nữa? * Vườn nhà Hoa có ít hơn vườn nhà Mai 7 cây. + Bài toán hỏi gì? * Vườn nhà Hoa có bao nhiêu cây cam. + Muốn biết vườn nhà Hoa có mấy cây cam em làm tính gì? * tính trừ. + Lấy mấy trừ mấy? +17-7 bằng bao nhiêu?

Ví dụ 1 :17-717-7=10 1.2.Đặt câu lời giải thích hợp: Thực tế giảng dạy cho thấy việc đặt câu lời giải phù hợp là bước vô cùng quan trọng và khó khăn nhất đối với học sinh lớp 2. Chính vì vậy việc hướng dẫn học sinh lựa chọn và đặt câu lời giải hay cũng là khó khăn đối với người dạy. Tùy từng đối tượng học sinh mà giáo viên lựa chọn cách hướng dẫn sau:V/ BIỆN PHÁP THỰC HIỆN: Cách 1: ( Được áp dụng nhiều nhất và dễ hiểu nhất): dựa vào câu hỏi của bài toán rồi bỏ bớt từ đầu “hỏi” và cuối từ ” mấy” rồi thêm từ ” là” để có câu lời giải “Vườn nhà Hoa có số cây cam là:”V/ BIỆN PHÁP THỰC HIỆN:

G.V – Tổ trưởng: Lâm Thị Nhiễu

Sáng Kiến: Giải Toán Có Lời Văn Lớp 3 Skkn Giai Toan Co Loi Van Lop 3 Doc

A. Phần mở đầu.

Tr ường tiểu học xã …….. là một trường thuộc xã vùng hai của huyện …….. nằm cách trung tâm huyện gần 8k m đường xã giao thông đi lại tương đối thuận tiện. Cán bộ giáo viên trong toàn trường gầ n 50 Đ/C với học sinh là hơn 407 em, cùng với 04 điểm trường. Được sự phân công của ban giám hi ệu nhà trường trong năm học 2017-2018 tôi được phân công chủ nhiệm lớp 3 G tại điểm trường thôn Thượng (Kiêm tổ phó chuyên môn khố i 2-3).

2. Nhiệm vụ của sáng kiến.

Qua thực tế giảng dạy tôi thấy: Giải t oán có lời văn có vị trí rất quan t rọng trong chương trình ở trường tiểu học. Các em được la ̀m quen ngay từ lớp một, đặc biệt ở học kì 2 lớp một các em đã viết lời giải cho phép tính… Vì vậy đây cũng là một vấn đề mà chúng tôi luôn luôn trao đổi, thảo luận trong những buổi sinh hoạt chuyên môn, tích luỹ nghiệp vụ do nhà trường tổ chức. Làm thế nào để học sinh hiểu được đề toán, viết được tóm tắt, nêu được câu lời giải hay, phép tính đúng. Điều đó đòi hỏi rất nhiều công sức và sự nỗ lực không biết mệt mỏi của người giáo viên đứng lớp .

Là một giáo viên đã có nhiều năm trực tiếp chủ nhiệm và giảng dạy ở khối lớp 3, qua kinh nghiệm của bản thân và học hỏi, trao đổi kinh nghiệm cùng đồng nghiệp, tôi đã rút ra được: ” Một số kinh nghiệm giúp học sinh: G iải toán có lời văn cho học sinh lớp 3 ” để góp phần nâng cao chất lượng dạy và học trong nhà trường nói chung và đối với học sinh lớp 3 nói riêng.

3. Đối tượng nghiên cứu sáng kiến:

4. Phạm vi nghiên cứu sáng kiến:

B. Phần nội dung.

Nhưng làm thế nào để học sinh hiểu và giải toán theo yêu cầu của chương trình mới, đó là điều cần phải trao đô ̉i nhiều đối với chúng ta, những người trực tiếp giảng dạy cho các em nhất là việc: ” Đă ̣t câu lời giải cho bài toán” .

Từ thực trạng trên, để công việc đạt hiệu quả tốt hơn, giúp các em học sinh có hứng thú trong học tập, nâng cao chất lượng giáo dục trong nhà trường, tôi đã mạnh dạn cải tiến nội dung, phương pháp trong giảng dạy như sau:

3. Các giải pháp biện pháp thực hiện.

Để thự c hiện tốt cuộc vận động của ngành giáo dục và giúp cho phụ huynh có biện pháp phù hợp trong việc giáo dục con cái, tôi đã mạnh dạn trao đổi với phụ huynh học sinh về chỉ tiêu phấn đấu của lớp và những yêu cầu cần thiết giúp các em học tập như: Mua sắm đầy đủ sách vở, đồ dùng – cách hướng dẫn các em tự học ở nhà, đặc bi ệt nhất là đối với cha, mẹ vào buổi tối cố gắn g dành thời gian nhắc nhở, quan tâm cho các em học tập….Rất mừng là đa số phụ huyn h đều nhiệt liệt hoan nghênh. Riêng trong phần bài tập của sách Toán, tôi hướng dẫn phụ huynh cách dạy các em luyện nêu miệng các đề toán, luyện nói và trả lời nhiều…

b . Chuẩn bị cho việc giải toán.

H ọc sinh lớp 3, đặc biệt là một số e m còn chậm tiếp thu , thụ động, rụt rè trong giao tiếp. Chính vì vậy , để các em mạnh dạn tự tin khi phát biểu, trả lời người giáo viên cần phải :” luôn luôn gần gũi, khuyến khích các em giao tiếp, tổ chức các trò chơi học tập, được trao đổi, luyện nói nhiều trong các giờ Tiếng việt giúp các em có vốn từ lưu thông; trong các tiết học các em có thể nhận xét và trả lời tự nhiên, nhanh nhẹn mà không rụt rè, tự ti. Bên cạnh đó, người giáo viên cần phải chú ý nhiều đến kĩ năng đọc cho học sinh:

Đọc nhanh, đúng, tốc độ, ngắt nghỉ đúng chỗ giúp học sinh có kĩ năng nghe, hiểu được những yêu cầu mà các bài tập nêu ra”

– Yêu cầu học sinh tập nêu bằng lời để tóm tắt bài toán:

Thùng 1 có : 18l .

– Sau khi học sinh nêu được bằng lời để tóm tắt bài toán, tôi hướng dẫn học sinh tập tóm tắt bài toán bằng sơ đồ đoạn thẳng:

– Sau khi hướng dẫn học sinh tóm tắt được bài toán bằng sơ đồ đoạn thẳng, tôi tiếp tục hướng dẫn học sinh tìm lời giải:

+ Nhìn vào sơ đồ ta thấy muốn tìm số lít dầu ở cả hai thùng trước hết ta phải tính gì?

( Tính số dầu ở thùng thứ hai).

Yêu cầu học sinh nêu miệng lời giải:

Thùng thứ hai đựng được số lít dầu là:

Học sinh nêu miệng phép tính: 18 + 6 = 24 (lít)

Yêu cầu học sinh nêu miệng tiếp lời giải và phép tính thứ hai:

Cả hai thùng đựng được số lít dầu là:

Tuy nhiên ở phép tính thứ hai, tôi thấy có một số em thực hiện tìm số dầu cả hai thùng bằng cách lấy 24 + 6 = 30 (lít).

Đối với những em này, tôi nhận thấy các em có khả năng tư duy chưa tốt, còn chưa nắm vững yêu cầu bài toán. đây là những trường hợp nằm trong nhóm đối tượng học sinh yếu. Tôi phải hướng dẫn các em hiểu rõ:

Muốn tìm số dầu cả hai thùng ta phải làm gì? để các em nêu được: Lấy số dầu thùng thứ nhất + số dầu ở thùng thứ hai và giúp cho các em thấy được số dầu ở thùng thứ nhất là 18l và số dầu ở thùng thứ hai là 24l.

– Ở dạng bài này, giáo viên cũng cần cho học sinh luyện nêu miệng đề toán và tập tóm tắt đề toán bằng sơ đồ đoạn thẳng nhiều lần để các em ghi nhớ một bài toán.

Ví dụ 2 : Một thùng đựng 24l mật ong, lấy ra số lít mật ong đó. Hỏi trong thùng còn lại bao nhiêu lít mật ong?

Không cần hướng dẫn, học sinh lớp tôi thực hiện được ngay cách làm như sau:

Tóm tắt Bài giải

Có : 24l. Số lít mật ong được lấy ra là:

Lấy ra: số lít mật ong . 24 : 3 = 8 (l)

Còn lại: ? lít mật ong. Trong thùng còn lại số lít mật ong là:

c . Khích lệ học sinh tạo hứng thú khi học tập.

Ngoài ra, việc áp dụng các trò chơi học tập giữa các tiết học cũng là một yếu tố không kém phần quan trọng giúp học sinh có niềm hăng say trong học tập, mong muốn nhanh đến giờ học và tiếp thu kiến thức nhanh hơn, chắc hơn. Vì chúng ta đều biết học sinh tiểu học nói chung, học sinh lớp ba nói riêng có trí thông minh khá nhạy bén, sắc sảo, có óc tưởng tượng phong phú. đó là tiền đề tốt cho việc phát triển tư duy toán học nhưng các em cũng rất dễ bị phân tán, rối trí nếu bị áp đặt, căng thẳng hay quá tải. Hơn nữa cơ thể của các em còn đang trong thời kì phát triển hay nói cụ thể hơn là các hệ cơ quan còn chưa hoàn thiện vì thế sức dẻo dai của cơ thể còn thấp nên trẻ không thể ngồi lâu trong giờ học cũng như làm một việc gì đó trong một thời gian dài. Vì vậy muốn giờ học có hiệu quả thì đòi hỏi người giáo viên phải đổi mới phương pháp dạy học tức là kiểu dạy học :”

Lấy học sinh làm trung tâm .”, hướng tập trung vào học sinh, trên cơ sở hoạt động của các em. Trong mỗi tiết học, tôi thường dành khoảng 2 – 3 phút để cho các em nghỉ giải lao tại chỗ bằng cách chơi các trò chơi học tập vừa giúp các em thoải mái sau giờ học căng thẳng, vừa giúp các em có phản ứng nhanh nhẹn, ghi nhớ một số nội dung bài đã học….

Tóm lại: Trong quá trình dạy học người giáo viên không chỉ chú ý đến rèn luyện kĩ năng, truyền đạt kiến thức cho học sinh mà còn phải quan tâm chú ý đến việc: ” Khuyến khích học sinh tạo hứng thú trong học tập ” .

4. Hiệu quả của sáng kiến.

emhọc lên các lớp trên sẽ có điều kiện tốt hơn ở dạng toán khó hơn.

– Người giáo viên phải thực sự có lòng nhiệt tình, say mê với nghề nghiệp, với lương tâm trách nhiệm của người thầy.

– Trong quá trình giảng dạy phải luôn nắm bắt, đúc rút những vướng mắc, khó khăn thực tế ở lớp mình dạy, để từ đó nghiên cứu tìm ra hướng giải quyết tốt nhất.

– Mỗi biện pháp giáo dục của giáo viên phải được thực hiện đúng thời điểm, đúng nội dung ở từng bài học.

– Cần quan tâm, động viên, khuyến khích, giúp đỡ các em vượt qua mọi khó khăn để học tập tốt hơn.

– Điều rất quan trọng nữa là sự mềm mỏng, kiên trì uốn nắn học sinh của giáo viên trong mọi lúc của giờ học.

– Trong từng tiết học, người giáo viên cũng cần tìm ra nhiều biện pháp, nhiều hình thức hoạt động học tập như: Làm việc chung với lớp, làm việc cá nhân, làm việc theo nhóm…

a. Đối với nhà trường

– Thường xuyên tổ chức các chuyên đề trong tổ và toàn trường để tìm ra các biện pháp giảng dạy tốt nhất.

– Tổ chức cho giáo viên đi thăm và học hỏi các trường có kinh nghiệm dạy tốt trong toàn huyện.

b. Đối với giáo viên.

– Soạn bài và chuẩn bị kĩ bài trước khi lên lớp, bài dạy phải rõ ràng từng nội dung, yêu cầu của từng đối tượng học sinh và có sáng tạo trong bài dạy, tiết dạy.

– Thường xuyên giãu vững thông tin hai chiều với học sinh và phụ huynh, kiểm tra giờ học buổi tối cuả các em.

c. Với học sinh.

– xác đinh rõ nhiệm vụ học tập của mình qua từng môn học

– Xây dựng cho minh thói quen tự giác học tập, tự tìm tòi và học hỏi phương pháp học tập đúng đắn, nghiêm túc

– Luôn giữ gìn và bảo quản đồ dùng học tập.

– Mạnh dạn, tự tin trong giao tiếp hàng ngày

– Tôn trọng thầy cô và bạn bè và người hàng xóm xung quanh.

T r ên đây là một só kinh nghiệm của t ôi , rất mong nhận được những ý kiến đóng góp, bổ sung của hội đồng khoa học các đồng nghiệp để tôi hoàn thiện mình hơn góp phần nâng cao chất lượng dạy và học.

Người viết

Nhận xét của tổ khối chuyên môn

Phê duyệt của thủ trưởng đơn vị:

( Kí tên đóng dấu)

Xác nhận của Phòng GD&ĐT:

( Kí tên đóng dấu)

Dịch vụ chuyên cung cấp các loại sáng kiến, giáo án, đề kiểm tra, lịch báo giảng, sổ chủ nhiệm cho các quý thầy cô trên mọi miền đất nước. Qúy thầy cô có nhu cầu lấy tài liệu xin liên hệ ĐT: 0843.234.256. Hoặc quý thầy cô liên hệ qua địa chỉ gmail là hoangduc461@gmail.com

A. Phần mở đầu.

2. Nhiệm vụ của sáng kiến.

Qua thực tế giảng dạy tôi thấy: Giải t oán có lời văn có vị trí rất quan t rọng trong chương trình ở trường tiểu học. Các em được la ̀m quen ngay từ lớp một, đặc biệt ở học kì 2 lớp một các em đã viết lời giải cho phép tính… Vì vậy đây cũng là một vấn đề mà chúng tôi luôn luôn trao đổi, thảo luận trong những buổi sinh hoạt chuyên môn, tích luỹ nghiệp vụ do nhà trường tổ chức. Làm thế nào để học sinh hiểu được đề toán, viết được tóm tắt, nêu được câu lời giải hay, phép tính đúng. Điều đó đòi hỏi rất nhiều công sức và sự nỗ lực không biết mệt mỏi của người giáo viên đứng lớp .

Là một giáo viên đã có nhiều năm trực tiếp chủ nhiệm và giảng dạy ở khối lớp 3, qua kinh nghiệm của bản thân và học hỏi, trao đổi kinh nghiệm cùng đồng nghiệp, tôi đã rút ra được: ” Một số kinh nghiệm giúp học sinh: G iải toán có lời văn cho học sinh lớp 3 ” để góp phần nâng cao chất lượng dạy và học trong nhà trường nói chung và đối với học sinh lớp 3 nói riêng.

Chuyen De Giai Bai Toan Bang Cach Lap Phuong Trinh Lop 8

Published on

1. Phương pháp dạy: Giải bài toán bằng cách lập phương trình I. Loại toán tìm hai số. + Hướng dẫn học sinh trong dạng bài này gồm các bài toán như: – Tìm hai số biết tổng hoặc hiệu, hoặc tỉ số của chúng. – Toán về tìm số sách trong mỗi giá sách, tính tuổi cha và con, tìm số công nhân mỗi phân xưởng. – Toán tìm số dòng một trang sách, tìm số dãy ghế và số người trong một dãy. + Hướng dẫn học sinh lập bảng như sau: 1.Toán tìm hai số biết tổng hoặc hiệu hoặc tỉ số. *Bài toán 1: Hiệu hai số là 12. Nếu chia số bé cho 7 và lớn cho 5 thì thương thứ nhất lớn hơn thương thứ hai là 4 đơn vị. Tìm hai số đó. Phân tích bài toán: Có hai đại lượng tham gia vào bài toán, đó là số bé và số lớn. Nếu gọi số bé là x thì số lớn biểu diễn bởi biểu thức nào? Yêu cầu học sinh điền vào các ô trống còn lại ta có thương thứ nhất là 7 x , thương thứ hai là 12 5 x + Giá trị Thương Số bé x 7 x Số lớn x + 12 12 5 x + Lời giải: Gọi số bé là x. Số lớn là: x +12. Chia số bé cho 7 ta được thương là : 7 x . Chia số lớn cho 5 ta được thương là: 12 5 x + Vì thương thứ nhất lớn hơn thương thứ hai 4 đơn vị nên ta có phương trình: 12 5 x + – 7 x = 4 Giải phương trình ta được x = 28 Vậy số bé là 28. Số lớn là: 28 +12 = 40. 2. Toán về tìm số sách trong mỗi giá sách, tìm tuổi, tìm số công nhân của phân xưởng. 1

2. Phương pháp dạy: Giải bài toán bằng cách lập phương trình *Bài toán 2 Hai thư viện có cả thảy 15000 cuốn sách. Nếu chuyển từ thư viện thứ nhất sang thứ viện thứ hai 3000 cuốn, thì số sách của hai thư viện bằng nhau. Tính số sách lúc đầu ở mỗi thư viện. Phân tích bài toán: Có hai đối tượng tham gia vào bài toán: Thư viện 1 và thư viện 2. Nếu gọi số sách lúc đầu của thư viện 1 là x, thì có thể biểu thị số sách của thư viện hai bởi biểu thức nào? Số sách sau khi chuyển ở thư viện 1, thư viện 2 biểu thị như thế nào? Số sách lúc đầu Số sách sau khi chuyển Thư viện 1 x x – 3000 Thư viện 2 15000 – x (15000 – x) + 3000 Lời giải: Gọi số sách lúc đầu ở thư viện I là x (cuốn), x nguyên, dương. Số sách lúc đầu ở thư viện II là: 15000 – x (cuốn) Sau khi chuyển số sách ở thư viện I là: x – 3000 (cuốn) Sau khi chuyển số sách ở thư viện II là: (15000 – x)+ 3000 = 18000-x (cuốn) Vì sau khi chuyển số sách 2 thư viện bằng nhau nên ta có phương trình: x – 3000 = 18000 – x Giải phương trình ta được: x = 10500 (thỏa mãn điều kiện). Vậy số sách lúc đầu ở thư viện I là 10500 cuốn. Số sách lúc đầu ở thư viện II là: 15000 – 10500 = 4500 cuốn. *Bài toán 3: Số công nhân của hai xí nghiệp trước kia tỉ lệ với 3 và 4. Nay xí nghiệp 1 thêm 40 công nhân, xí nghiệp 2 thêm 80 công nhân. Do đó số công nhân hiện nay của hai xí nghiệp tỉ lệ với 8 và 11. Tính số công nhân của mỗi xí nghiệp hiện nay. Phân tích bài toán: Có hai đối tượng tham gia trong bài toán, đó là xí nghiệp 1 và xí nghiệp 2. Nếu gọi số công nhân của xí nghiệp 1 là x, thì số công nhân của xí nghiệp 2 biểu diễn bằng biểu thức nào? Học sinh điền vào các ô trống còn lại và căn cứ vào giả thiết: Số công nhân của hai xí nghiệp tỉ lệ với 8 và 11 để lập phương trình. Số công nhân Trước kia Sau khi thêm Xí nghiệp 1 x x + 40 Xí nghiệp 2 4 3 x 4 3 x + 80 2

4. Phương pháp dạy: Giải bài toán bằng cách lập phương trình Theo bài ra ta có phương trình phương trình như sau: 2 10 10 2 2 3 x x+ − = + + Giải phương trình ta được: x = 46 (thỏa mãn điều kiện). Vậy số tuổi hiện nay của ngườ thứ nhất là: 46 tuổi. Số tuổi hiện nay của ngườ thứ hai là: 46 2 2 12 2 + − = tuổi. 3. Dạng toán tìm số dãy ghế và số người trong một dãy. *Bài toán 5: Một phòng họp có 100 chỗ ngồi, nhưng số người đến họp là 144. Do đó, người ta phải kê thêm 2 dãy ghế và mỗi dãy ghế phải thêm 2 người ngồi. Hỏi phòng họp lúc đầu có mấy dãy ghế? Phân tích bài toán: Bài toán có hai tình huống xảy ra: Số ghế ban đầu và số ghế sau khi thêm. Nếu chọn số ghế lúc đầu là x, ta có thể biểu thị các số liệu chưa biết qua ẩn và có thể điền được vào các ô trống còn lại. Dựa vào giả thiết: Mỗi dãy ghế phải kê thêm 2 người ngồi, ta có thể lập được phương trình: Số dãy ghế Số ghế của mỗi dãy Lúc đầu x 100 x Sau khi thêm x + 2 144 2x + Lời giải: Gọi số dãy ghế lúc đầu là x ( dãy), x nguyên dương. Số dãy ghế sau khi thêm là: x + 2 (dãy). Số ghế của một dãy lúc đầu là: 100 x (ghế). Số ghế của một dãy sau khi thêm là: 144 2x + (ghế). Vì mỗi dãy ghế phải thêm 2 người ngồi nên ta có phương trình: 144 100 2 2x x − = + Giải phương trình ta được x=10 (thỏa mãn đk) Vậy phòng họp lúc đầu có 10 dãy ghế. II. Loại toán chuyển động: Loại toán này có rất nhiều dạng, tuy nhiên có thể phân ra một số dạng thường gặp như sau: 1, Toán có nhiều phương tiện tham gia trên nhiều tuyến đường. 4

6. Phương pháp dạy: Giải bài toán bằng cách lập phương trình Vận tốc ô tô là 18 + 17 = 35(km/h). * Bài toán 7: Một người đi xe đạp từ A đến B cách nhau 33km với vận tốc xác định. Khi đi từ B đến A, người đó đi bằng con đường khác dài hơn trước 29km, nhưng với vận tốc lớn hơn vận tốc lúc đi là 3km/h. Tính vận tốc lúc đi, biết thời gian đi nhiều hơn thời gian về là 1h30′? S(km) v(km/h) t(h) Lúc đi 33 x x 33 Lúc về 33+29 x+3 3 62 +x Hướng dẫn tương tự bài 6. – Công thức lập phương trình: tvề – tđi =1h30′ (= h 2 3 ). – Phương trình là: 2 333 3 62 =− + xx 6

10. Phương pháp dạy: Giải bài toán bằng cách lập phương trình Thời gian đi của xe 1 là x 3 2 + h Quãng đường xe 2 đi là: 35x km Quãng đường xe 1 đi là: 30(x 3 2 + ) km Vì 2 bến cách nhau 175 km nên ta có phương trình: 30(x 3 2 + ) + 35x = 175 Giải phương trình ta được x = 2 (tmđk) Vậy sau 2 giờ xe 2 gặp xe 1. 5. Chuyển động cùng chiều: Học sinh cần nhớ: + Quãng đường mà hai chuyển động đi để gặp nhau thì bằng nhau. + Cùng khởi hành: tc/đ chậm – tc/đ nhanh = tnghỉ (tđến sớm) + Xuất phát trước sau: tc/đ trước – tc/đ sau = tđi sau tc/đ sau + tđi sau + tđến sớm = tc/đ trước * Bài toán 12: Một chiếc thuyền khởi hành từ bến sông A, sau đó 5h20′ một chiếc ca nô cũng chạy từ bến sông A đuổi theo và gặp thuyền tại một điểm cách A 20km. Hỏi vận tốc của thuyền? biết rằng ca nô chạy nhanh hơn thuyền 12km/h. Phân tích bài toán: Chuyển động của thuyền và ca nô nhưng không có vận tốc dòng nước vì thế các em làm như chuyển động trên cạn. Công thức lập phương trình: tthuyền – tca nô = tđi sau S(km) v(km/h) t(h) Thuyền 20 x 20 x Ca nô 20 x+12 20 12x + Lời giải: Gọi vận tốc của thuyền là x km/h Vận tốc của ca nô là x = 12 km/h Thời gian thuyền đi là: 20 x 10

13. Phương pháp dạy: Giải bài toán bằng cách lập phương trình – Công thức lập phương trình: tdự định = tđi + tnghỉ + tđến sớm . – Phương trình là: 1 5 12 36 52 3 3 x x x = + + + Đáp số: 1 55 17 Km. * Bài toán 15: Một người dự định đi từ tỉnh A đến tỉnh B với vận tốc 50km/h. Sau khi đi được 1 3 quãng đường với vận tốc đó, vì đường khó đi nên người lái xe phải giảm vận tốc mỗi giờ 10km trên quãng đường còn lại. Do đó ô tô đến tỉnh B chậm 30 phút so với dự định. Tính quãng đường AB? S(km) v(km/h) t(h) SAB x 50 50 x tdự định 2 3 SAB 2 3 x 50 75 x tthực tế 1 3 SAB 3 x 40 120 x Muộn 30’= 1 2 h tmuộn Bài toán này hướng dẫn học sinh tương tự như bài 21, chỉ khác là chuyển động đến muộn so với dự định. Giáo viên cần lấy ví dụ thực tế để các em thấy: tdự định = tthực tế – tđến muộn Phương trình là: 1 50 75 120 2 x x x = + − Đáp số: 300 Km. *Bài toán 16: Một người đi xe đạp với vận tốc 15km/h. Sau đó một thời gian, một người đi xe máy cũng xuất phát từ A với vận tốc 30km/h. Nếu không có gì thay đổi thì sẽ đuổi kịp người đi xe đạp ở B.Nhưng sau khi đi được 1 2 quãng đường AB, người đi xe đạp giảm bớt vận tốc 3km/h. Nên hai người gặp nhau tại điểm C cách B 10 km. Tính quãng đường AB? Phân tích bài toán: 13

14. Phương pháp dạy: Giải bài toán bằng cách lập phương trình Bài tập này thuộc dạng chuyển động, 1 2 quãng đường của hai chuyển động cùng chiều gặp nhau. Đây là dạng bài khó cần kẻ thêm nhiều đoạn thẳng để học sinh dễ hiểu hơn. Sau khi đã chọn quãng đường AB là x(km), chú ý học sinh: + Xe máy có thời gian đi sau và thời gian thực đi. + Xe đạp thay đổi vận tốc trên hai nửa quãng đường nên có hai giá trị về thời gian. + Thời gian xe đạp đi sớm hơn thời gian xe máy. Từ đó hướng dẫn học sinh lập phương trình: txe đạp – txe máy = tđi sau S(km) v (km/h) t(h) SAB x Xe máy: 30 Xe máy: 30 x Xe đạp: 15 Xe đạp: 15 x Xe máy 15 30 30 x x x − = x – 10 30 10 30 x − Xe đạp 2 x 15 30 x 10 2 x − 12 20 24 x − 14

Bai Tap Hoa 10 Nang Cao Hay(Co Loi Giai Cu The)

PGS.TS NGUYỄN XUÂN TRƯỜNG – TS.TRẦN TRUNG NINH

BÀI TẬP CHỌN LỌCHÓA HỌC 10

(Chương trình chuẩn và nâng cao)

NHÀ XUẤT BẢN ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH – 2006LỜI NÓI ĐẦU

Hóa học là một khoa học lý thuyết và thực nghiệm. Hóa học đòi hỏi sự chính xác của toán học đồng thời với sự linh hoạt trong tư duy và óc tưởng tượng phong phú, sinh động và sự khéo léo trong các thao tác thí nghiệm. Chúng tôi giới thiệu cùng bạn đọc quyển “Bài tập chọn lọc Hóa học 10” chương trình chuẩn và nâng cao. Sách gồm các bài tập Hóa học chọn lọc trong chương trình Hóa học 10 có mở rộng và nâng cao, có thể sử dụng để phát triển năng lực tư duy Hóa học cho học sinh lớp 10 và phục vụ ôn tập các kì thi tú tài, thi tuyển sinh đại học, cao đẳng và thi học sinh giỏi. Quyển sách được biên soạn theo chương trình mới của Bộ Giáo dục và đào tạo. Sách được chia thành 7 chương, tương ứng với từng chương của sách giáo khoa Hóa học 10. Mỗi chương bao gồm các nội dung chính sau:Tóm tắt lí thuyết.Bài tập có hướng dẫn.Hướng dẫn giảiBài tập tự luyện Bài tập trắc nghiệmThông tin bổ sung,Sách có thể được sử dụng làm tài liệu tham khảo cho các thầy, cô giáo, cho các em học sinh mong có được một nền tảng vững chắc các kiến thức, tư duy và kĩ năng môn Hóa học lớp 10.Mặc dù chúng tôi đã có nhiều cố gắng, nhưng do trình độ và thời gian biên soạn còn hạn chế nên không tránh khỏi các sai sót. Chúng tôi xin chân thành cảm ơn mọi ý kiến đóng góp của các bạn đọc, nhất là các thầy, cô giáo và các em học sinh để sách được hoàn chỉnh hơn trong lần tái bản sau.

Các tác giả

Chương 1 NGUYÊN TỬ

A. TÓM TẮT LÍ THUYẾTI. Thành phần nguyên tử

1. Lớp vỏ: Bao gồm các electron mang điện tích âm. – Điện tích: qe = -1,602.10-19C = 1- – Khối lượng: me = 9,1095.10-31 kg 2. Hạt nhân: Bao gồm các proton và các nơtrona. Proton– Điện tích: qp = +1,602.10-19C = 1+ – Khối lượng: mp = 1,6726.10-27 kg ( 1u (đvC)b. Nơtron – Điện tích: qn = 0 – Khối lượng: mn = 1,6748.10-27 kg ( 1u Kết luận:Hạt nhân mang điện dương, còn lớp vỏ mang điện âmTổng số proton = tổng số electron trong nguyên tử Khối lượng của electron rất nhỏ so với proton và nơtronII. Điện tích và số khối hạt nhân1. Điện tích hạt nhânNguyên tử trung hòa điện, cho nên ngoài các electron mang điện âm, nguyên tử còn có hạt nhân mang điện dương. Điện tích hạt nhân là Z+, số đơn vị điện tích hạt nhân là Z. Số đơn vị điện tích hạt nhân (Z) = số proton = số electron Thí dụ: Nguyên tử có 17 electron thì điện tích hạt nhân là 17+2. Số khối hạt nhân A = Z + NThí dụ: Nguyên tử có natri có 11 electron và 12 nơtron thì số khối là: A = 11 + 12 = 23 (Số khối không có đơn vị)3. Nguyên tố hóa học – Là tập hợp các nguyên tử có cùng số điện tích hạt nhân.– Số hiệu nguyên tử (Z): Z = P = e– Kí hiệu nguyên tử: Trong đó A là số khối nguyên tử, Z là số hiệu nguyên tử.III. Đồng vị, nguyên tử khối trung bình1. Đồng vị– Là tập hợp các nguyên tử có cùng số proton nhưng khác nhau số nơtron (khác nhau số khối A).– Thí dụ: Nguyên tố cacbon có 3 đồng vị: 2. Nguyên tử khối trung bìnhGọi là nguyên tử khối trung bình của một nguyên tố. A1, A2 … là nguyên tử khối của các đồng vị có % số nguyên tử lần lượt là a%, b%…Ta có:

IV. Sự chuyển động của electron trong nguyên tử. Obitan nguyên tử.– Trong nguyên tử, các electron chuyển động rất nhanh xung quanh hạt nhân và không theo một quỹ đạo nào.– Khu vực xung quanh hạt