Toán Rời Rạc Bài Tập Và Lời Giải / Top 13 # Xem Nhiều Nhất & Mới Nhất 5/2023 # Top View | Ictu-hanoi.edu.vn

Tổng Hợp Bài Tập Toán Rời Rạc Có Đáp Án Rời Rạc Có Lời Giải, Bài Tập Toán Rời Rạc Có Lời Giải

Giải Toán 6 Đề CươngGiải Toán Lớp 6 Đề CươngGiải Toán 7 Đề CươngĐề Cương Toán Rời Rạc Có GiảiGiải Toán 9 Đề CươngGiải Toán Lớp 5 Đề CươngĐề Cương ôn Tập Toán 8 Thcs Long Toàn Có Đáp ánPhương Hướng,nội Dung,giải Pháp Phát Huy Sức Mạnh Toàn Dân Tộc Trong Giai Đoạn Hiện NayBài Giải Vật Lý Đại Cương A2Bài Giải Vật Lý Đại CươngGiải Bài Hoá Đại Cương 2Bài Giải Vật Lý Đại Cương 2Bài Giải Hóa Đại CươngGiải Đề CươngGiải Hóa 8 Đề CươngGiải Bài Tập Vật Lý Đại Cương 1Bài Giải Logic Học Đại CươngĐề Cương Giải Tích 2

Giải Toán 6 Đề Cương,Giải Toán Lớp 6 Đề Cương,Giải Toán 7 Đề Cương,Đề Cương Toán Rời Rạc Có Giải,Giải Toán 9 Đề Cương,Giải Toán Lớp 5 Đề Cương,Đề Cương ôn Tập Toán 8 Thcs Long Toàn Có Đáp án,Phương Hướng,nội Dung,giải Pháp Phát Huy Sức Mạnh Toàn Dân Tộc Trong Giai Đoạn Hiện Nay,Bài Giải Vật Lý Đại Cương A2,Bài Giải Vật Lý Đại Cương,Giải Bài Hoá Đại Cương 2,Bài Giải Vật Lý Đại Cương 2,Bài Giải Hóa Đại Cương,Giải Đề Cương,Giải Hóa 8 Đề Cương,Giải Bài Tập Vật Lý Đại Cương 1,Bài Giải Logic Học Đại Cương,Đề Cương Giải Tích 2,Đề Cương Giải Tích 3,Giải Bài Tập Quản Trị Học Đại Cương,Giải Bài Tập Excel Tin Học Đại Cương,Giai Bai Tap Thien Van Dai Cuong,Bài Giải Đề Cương ôn Thi Ppnckh,Đề Cương Bài Tập Giải Tích 2,Đề Cương Giải Tích 3 Hust,Đề Cương 45 Năm Giải Phóng Miền Nam,Đề Cương 40 Năm Giải Phóng Miền Nam,Đề Cương Giải Tích 2 Sami,Giải Bài Tập 24 Cường Độ Dòng Điện,Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tiếp,Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Violet,Lười Giải Phiếu Bài Tập Toán Cuối Tuần Toán 4tuân 16,Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình Violet,Toán Đại 8 Giải Bài Toán Bằng Cách Lập Phương Trình,Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình,Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình,Toán Lớp 8 Giải Bài Toán Bằng Cách Lập Phương Trình,Toán 9 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình,Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tt,Giải Toán Lớp 5 Toán Phát Chiển Năng Lực Tư Tuần 14 Đến 15,16,Các Dạng Toán Và Phương Pháp Giải Toán 8,Các Dạng Toán Và Phương Pháp Giải Toán 6,Phương Pháp Giải Toán Qua Các Bài Toán Olympic,Các Dạng Toán Và Phương Pháp Giải Toán 8 Tập 1,Đề Cương Sơ Bộ Giải Quyết Tranh Chấp Về Thừa Kế,Đề Cương Tuyên Truyền 39 Năm Giải Phóng Miền Nam,Giải Pháp Tăng Cường Công Tác Tư Tưởng Của Đảng,Giải Toán Cuối Tuần 12 Lớp 3 Môn Toán,Toán Lớp 5 Bài Giải Toán Về Tỉ Số Phần Trăm,Đề Cương Toán Lớp 7 Học Kì 2,Đề Cương Kì 2 Toán 7,Đề Cương Toán Lớp 5,Đề Cương Toán Lớp 4 Học Kỳ 1,Đề Cương Toán Lớp 4,Đề Cương Toán Lớp 3,Đề Cương ôn Tập Học Kì 1 Toán 9,Đề Cương Toán Lớp 2 Học Kỳ 1,Đề Cương Học Kì 2 Toán 8,Đề Cương Toán Lớp 5 Học Kì 1,Đề Cương Toán Lớp 5 Học Kỳ 1,Đề Cương ôn Tập Học Kì 2 Toán 6,Đề Cương Toán Rời Rạc,Đề Cương Toán Lớp 5 Học Kỳ 2,Đề Cương ôn Tập Kì 2 Toán 6,Đề Cương ôn Tập Toán 6 Học Kì 1,Đề Cương ôn Tập Kì 1 Toán 9,Đề Cương ôn Tập Toán 8 Kì 1 Có Đáp án,Đề Cương ôn Tập Học Kì 2 Toán 8,Đề Cương ôn Tập Học Kì 2 Toán 7,Đề Cương Học Kì 2 Toán 7,Đề Cương Học Kì 2 Toán 6,Đề Cương Toán 5 Học Kì 1,Đề Cương Toán 5 Học Kì 2,Đề Cương Toán 5 Học Kỳ 1,Đề Cương Toán 6,Đề Cương Toán 6 Học Kì 1,Đề Cương ôn Tập Môn Toán Rời Rạc,Đề Cương Toán 6 Học Kì 2,Đề Cương ôn Tập Môn Toán Lớp 7,Đề Cương ôn Tập Môn Toán Lớp 6,Đề Cương ôn Tập Môn Toán Lớp 5,Đề Cương ôn Tập Môn Toán Lớp 4,Đề Cương Toán 6 Học Kỳ 1,Đề Cương ôn Tập Môn Toán Lớp 3 Học Kì 1,Đề Cương Toán 7 Học Kì 1,Đề Cương Toán 7,Đề Cương Toán 6 Kì 2,Đề Cương ôn Tập Môn Toán Lớp 3,Đề Cương Toán 5,Đề Cương Toán 7 Học Kì 2,Đề Cương Học Kì 2 Toán 11,Đề Cương Học Kì 2 Toán 10,Đề Cương Toán 9 Học Kì 2 Có Đáp án,Đề Cương Toán 9 Học Kì 2,Đề Cương Học Kì 1 Toán 8,Đề Cương Toán 9 Học Kì 1,Đề Cương Học Kì 1 Toán 7,Đề Cương ôn Tập Học Kì 1 Toán 8,Đề Cương Học Kì 1 Toán 6,Đề Cương Toán 8 Học Kì 2,

Giải Toán 6 Đề Cương,Giải Toán Lớp 6 Đề Cương,Giải Toán 7 Đề Cương,Đề Cương Toán Rời Rạc Có Giải,Giải Toán 9 Đề Cương,Giải Toán Lớp 5 Đề Cương,Đề Cương ôn Tập Toán 8 Thcs Long Toàn Có Đáp án,Phương Hướng,nội Dung,giải Pháp Phát Huy Sức Mạnh Toàn Dân Tộc Trong Giai Đoạn Hiện Nay,Bài Giải Vật Lý Đại Cương A2,Bài Giải Vật Lý Đại Cương,Giải Bài Hoá Đại Cương 2,Bài Giải Vật Lý Đại Cương 2,Bài Giải Hóa Đại Cương,Giải Đề Cương,Giải Hóa 8 Đề Cương,Giải Bài Tập Vật Lý Đại Cương 1,Bài Giải Logic Học Đại Cương,Đề Cương Giải Tích 2,Đề Cương Giải Tích 3,Giải Bài Tập Quản Trị Học Đại Cương,Giải Bài Tập Excel Tin Học Đại Cương,Giai Bai Tap Thien Van Dai Cuong,Bài Giải Đề Cương ôn Thi Ppnckh,Đề Cương Bài Tập Giải Tích 2,Đề Cương Giải Tích 3 Hust,Đề Cương 45 Năm Giải Phóng Miền Nam,Đề Cương 40 Năm Giải Phóng Miền Nam,Đề Cương Giải Tích 2 Sami,Giải Bài Tập 24 Cường Độ Dòng Điện,Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tiếp,Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Violet,Lười Giải Phiếu Bài Tập Toán Cuối Tuần Toán 4tuân 16,Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình Violet,Toán Đại 8 Giải Bài Toán Bằng Cách Lập Phương Trình,Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình,Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình,Toán Lớp 8 Giải Bài Toán Bằng Cách Lập Phương Trình,Toán 9 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình,Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tt,Giải Toán Lớp 5 Toán Phát Chiển Năng Lực Tư Tuần 14 Đến 15,16,Các Dạng Toán Và Phương Pháp Giải Toán 8,Các Dạng Toán Và Phương Pháp Giải Toán 6,Phương Pháp Giải Toán Qua Các Bài Toán Olympic,Các Dạng Toán Và Phương Pháp Giải Toán 8 Tập 1,Đề Cương Sơ Bộ Giải Quyết Tranh Chấp Về Thừa Kế,Đề Cương Tuyên Truyền 39 Năm Giải Phóng Miền Nam,Giải Pháp Tăng Cường Công Tác Tư Tưởng Của Đảng,Giải Toán Cuối Tuần 12 Lớp 3 Môn Toán,Toán Lớp 5 Bài Giải Toán Về Tỉ Số Phần Trăm,Đề Cương Toán Lớp 7 Học Kì 2,

Bài Giải Toán Rời Rạc Nguyễn Hữu Anh

Giải Sách Bồi Dưỡng Năng Lực Tự Học Toán 6 Phần 2 Dố Nguyên Tiết 1 Phép Cộng Và Phép Trừ 2 Số Nguyên, Bài Giải Nguyên Lý Kế Toán, Bài Giải Toán Rời Rạc Nguyễn Hữu Anh, Giải Bài Tập Nguyên Lý Kế Toán, Bài Giải Bài Tập Nguyên Lý Kế Toán Võ Văn Nhị, Giải Nguyên Lí Kế Toán, Giải Bài Tập Nguyên Lý Kế Toán Neu, Bài Giải Nguyên Lý Kế Toán Đại Học Kinh Tế, Giai Bài 33 Trang 39 Toán Rời Rạc Nguyễn Huu Anh, Giải Bài Tập Nguyên Lý Kế Toán Chương 1, Giải Bài Tập Nguyên Lý Kế Toán Chương 3, Giải Bài Tập Nguyên Lý Kế Toán Chương 4, Giải Bài Tập Nguyên Lý Kế Toán Chương 5, Cẩm Nang Giải Toán Vật Lý 12 Nguyễn Anh Vinh, Giải Sách Bồi Dưỡng Năng Lực Toán 6 Phần 2 Số Nguyên Tiết 1, Giải Bài Tập 1 Nguyên Hàm, Giải Bài Tập Nguyên Hàm, Bài Giải Nguyên Hàm, Giải Bài Tập 2 Nguyên Hàm, Giải Bài Tập Phần Nguyên Hàm, Nguyên Tắc Giải ô Số Sudoku, Bài Giải Nguyên Lý Thống Kê, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tiếp, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Lười Giải Phiếu Bài Tập Toán Cuối Tuần Toán 4tuân 16, Giải Toán Lớp 5 Toán Phát Chiển Năng Lực Tư Tuần 14 Đến 15,16, Toán Đại 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tt, Toán Lớp 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Hãy Giải Thích Nguyên Nhân Của Sự Mỏi Cơ, Giải Bài Tập Nguyên Lý Thống Kê Hvtc, Giải Bài Tập Xác Suất Thống Kê Của Nguyễn Cao Văn, Giải Bài Tập Bài 5 Cấu Hình Electron Nguyên Tử, Nguyên Tắc Hòa Giải Trong Tố Tụng Dân Sự, Các Dạng Toán Và Phương Pháp Giải Toán 6, Các Dạng Toán Và Phương Pháp Giải Toán 8 Tập 1, Phương Pháp Giải Toán Qua Các Bài Toán Olympic, Các Dạng Toán Và Phương Pháp Giải Toán 8, Phương án Nào Lý Giải Nguyên Nhân Dẫn Đến Cạnh Tranh, Hãy Giải Thích Những Nguyên Tắc Xây Dựng Thực Đơn, Thực Trajng Và Giải Pháp Bảo Hiểm Y Tế Tự Nguyện, Thực Trạng, Nguyên Nhân Hậu Quả Giải Pháp, Phương án Lí Giải Nguyên Nhân Dẫn Đến Cạnh Tranh, Giải Bài Tập Nguyên Lý Thống Kê Học Viên Ngân Hàng, Toán Lớp 5 Bài Giải Toán Về Tỉ Số Phần Trăm, Giải Toán Cuối Tuần 12 Lớp 3 Môn Toán, Giải Quyết Tranh Chấp Quốc Tế Nguyễn Thị Thu Thảo, Mẫu Công Văn Giải Trình Nguyên Vật Liệu Chênh Lệch, Con Đường Cứu Nước Giải Phóng Dân Tộc Mà Lãnh Tụ Nguyễn ái Quốc, Nguyên Tắc Hòa Bình Giải Quyết Tranh Chấp Quốc Tế, Phương án Nào Dưới Đây Lí Giải Nguyên Nhân Dẫn Đến Cạnh Tranh, Nguyên Lý Kế Toán Bài Tập, Sơ Đồ Chữ T Nguyên Lý Kế Toán, Nguyên Lý Kế Toán Pdf, 7 Nguyên Tắc Kế Toán, Nguyên Lý Kế Toán Cơ Bản, Tìm X Nguyên Lý Kế Toán, 8 Nguyên Tắc Kế Toán, 4 Nguyên Lý Kế Toán, Đề Thi Nguyên Lý Kế Toán, 7 Nguyên Lý Kế Toán, Đồ án Môn Học Nguyên Lý Kế Toán, 6 Nguyên Tắc Kế Toán, Tìm X Y Nguyên Lý Kế Toán, Đồ án Nguyên Lý Kế Toán, Đề Thi Ueh Nguyên Lý Kế Toán, Đề Thi Môn Nguyên Lý Kế Toán Có Đáp án, Bài Tập Nguyên Lý Kế Toán Pgs. Ts. Võ Văn Nhị, Mẫu Đồ án Môn Học Nguyên Lý Kế Toán, Toán Rời Rạc Nguyễn Hữu Anh, 12 Nguyên Tắc Kế Toán, Nguyên Lý Kế Toán, Bài Tập ôn Thi Nguyên Lý Kế Toán, Đề Thi Vấn Đáp Môn Nguyên Lý Kế Toán, 4 Nguyên Tắc Kế Toán, 2 Nguyên Tắc Kế Toán Cơ Bản, Đáp án Nguyên Lý Kế Toán, Bài Tập Nguyên Lý Kế Toán, Nguyên Tắc Kế Toán, 07 Nguyên Tắc Kế Toán, Bài Tập ôn Thi Môn Nguyên Lý Kế Toán, Nêu Tồn Tại Về Vấn Đề Giao Tiếp ứng Sử Tìm Nguyên Nhân Va Giải Pháp Khắc Phục, Công Văn Giải Trình Nguyên Nhân Không Có Xuất Tờ Khai, Nguyên Lý Kế Toán Chương 3, Đề Cương Nguyên Lý Kế Toán, Nguyên Tắc In Sổ Sách Kế Toán, Chương 5 Nguyên Lý Kế Toán, Nguyên Tắc An Toàn Điện, Nguyên Lý Kế Toán Chương 1, Tìm X Trong Nguyên Lý Kế Toán, Uef Nguyên Lí Kế Toán Chương 3, Kế Toán Nguyên Vật Liệu, Nguyên Tắc Hạch Toán, Nguyên Lý Kế Toán Chương 2, Bài Tập Chuyên Đề Số Nguyên Môn Toán Lớp 6, Bài Tập Chương 6 Nguyên Lý Kế Toán,

Giải Sách Bồi Dưỡng Năng Lực Tự Học Toán 6 Phần 2 Dố Nguyên Tiết 1 Phép Cộng Và Phép Trừ 2 Số Nguyên, Bài Giải Nguyên Lý Kế Toán, Bài Giải Toán Rời Rạc Nguyễn Hữu Anh, Giải Bài Tập Nguyên Lý Kế Toán, Bài Giải Bài Tập Nguyên Lý Kế Toán Võ Văn Nhị, Giải Nguyên Lí Kế Toán, Giải Bài Tập Nguyên Lý Kế Toán Neu, Bài Giải Nguyên Lý Kế Toán Đại Học Kinh Tế, Giai Bài 33 Trang 39 Toán Rời Rạc Nguyễn Huu Anh, Giải Bài Tập Nguyên Lý Kế Toán Chương 1, Giải Bài Tập Nguyên Lý Kế Toán Chương 3, Giải Bài Tập Nguyên Lý Kế Toán Chương 4, Giải Bài Tập Nguyên Lý Kế Toán Chương 5, Cẩm Nang Giải Toán Vật Lý 12 Nguyễn Anh Vinh, Giải Sách Bồi Dưỡng Năng Lực Toán 6 Phần 2 Số Nguyên Tiết 1, Giải Bài Tập 1 Nguyên Hàm, Giải Bài Tập Nguyên Hàm, Bài Giải Nguyên Hàm, Giải Bài Tập 2 Nguyên Hàm, Giải Bài Tập Phần Nguyên Hàm, Nguyên Tắc Giải ô Số Sudoku, Bài Giải Nguyên Lý Thống Kê, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tiếp, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Lười Giải Phiếu Bài Tập Toán Cuối Tuần Toán 4tuân 16, Giải Toán Lớp 5 Toán Phát Chiển Năng Lực Tư Tuần 14 Đến 15,16, Toán Đại 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tt, Toán Lớp 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Hãy Giải Thích Nguyên Nhân Của Sự Mỏi Cơ, Giải Bài Tập Nguyên Lý Thống Kê Hvtc, Giải Bài Tập Xác Suất Thống Kê Của Nguyễn Cao Văn, Giải Bài Tập Bài 5 Cấu Hình Electron Nguyên Tử, Nguyên Tắc Hòa Giải Trong Tố Tụng Dân Sự, Các Dạng Toán Và Phương Pháp Giải Toán 6, Các Dạng Toán Và Phương Pháp Giải Toán 8 Tập 1, Phương Pháp Giải Toán Qua Các Bài Toán Olympic, Các Dạng Toán Và Phương Pháp Giải Toán 8, Phương án Nào Lý Giải Nguyên Nhân Dẫn Đến Cạnh Tranh, Hãy Giải Thích Những Nguyên Tắc Xây Dựng Thực Đơn, Thực Trajng Và Giải Pháp Bảo Hiểm Y Tế Tự Nguyện, Thực Trạng, Nguyên Nhân Hậu Quả Giải Pháp, Phương án Lí Giải Nguyên Nhân Dẫn Đến Cạnh Tranh, Giải Bài Tập Nguyên Lý Thống Kê Học Viên Ngân Hàng, Toán Lớp 5 Bài Giải Toán Về Tỉ Số Phần Trăm, Giải Toán Cuối Tuần 12 Lớp 3 Môn Toán,

Bài Tập Toán Rời Rạc Chương 2: Đồ Thị

BÀI TẬP TOÁN RỜI RẠC *** CHƯƠNG 2: ĐỒ THỊ Giảng viên : Nguyễn Mậu Hân Sinh viên thực hiện : Nguyễn Thị Diệu Hằng Lớp : Tin K30D * Bài 1: Cho G là một đồ thị có v đỉnh và e cạnh.M và m tương ứng là bậc lớn nhất và nhỏ nhất của các đỉnh của G.Chứng minh rằng: m £ 2.e/v £ M Lời giải: Theo đề ra ta có: M: bậc lớn nhất của đỉnh của G. m: bậc nhỏ nhất của đỉnh của G. Như vậy: m £ deg(vi) £ M (với deg(vi) : bậc của đỉnh vi) v.m £ ∑deg(vi) £ v.M v.m £ 2.e £ v.M m £ 2.e £ M Vậy ta có điều phải chứng minh. * Bài 2: Chứng minh rằng nếu G là đơn đồ thị phân đôi có v đỉnh và e cạnh, khi đó e £ v2/4. Lời giải : Ta có: G=(V,E) là đơn đồ thị phân đôi. V=V1 U V2, V1 ∩ V2 =ø, V1 ≠ ø, V2 ≠ ø. Gọi n1 và n2 lần lượt là số phần tử của V1 và V2. n1 + n2 = v G là đồ thị phân đôi nên e đạt giá trị max khi G là đồ thị phân đôi đầy đủ.Khi đó: e = n1.n2 Có nghĩa là trong trường hợp tổng quát thì: e £ n1.n2 Như vậy, để chứng minh e £ v2/4 chỉ cần chứng minh: n1.n2£ v2/4 Thật vậy: n1.n2 £ v2/4 n1.n2 £ (n1+ n2)2/4 4.n1.n2 £ n12 + n22 + 2.n1.n2 n12 + n22 – 2.n1.n2 ≥ 0£ v2/4 (n1- n2)2 ≥ 0 (hiển nhiên đúng) Suy ra: e £ n1.n2 £ v2/4 Vậy ta có điều phải chứng minh. * Bài 3: Trong một phương án mạng kiểu lưới kết nối n=m2 bộ xử lý song song, bộ xử lý P(i,j) được kết nối với 4 bộ xử lý (P(i±1) mod m, j), P(i, (j±1) mod m), sao cho các kết nối bao xung quanh các cạnh của lưới. Hãy vẽ mạng kiểu lưới có 16 bộ xử lý theo phương án này. Lời giải: P(0,1) P(0,0) P(2,0) P(2,1) P(0,2) P(0,3) P(2,2) P(2,3) P(3,1) P(3,0) P(1,0) P(1,1) P(3,2) P(3,3) P(1,3) P(1,2) * Bài 4: Hãy vẽ các đồ thị vô hướng được biểu diễn bởi ma trận liền kề sau: a) b) 1 2 3 1 2 0 1 2 0 4 2 0 3 0 3 4 0 0 3 1 1 1 0 1 0 c) 0 1 3 0 4 1 2 1 3 0 3 1 1 0 1 0 3 0 0 2 4 0 1 2 3 Lời giải: a) b) V1 V3 V2 c) V4 V3 V1 V2 V1 V2 V5 V3 V4 *Bài 5: Nêu ý nghĩa của tổng các phần tử trên một hàng (tương ứng cột) của một ma trận liền kề đối với một đồ thị vô hướng ? Đối với đồ thị có hướng ? Lời giải: Cho đồ thị G=(V,E).V= {v1,v2,…,vn } Ma trận liền kề của đồ thị G=(V,E) là ma trận: A=( aij ) với 1≤i,j≤n a11 a12 … a1n a21 a22 … a2n A= ……… an1 an2 … ann *Nếu G là đồ thị vô hướng: aij là số cạnh nối đỉnh vi và vj -Tổng hàng i của ma trận A: n ∑ aij chính là bậc của đỉnh vi j=1 -Tổng cột j của ma trận A: n ∑aij chính là bậc của đỉnh vj i=1 *Nếu G là đồ thị có hướng: aij là số cung nối vi và vj mà vj là đỉnh cuối -Tổng hàng i của ma trận A: n ∑ aij chính là bậc ra của đỉnh vi j=1 -Tổng cột j của ma trận A: n ∑aij chính là bậc ra của đỉnh vj i=1 *Bài 6: Tìm ma trận liền kề cho các ma trận sau: a) Kn b) Cn c) Wn d) Km,n e) Qn Lời giải: Ma trận liền kề của đồ thị đầy đủ Kn: ai1 ai2 … aij … ain a1j 0 1 … 1 … 1 a2j 1 0 … 1 … 1 … … … … … … … aij 1 1 … 0 … 1 … … … … … … … anj 1 1 … 1 … 0 Hay viết cách khác: Ma trận liền kề của đồ thị đầy đủ Kn là: 0 nếu i = j A = (aij), trong đó aij = 1 nếu i ≠ j Ma trận liền kề của đồ thị vòng Cn: ai1 ai2 ai3 … aij-1 aij aij+1 … ain-1 ain a1j 0 1 0 … 0 0 0 … 0 1 a2j 1 0 1 … 0 0 0 … 0 0 a3j 0 1 0 … 0 0 0 … 0 0 … … … … … … … … … … … aij 0 0 0 … 1 0 1 … 0 0 … … … … … … … … … … … anj 1 0 0 … 0 0 0 … 1 0 Viết cách khác: Ma trận liền kề của đồ thị vòng Cn là: A = (aij), trong đó: 1 nếu j=2 hoặc j=n – Với i=1: aij= 0 nếu j≠2và j≠n 1 nếu j=1 hoặc j=n-1 – Với i=n: aij= 0 nếu j≠1 và j≠n-1 -Với i≠1 và i≠n: 1 nếu j=i+1, j=i-1 aij = 0 nếu j≠i+1 và j≠i-1 c) Ma trận liền kề A của đồ thị bánh xe Wn: ai1 ai2 ai3 … aij-1 aij aij+1 … ain-1 ain ain +1 a1j 0 1 0 … 0 0 0 … 0 1 1 a2j 1 0 1 … 0 0 0 … 0 0 1 … … … … … … … … … … … … aij 0 0 0 … 1 0 1 … 0 0 1 … … … … … … … … … … … … anj 1 0 0 … 0 0 0 … 1 0 1 an+1j 1 1 1 … 1 1 1 … 1 1 0 Ma trận liền kề của đồ thị phân đôi đầy đủ Km,n: Cho G=(V,E)=Km,n, trong đó V=V1 U V2 V1={v1,v2,…,vm} V2={v’1,v’2,…,v’n} Ta có ma trận liền kề của Km,n như sau: v1 v2 … vm v’1 v’2 … v’n v1 0 0 … 0 1 1 … 1 v2 0 0 … 0 1 1 … 1 … … … … … … … … … vm 0 0 … 0 1 1 … 1 v’1 1 1 … 1 0 0 … 0 v’2 1 1 … 1 0 0 … 0 … … … … … … … … … v’n 1 1 … 1 0 0 … 0 Ma trận liền kề của đồ thị lập phương Qn( 2n đỉnh ứng với n xâu nhị phân khác nhau chứa bit 0, 1) 00..00 00..01 00..10 00..11 … 10..00 10..01 … 11..11 00..00 0 1 1 0 … 1 0 … 0 00..01 1 0 0 1 … 0 1 … 0 00..10 1 0 0 1 … 0 0 … 0 00..11 0 1 1 0 … 0 0 … 0 … … 10..00 1 0 0 0 … 0 1 … 0 10..01 0 0 0 0 … 1 0 … 0 … 11..11 0 0 0 0 … 0 0 … 0 *Bài 7: Hai đơn đồ thị với ma trận liền kề sau đây có là đẳng cấu không? 0 1 0 1 0 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 0 Ma trận 1 Ma trận 2 Lời giải: * Cách 1: Dựa vào ma trận liền kề, ta có thể vẽ được 2 đồ thị tương ứng như sau: V1 V4 V3 V2 V’4 V’1 V’3 V’2 G1 G2 G1=(V,E): đồ thị ứng với ma trận 1 G2=(V’,E’): đồ thị ứng với ma trận 2 Dễ dàng nhận thấy: Số cạnh của 2 đồ thị khác nhau: G1 có 4 cạnh, G2 có 5 cạnh Ngoài ra: G1 có 1 đỉnh bậc 1 (V3) 2 đỉnh bậc 2 (V1,V2) 1 đỉnh bậc 3 (V4) G2 không có đỉnh bậc 1 2 đỉnh bậc 2(V’2,V’3) 2 đỉnh bậc 3(V’1,V’4) Vậy 2 đồ thị trên không đẳng cấu. * Cách 2: Tổng các phần tử trong ma trận liền kề của đơn đồ thị bằng tổng số bậc của các đỉnh và bằng 2 lần số cạnh của đồ thị. Từ 2 ma trận trên ta có: Đồ thị ứng với ma trận 1 có 8:2=4 cạnh Đồ thị ứng với ma trận 2 có 10:2=5 cạnh Như vậy, 2 đơn đồ thị ứng với 2 ma trận liền kề trên không đẳng cấu. *Bài 8: Hai đơn đồ thị với ma trận liên thuộc sau có là đẳng cấu không? 1 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 0 1 Lời giải: – Ma trận 1: e1 e2 e3 e4 e5 u1 1 1 0 0 0 u2 1 0 1 0 1 u3 0 0 0 1 1 ứng với đồ thị G=(U,E) u4 0 1 1 1 0 Ma trận 2: e’1 e’2 e’3 e’4 e’5 v1 0 1 0 0 1 v2 0 1 1 1 0 ứng với đồ thị G’=(V,E’) v3 1 0 0 1 0 v4 1 0 1 0 1 U2 V1 V2 U1 e1 e’2 e2 e3 e5 e’5 e’3 e’4 U3 V4 V3 U4 e4 e’1 G=(U,E) G’=(V,E’) Xét phép đẳng cấu f: e1→e’2 e2→e’5 e3→e’3 e4→e’1 e5→e’4 Lúc này, ta biểu diễn lại ma trận liên thuộc của đồ thị G’ theo thứ tự các đỉnh v1, v2, v3,v4 và thứ tự các cạnh e’2, e’5, e’3, e’1, e’4 như sau: e’2 e’5 e’3 e’1 e’4 v1 1 1 0 0 0 v2 1 0 1 0 1 v3 0 0 0 1 1 v4 0 1 1 1 0 Ma trận n ày và ma trận liên thuộc của G bằng nhau. Vậy G và G’ đẳng cấu với nhau. * Bài 9: Các đồ thị G và G’ sau có đẳng cấu với nhau không? v2 v1 v6 u1 a) v4 u2 u3 v5 u4 v3 u6 u5 v2 v1 u3 u2 u1 b) v3 v6 u6 u5 u4 v5 v4 Lời giải: Xét phép đẳng cấu f: u1→v2 u2→v3 u3→v6 u4→v5 u5→v4 u6→v1 Lúc này, ma trận liền kề của G (theo thứ tự các đỉnh u6, u1, u2, u5, u4, u3) và ma trận liền kề của G’ là bằng nhau và bằng: 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 Vậy G và G’ đẳng cấu với nhau. b)Xét phép đẳng cấu f: u1→v3 u2→v5 u3→v1 u4→v2 u5→v4 u6→v6 Lúc này, ma trận liền kề của G(theo thứ tứ các đỉnh v3, v4, v1, v5, v2, v6) và na trận liền kề của G’ bằng nhau và bằng: 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 Vậy, hai đồ thị G và G’ đẳng cấu với nhau. * Bài 10: Cho V={2,3,4,5,6,7,8} và E là tập hợp các cặp phần tử (u,v) của V sao cho u<v và u,v nguyên tố cùng nhau. Hãy vẽ đồ thị có hướng G=(V,E). Tìm số các đường đi phân biệt độ dài 3 từ đỉnh 2 tới đỉnh 8. Lời giải: Các cặp phần tử (u,v) thỏa mãn yêu cầu đề bài là: E={(2,3), (2,5), (2,7), (3,4), (3,5), (3,7), (3,8), (4,5), (4,7), (5,6), (5,7), (5,8), (6,7), (7,8)} Đồ thị G cần vẽ : 4 3 2 8 7 6 5 Các đường đi phân biệt độ dài 3 đi từ 2 đến 8 là: 2, 3, 7, 8 2, 3, 5, 8 2, 5, 7, 8 * Bài 11: Hãy tìm số đường đi độ dài n giữa hai đỉnh liền kề (t.ư. không liền kề) tùy ý trong K3,3 với mỗi giá trị của n sau: a) n=2 b) n=3 c) n=4 d) n=5 Lời giải: V4 V5 V6 V2 V3 V1 K3,3 * Cách 1: Tập các đỉnh của K3,3 được chia làm 2 phần: Phần 1 gồm V1, V2, V3 Phần 2 gồm V4, V5, V6 Trong đó, 2 đỉnh thuộc cùng 1 phần thì không liền kề 2 đỉnh thuộc 2 phần khác nhau thì liền kề. Gọi d là số đường đi độ dài n giữa 2 đỉnh thuộc K3,3. * Nếu n chẵn thì điểm đầu và điểm cuối của đường đi phải nằm trong cùng 1 phần (chúng không liền kề). * Nếu n lẻ thì điểm đầu và điểm cuối của đường đi phải nằm ở 2 phần khác nhau (chúng liền kề với nhau). Mà khi xuất phát từ 1 đỉnh ta luôn có 3 cách đi(do mỗi phần gồm 3 đỉnh). Áp dụng quy tắc nhân ta có số đường đi có độ dài n giữa 2 đỉnh là: Nếu 2 đỉnh liền kề: + n chẵn: d=0 + n lẻ : d=3n-1(do cạnh cuối cùng nối với đỉnh cuối chỉ có 1 cách) Nếu 2 đỉnh không liền kề: + n chẵn : d=3n-1(do cạnh cuối cùng nối với đỉnh cuối chỉ có 1 cách) + n lẻ : d=0 Áp dụng cụ thể: Độ dài Đỉnh n=2 n=3 n=4 n=5 Liền kề d=0 d=9 d=0 d=81 Không liền kề d=3 d=0 d=27 d=0 * Cách 2: Đồ thị K3,3 có ma trận liền kề theo thứ tự các đỉnh V1, V2, V3, V4, V5, V6 như sau: 0 0 0 1 1 1 0 0 0 1 1 1 A= 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 Ta có mệnh đề: Cho G là một đồ thị (vô hướng hoặc có hướng) với ma trận liền kề A theo thứ tự các đỉnh v1, v2, …, vn. Khi đó số các đường đi khác nhau độ dài r từ vi tới vj trong đó r là một số nguyên dương, bằng giá trị của phần tử dòng i cột j của ma trận Ar. n Ta có: An = A.A…A.A 3n-1 3n-1 3n-1 0 0 0 3n-1 3n-1 3n-1 0 0 0 A= 3n-1 3n-1 3n-1 0 0 0 , nếu n chẵn 0 0 0 3n-1 3n-1 3n-1 0 0 0 3n-1 3n-1 3n-1 0 0 0 3n-1 3n-1 3n-1 0 0 0 3n-1 3n-1 3n-1 0 0 0 3n-1 3n-1 3n-1 0 0 0 3n-1 3n-1 3n-1 A= 3n-1 3n-1 3n-1 0 0 0 , nếu n lẻ 3n-1 3n-1 3n-1 0 0 0 3n-1 3n-1 3n-1 0 0 0 Như vậy, theo mệnh đề trên, áp dụng vào các trường hợp cụ thể đề bài đã cho ta có kết quả như ở cách 1. * Bài 12: Một cuộc họp có ít nhất 3 đại biểu đến dự.Mỗi người quen ít nhất 2 đại biểu khác.Chứng minh rằng có thể sắp xếp một số đại biểu ngồi xung quanh một bàn tròn để mỗi người ngồi giữa 2 người mà đại biểu đó quen. Lời giải: * Ta có thể biểu diễn mối quan hệ của các đại biểu đến tham dự cuộc họp bằng đơn đồ thị G=(V,E). G có n đỉnh (n≥3, n là số đại biểu) và e cạnh. Mỗi đỉnh của đồ thị ứng với 1 đại biểu, giữa 2 đỉnh ứng với 2 đại biểu quen nhau tồn tại 1 cạnh. Gọi Vi (i=1,2,…,n): đỉnh của đồ thị (ứng với 1 đại biểu) Do mỗi người quen ít nhất 2 đại biểu khác nên deg(Vi) ≥ 2 n ∑deg(Vi) ≥ 2n i=1 Số cạnh của đồ thị: e ≥ n (1) * Mặt khác, theo đề ra ta có: các đại biểu ngồi xung quanh 1 bàn tròn. Vì vậy, đồ thị biểu diễn cách sắp xếp chỗ ngồi của các đại biểu thỏa yêu cầu là đồ thị vòng Cn. Trong đồ thị vòng Cn có n (cạnh), n cạnh này được lấy từ e cạnh của G(do nó biểu thị mối quan hệ giữa các đại biểu) (2) * Tập đỉnh của G và Cn bằng nhau và bằng n. (3) Từ (1), (2) và (3) cho thấy, Cn là đồ thị con bao hàm của G.(Cn được tạo ra bằng cách bỏ đi một số cạnh thích hợp của G) Vậy, dựa trên mối quan hệ giữa các đại biểu như trên ta có thể sắp xếp các đại biểu ngồi quanh bàn tròn sao cho mỗi người ngồi giữa 2 người mà họ quen.( Đpcm) *Bài 13: Một lớp học có ít nhất 4 sinh viên. Mỗi sinh viên thân với ít nhất 3 sinh viên khác. Chứng minh rằng có thể xếp một số chẵn sinh viên ngồi quanh một cái bàn tròn để mỗi sinh viên ngồi giữa 2 sinh viên mà họ thân. Lời giải: * Mối quan hệ giữa các sinh viên trong lớp có thể biểu diễn bằng 1 đơn đồ thị G=(V,E) n đỉnh(n≥4, n: số sinh viên), e cạnh. Hai đỉnh ứng với 2 sinh viên thân nhau liền kề với nhau. Gọi Vi (i=1,2,…,n): đỉnh của đồ thị ứng với 1 sinh viên. Mỗi sinh viên thân với ít nhất 3 người deg(Vi) ≥ 3 n ∑ deg(Vi) ≥ 3n i=1 Tổng số cạnh của G là: e ≥ 3n/2 (1) * Mặt khác, theo đề ra ta có: cách sắp xếp chỗ ngồi của các sinh viên có thể biểu diễn bằng đồ thị vòng Cn (do các sinh viên ngồi quanh bàn tròn). Cn có n cạnh (n cạnh này lấy từ e cạnh của G) Mà e phải là số nguyên suy ra n phải chia hết cho 2 (n chẵn) Tập đỉnh của Cn và G bằng nhau và bằng n. Từ đó, ta thấy Cn chính là đồ thị con bao hàm của G.(Cn có thể tạo ra từ G bằng cách bỏ đi một số cạnh thích hợp) Hay: có thể sắp xếp một số chẵn sinh viên ngồi quanh một cái bàn tròn sao cho mỗi người ngồi giữa 2 người mà họ thân.( Đpcm) * Bài 14: Trong một cuộc họp có đúng 2 đại biểu không quen nhau và mỗi đại biểu này có một số lẻ người quen đến dự.Chứng minh rằng luôn luôn có thể xếp một số đại biểu ngồi chen giữa 2 đại biểu nói trên, để mỗi người ngồi giữa 2 người mà đại biểu đó quen. Lời giải: Mối quan hệ giữacác đại biểu đến tham dự cuộc họp có thể biểu diễn bằng 1 đơn đồ thị G=(V,E).Trong đó mỗi đỉnh là một đại biểu, giữa 2 đỉnh ứng với 2 đại biểu quen nhau tồn tại 1 cạnh. Trong cuộc họp có đúng 2 đại biểu không quen nhau và có số lẻ người quen đến tham dự.Vậy G có đúng 2 đỉnh không liền kề và 2 đỉnh này có bậc lẻ. Từ mệnh đề: Nếu một đồ thị có đúng hai đỉnh bậc lẻ thì hai đỉnh này phải liên thông, tức là có một đường đi nối chúng ta suy ra có thể tìm ra một số đại biểu ngồi chen vào giữa 2 đại biểu này sao cho mỗi đại biểu ngồi giữa 2 người mà đại biểu đó quen.(do 2 đỉnh ứng với 2 người này không liên thông, 2 người không ngồi sát nhau và họ quen với n-2 người còn lại) *Bài 15: Một thành phố có n (n ³ 2) nút giao thông và hai nút giao thông bất kỳ đều có số đầu mối đường ngầm tới một trong các nút giao thông này đều không nhỏ hơn n. Chứng minh rằng từ một nút giao thông tuỳ ý ta có thể đi đến một nút giao thông bất kỳ khác bằng đường ngầm. Lời giải: – Ta có thể xem hệ thống đường ngầm của thành phố là một đơn đồ thị có các đỉnh là các nút giao thông. Số đỉnh của đồ thị chính là số nút giao thông: n (n≥2) Cạnh của đồ thị là đường ngầm nối 2 nút giao thông. Theo đề ra ta có: Hai nút giao thông bất kì đều có số đầu mối đường ngầm tới một trong các nút giao thông đều không nhỏ hơn n. – Ta có mệnh đề: Mọi đơn đồ thị n đỉnh (n≥2) có tổng bậc của 2 đỉnh tùy ý không nhỏ hơn n đều là đồ thị liên thông. Vậy, theo định lí trên, hệ thống đường ngầm của thành phố là đồ thị liên thông. Suy ra, từ một nút giao thông tuỳ ý ta có thể đi đến một nút giao thông bất kỳ khác bằng đường ngầm.(Đpcm). *Bài 16: Có bao nhiêu đơn đồ thị đẳng cấu với n đỉnh khi: a) n=2 b) n=3 c) n=4 Lời giải: Với n=2, có 2 đơn đồ thị không đẳng cấu như sau: và Với n=3, có 4 đơn đồ thị không đẳng cấu: c) Với n=4 có 11 đơn đồ thị không đẳng cấu:

400 Câu Trắc Nghiệm Toán Rời Rạc Có Đáp Án

ĐÊ CƢƠNG ÔN TẬP MÔN TOÁN RỜI RẠC

1 2 3 4 5

6

7

8 9 10 11 12 13 14 15

16

17

18

C. {(1,2), (2,2), (3,a)} Xác định tập lũy thừa của tập A={ôtô, Lan} D. {{ôtô}, {Lan},  , {ôtô, Lan}}

19

Xác định tích đề các của 2 tập A={1,a} và B={1,b}: B.{(1,1), (1,b), (a,1), (a,b)}

20 21

22

23 24

25

26

27

28

29 30 31 32 33

34

35

36

37

38

39

40

41

42

Cho tập A={1,2,4,5,7,9}, tập B={2,4,6,8,10}. Tập A-B là: 3

B. 20 C. 30

44

45

B.100 C.50 D.0

46

Cho biết số phần tử của A  B  C nếu mỗi tập có 200 phần tử và nếu có 100 phần tử chung của mỗi cặp 2 tập và có 50 phần tử chung của cả 3 tập. A.100 B.200 C.250 D.350

47

Cho X={1, 2, 3, 4, 5, 6, 7, 8, 9} A = {3, 4, 6}, B={1, 2, 5, 8}, C={5, 6, 7, 8} Tìm xâu bit biểu diễn tập: (A C)  B A.010010010 B.000010010 C.000011000 D.111100000

48

Cho X={1,2,3,4,5,6,7,8,9}, A={2, 5, 6, 7, 8} Tìm xâu bit biểu diễn tập ̅ A.010011110 B.000111101 4

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

D.1022 Số hàm từ tập A có k phần tử vào tập B có n phần tử là: chúng tôi B.(n-k)! chúng tôi D.(n!/k!) Có bao nhiêu xâu nhị phân độ dài là 8 hoặc bắt đầu bởi 00 hoặc kết thúc bởi 11 A.112 B.128 C.64 D.124 Có bao nhiêu xâu nhị phân độ dài bằng 8 và không chứa 6 số 0 liên tiếp A.246 B.248 C.256 D.254 Có bao nhiêu xâu nhị phân độ dài bằng 8 bắt đầu bởi 00 và kết thúc bởi 11 A.64 B.16 C.32 D.128 Một sinh viên phải trả lời 8 trong số 10 câu hỏi cho một kỳ thi. Sinh viên này có bao nhiêu sự lựa chọn nếu sinh viên phải trả lời ít nhất 4 trong 5 câu hỏi đầu tiên? A.35 B.75 C.25 D.20 Cho tập A = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19} hỏi ta cần lấy ít nhất bao nhiêu phần tử từ tập A để chắc chắn rằng có một cặp có tổng bằng 20. A. 6 B. 7 C. 8 D. 9 Có 12 sinh viên trong một lớp học. Có bao nhiêu cách để 12 sinh viên làm 3 đề kiểm tra khác nhau nếu mỗi đề có 4 sinh viên làm. A.220 B.3465 C.34650 D.650 Một dãy XXXYYY độ dài 6. X có thể gán bởi một chữ cái. Y có thể gán một chữ số. Có bao nhiêu dãy được thành lập theo cách trên A.108 B.1000000 C.17576 D.17576000 Một phiếu trắc nghiệm đa lựa chọn gồm 10 câu hỏi. Mỗi câu có 4 phương án trả lời. Có bao nhiêu cách điền một phiếu trắc nghiệm nếu câu hỏi có thể bỏ trống. 6

67

68

69

70

71

72

73

74

A.410 B.510 C.40 D.50 Kết quả của một cuộc điều tra ở Hà Nội cho thấy 96% các gia đình có máy thu hình, 98% có điện thoại và 95% có điện thoại và máy thu hình. Tính tỷ lệ % các gia đình ở Hà Nội không có thiết bị nào? A.4% B.5% C.1% D.2% Trong lớp CNTT có 50 sinh viên học tiếng Anh; 20 sinh viên học tiếng Pháp và 10 sinh viên học cả Anh và Pháp. Cho biết sĩ số của lớp là 80. Hỏi có bao nhiêu sinh viên không học tiếng Anh, Pháp. A.0 B.5 C.10 D. 20 Cho tập A gồm 10 phần tử. Số tập con của tập A là A.10 B.100 C.1024 D. 1000 Mỗi người sử dụng thẻ ATM đều có mật khẩu dài 4 hoặc 6 ký tự. Trong đó mỗi ký tự là một chữ số. Hỏi có bao nhiêu mật khẩu? A.10000 B.1010000 C.410+610 D. 1110000 Có bao nhiêu số nguyên dương không lớn hơn 1000 chia hết cho 7 hoặc 11? A. 220 B. 200 C. 142 D. 232 Có bao nhiêu số nguyên dương không lớn hơn 1000 không chia hết cho 7 hoặc 11. A. 220 B. 780 C. 768 D. 1768 Có 8 đội bóng thi đấu vòng tròn. Hỏi phải tổ chức bao nhiêu trận đấu? A. 64 B. 56 C. 28 D. 32 Một tập hợp 100 phần tử có bao nhiêu tập con có ít hơn ba phần tử? A. 2100 7

75

76

77

78

79

80

B. 5050 C. 297 D. 5051 Một tập hợp 100 phần tử có bao nhiêu tập con có 2 phần tử ? A. 298 B. 4950 C. 50 D. 9900 Có 20 vé số khác nhau trong đó có 3 vé chứa các giải Nhất, Nhì, Ba. Hỏi có bao nhiêu cách trao giải thưởng cho 20 người, mỗi người giữ một vé? A. 1140 B. 8000 C. 2280 D. 6840 Một tổ bộ môn có 10 nam và 15 nữ. Có bao nhiêu cách chọn một hội đồng gồm 6 ủy viên, trong đó số ủy viên nam gấp đôi số ủy viên nữ? A. 22050 B. 315 C. 54600 D. 575 Công thức nào sau đây đúng. Cho n là số nguyên dương, khi đó ∑ là: A. 2n-1 B. 2n C. 2n+1 D. 2n -1 Công thức nào sau đây đúng. Cho n và k là các số nguyên dương với n k. Khi đó: A. C(n+1,k) = C(n,k-1) + C(n,k) B. C(n+1,k) = C(n-1,k) + C(n-1,k-1) C. C(n+1,k) = C(n,k) + C(n-1,k) D. C(n+1,k) = C(n-1,k-1) + C(n,k-1) Công thức nào sau đây đúng. Cho x, y là 2 biến và n là một số nguyên dương. Khi đó: A. (x+y)n = ∑ B. (x+y)n = ∑ C. (x+y)n = ∑ D. (x+y)n = ∑ Hệ số của x12y13 trong khai triển (x+y)25 là: A. 25!

81

82

Cho n, r là các số nguyên không âm sao cho r 83

84

85

86

87

88

89

90

A.C(n, r)=C(n+r-1, r) B.C(n, r)=C(n, r-1) C.C(n, r)=C(n, n-r) D.C(n, r)=C(n-r, r) Trong khai triển (x+y)200 có bao nhiêu số hạng? A.100 B. 101 C.200 D.201 Tìm hệ số của x9 trong khai triển của (2-x)20 A. C(20,10).210 B. C(20,9).211 C. –C(20,9)211 D. – C(20,10)29 Có bao nhiêu cách tuyển 5 trong số 10 cầu thủ của một đội quần vợt để đi thi đấu tại một trường khác? A. 252 B. 250 C 120 D. 30240 Có bao nhiêu khả năng có thể xảy ra đối với các vị trí thứ nhất, thứ nhì và thứ ba trong cuộc đua có 12 con ngựa, nếu mọi thứ tự tới đích đều có thể xảy ra? A. 220 B. 1320 C 123 D. 312 Có bao nhiêu số tự nhiên có 3 chữ số khác nhau được tạo từ tập các chữ số{1,3,5,7,9} A. 30 B. 60 C 90 D. 120 Có bao nhiêu số tự nhiên có 3 chữ số được tạo từ tập các chữ số {1,3,5,7,9} A. 125 B. 60 C. 65 D. 120 Có bao nhiêu số lẻ có 3 chữ số được tạo từ tập các chữ số {0,1,2,3,4,5} A. 48 B. 60 C.90 D. 75 Trong một khoa có 20 sinh viên xuất sắc về Toán và 12 sinh viên xuất sắc về CNTT. Hỏi có bao nhiêu cách lựa chọn hai đại diện sao cho một là sinh viên Toán, một là sinh viên CNTT? A. 20 9

91

92

93

94

95

96

97

98

B. 12 C 32 D. 240 Có bao nhiêu xâu nhị phân có độ dài bằng 5 mà hoặc có 2 bít đầu tiên là 0 hoặc có 2 bít cuối cùng là 1? A.16 B. 14 C. 2 D.32 Mỗi thành viên trong câu lạc bộ Toán tin có quê ở 1 trong 20 tỉnh thành. Hỏi cần phải tuyển bao nhiêu thành viên để đảm bảo có ít nhất 5 người cùng quê? A. 81 B. 99 C. 101 D. 90 Số xâu nhị phân độ dài 4 có bít cuối cùng bằng 1 là: A. 8 B. 12 C. 16 D. 18 Một phiếu trắc nghiệm đa lựa chọn gồm 10 câu hỏi. Mỗi câu có 4 phương án trả lời. Có bao nhiêu cách điền một phiếu trắc nghiệm nếu mọi câu hỏi đều được trả lời. A.410 B.104 C.40 D.210 Có bao nhiêu hàm số khác nhau từ tập có 4 phần tử đến tập có 3 phần tử: A. 81 B. 64 C. 4 D. 12 Số các xâu nhị phân có độ dài là 8 là: A.1024 B.256 C.16 D.8 Số các xâu nhị phân có độ dài nhỏ hơn hoặc bằng 8 là: A.1024 B. 512 C. 510 D.1022 Số hàm từ tập A có 5 phần tử vào tập B có 4 phần tử là: A.1024 B. 625 C. 5 10

99

100

101

102

103

104

105

106

D. 20 Có bao nhiêu xâu nhị phân độ dài là 10 bắt đầu bởi 00 A.112 B.128 C.64 D.256 Có bao nhiêu xâu nhị phân độ dài bằng 6 và chứa 4 số 0 liên tiếp A. 4 B. 8 C. 10 D. 12 Có bao nhiêu xâu nhị phân độ dài bằng 10 bắt đầu bởi 11 và kết thúc bởi 00 A.64 B.128 C.256 D.1024 Một sinh viên phải trả lời 20 câu hỏi cho một kỳ thi, mỗi câu hỏi có 4 phương án trả lời. Biết rằng sinh viên bắt buộc phải lựa chọn phương án nào đó cho 10 câu hỏi đầu tiên, còn 10 câu hỏi sau câu trả lời có thể bỏ trống. Hỏi sinh viên này có bao nhiêu sự lựa chọn? A. 430 B.410+510 C. 2010 D. 304 + 1 Trong 100 người có ít nhất mấy người cùng tháng sinh? A. 10 B. 9 C. 8 D. 7 Cần phải có tối thiểu bao nhiêu sinh viên ghi tên vào lớp Toán rời rạc để chắc chắn sẽ có ít nhất 6 sinh viên đạt cùng một điểm thi nếu thang điểm gồm 5 bậc? A.30 B. 25 C. 26 D. 27 Một dãy XXYYY độ dài 4. X có thể gán bởi một chữ số. Y có thể gán một chữ cái. Có bao nhiêu dãy được thành lập theo cách trên A.102 x 263 B. 102+263 C. 103 x 262 D. 103 + 262 Mỗi sinh viên trong lớp K38CNTT của khoa Công nghệ đều có quê ở một trong 61 tỉnh thành trong cả nước. Cần phải tuyển bao nhiêu sinh viên để đảm bảo trong lớp K38CNTT có ít nhất 2 sinh viên cùng quê? A. 62 B. 122 11

107

108

109

110

111

C. 123 D. 61 Cần phải tung một con xúc xắc bao nhiêu lần để có một mặt xuất hiện ít nhất 3 lần? A.12 B.13 C.18 D.19 Cần tuyển chọn tối thiểu ra bao nhiêu người để chắc chắn có ít nhất 2 người có cùng ngày sinh trong năm 2016? A. 365 B. 366 C. 367 D. 368 Trong lớp CNTT có 45 sinh viên học tiếng Anh; 25 sinh viên học tiếng Pháp và 5 sinh viên không học môn nào. Cho biết sĩ số của lớp là 60. Hỏi có bao nhiêu sinh viên học cả tiếng Anh, Pháp. A. 5 B. 10 C. 15 D. 20 Cho tập A = {1, 2, 3, 4, 5, 6, 7, 8, 9} . . Hỏi tập A có bao nhiêu tập con? A. 10 B. 128 C. 512 D. 256 Một quan hệ hai ngôi R trên một tập hợp X (khác rỗng) được gọi là quan hệ tương đương nếu và chỉ nếu nó có 3 tính chất sau: A. Phản xạ – Đối xứng – Bắc cầu B. Phản xạ- Phản đối xứng – Bắc cầu C . Đối xứng – Phản đối xứng – Bắc cầu D. Phản xạ – Đối xứng – Phản đối xứng.

Một quan hệ hai ngôi R trên một tập hợp X (khác rỗng) được gọi là quan hệ thứ tự nếu và chỉ nếu nó có 3 tính chất sau: A. Phản xạ – Đối xứng – Bắc cầu 112 B. Phản xạ- Phản đối xứng – Bắc cầu C . Đối xứng – Phản đối xứng – Bắc cầu D. Phản xạ – Đối xứng – Phản đối xứng. Cho biết quan hệ nào là quan hệ tương đương trên tập {0, 1, 2, 3}: A. {(0,0),(1,1),(2,2),(3,3),(0,1),(0,2),(0,3)} 113 B. {(0,0),(1,1),(2,2),(3,3),(0,1),(1,0)} C .{(0,0),(0,2),(2,0),(2,2),(2,3),(3,2),(3,3)} D. {(0,0),(1,1),(1,3),(2,2),(2,3),(3,1),(3,2),(3,3)} Cho A ={1, 2, 3, 4, 5}. Quan hệ R được xác định: ⇔ 114 . Quan hệ R được biểu diễn là: A. {(1,1),(2,2),(3,3),(4,4), (1,3),(3,1),(1,5),(5,1), (2,4),(4,2)} 12

]

B. [

]

C. [

]

D. [

]

115

116

117

118

119

120

Cho A={1,2,3,4,5}. Trên A xác định quan hệ R như sau: ⇔ . Quan hệ R được biểu diễn là: A. {(1,2),(1,4),(2,3),(2,5)} B. {(1,1),(2,2),(3,3),(4,4),(5,5), (1,2),(1,4),(2,3),(2,5)} C. {(1,2),(2,1),(1,4),(4,1), (2,5), (5,2)} D. {(1,2),(2,1),(1,4),(4,1), (2,5), (5,2),(3,4),(4,3),(2,3),(3,2),(4,5),(5,4)} Cho tập A ={1,2,3,4,5}. Cho A1={1}, A2={2,3}, A3={4,5}. Quan hệ tương đương R trên A sinh ra phân hoạch A1, A2, A3 là: A. {(1,1),(2,3),(4,5),(2,2),(3,3), (3,2),(4,4),(5,5),(5,4)} B. {(1,1),(2,2),(3,3),(4,4),(5,5), (1,2),(1,3),(1,4),(1,5)} C. {(1,1),(2,3),(3,2),(4,5), (5,4)} D. {(2,2),(2,3),(3,2),(3,3), (4,4), (4,5),(5,4),(5,5), (1,1),(1,2),(2,1),(1,3),(3,1)} Cho tập A ={1,2,3,4,5,6}. Cho A1={1,2}, A2={3,4}, A3={5,6}. Quan hệ tương đương R trên A sinh ra phân hoạch A1, A2, A3 là: A. {(1,1),(2,3),(4,5),(2,2),(3,3), (3,2),(4,4),(5,5),(5,4),(6,6),(5,6),(6,5)} B. {(1,1),(2,2),(3,3),(4,4),(5,5), (6,6),(1,2),(2,1),(3,4),(4,3),(5,6),(6,5)} C. {(1,1),(1,2),(2,2),(3,4), (3,3),(5,6),(4,4),(5,5),(6,6)} D. {(2,2),(2,3),(1,1),(3,3), (4,4), (3,4),(4,3),(2,1), (1,1),(1,2),(2,1),(5,6),(6,5)} Cho tập A={1,2,3,4,5} và quan hệ tương đương R trên A như sau: R={(1,1),(2,2),(3,3),(4,4),(5,5),(2,4),(4,2)}. Xác định phân hoạch do R sinh ra: A. A1={1,3,5}, A2={2,4} B. A1={1}, A2={2,4}, A3={3,5} C. A1={1}, A2={2,4}, A3={3}, A4={5} D. A1={1,2}, A2={3,4}, A3={5} Cho A ={1, 2, 3, 4, 5}. Quan hệ R được xác định: ⇔ . Xác định phân hoạch do R sinh ra: A. A1={1,3}, A2={2,4}, A3={5} B. A1={1}, A2={2,4}, A3={3}, A4={5} C. A1={1}, A2={2}, A3={3}, A4={4},A5={5} 13

D. A1={1,3,5}, A2={2,4} Cho tập A ={1,2,3,4,5}, hãy tìm ma trận biểu diễn quan hệ R trên A sau đây: R={(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(2,3),(3,2),(2,1)} A. [

]

[

]

[

]

[

]

B. 121 C.

D.

Hãy liệt kê quan hệ R trên tập hợp {1,2,3,4,5} biết ma trận biểu diễn như sau:

122

[

]

[

]

B.

16

[

]

[

]

[

]

C.

D.

Cho tập A = { 1, 2, 3, 4, 5, 6 } và quan hệ R ⊆ A x A với: R= {(1,1), (2,2), (3,3),(4,4), (5,5), (6,6), (1,3), (3,1),(1, 5), (5, 1),(2, 4), (4, 2), (2,6), (6,2), (3,5), (5,3), (4,6), (6,4)} Đồ thị biểu diễn quan hệ R là A. 1

3

2

5

6

3

2

5

6

4

138

B. 1

4

C. 17

1

3

2

5

6

4

Nhận xét nào sau đây là SAI A. Một quan hệ có tính phản xạ khi và chỉ khi ma trận biểu diễn nó có tất cả các phần tử trên đường chéo chính đều bằng 1 B. Một quan hệ có tính đối xứng khi và chỉ khi ma trận biểu diễn nó là một ma 139 trận đối xứng qua đường chéo chính C. Một quan hệ có tính phản xạ khi và chỉ khi đồ thị biểu diễn nó tại mỗi đỉnh đều có khuyên. D. Một quan hệ có tính bắc cầu khi và chỉ khi đồ thị biểu diễn nó có cung đi từ đỉnh a đến đỉnh b thì cũng có cung đi từ đỉnh b đến đỉnh c. Cho A là một tập hữu hạn khác rỗng. Quan hệ R⊆ AxA Phát biểu nào sau đây là ĐÚNG A. Quan hệ R có tính phản xạ nếu mọi phần tử a thuộc A đều có quan hệ R với 140 chính nó. B. Quan hệ R có tính đối xứng nếu mọi a, b thuộc A thì a phải có quan hệ R với b. C. Quan hệ R có tính bắc cầu nếu mọi a, b, c thuộc A thì a phải có quan hệ R với b và b phải có quan hệ R với c Cho biết quan hệ nào là quan hệ tương đương trên tập {a, b, c, d}: A. {(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (a, d)} 141 B. {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a)} C .{(a, a), (a, c), (c, a), (c, c), (c, d), (d, c), (d, d)} D. {(a, a), (b, b), (c, c), (d, d) , (c, d), (d, c), (d, a), (b, d)} Cho A ={11, 12, 13, 14, 15}. Quan hệ R được xác định: ⇔ . Quan hệ R được biểu diễn là: A. {(11, 11), (12, 12), (13, 13), (14, 14), (11, 13), (13, 11), (11, 15), (15, 11), (12, 14), (14, 12)} 142 B. {(11, 11), (12, 12), (13, 13), (14, 14), (15, 15), (11, 13), (11, 15), (13, 15), (12, 14)} C. {(11, 13), (13, 11), (11, 15), (15, 11), (13, 15), (15, 13), (12, 14), (14, 12)} D. {(11,11), (12, 12), (13, 13), (14, 14), (15, 15), (11,13), (13, 11), (11, 15), (15, 11), (13, 15), (15, 13), (12, 14), (14, 12)} Cho A={11, 12, 13, 14, 15}. Trên A xác định quan hệ R như sau: ⇔ . Quan hệ R được biểu diễn là: 143

A. {(11, 12), (11, 14), (12, 13), (12, 15)} B. {(11, 11), (12, 12), (13, 13), (14,14), (15,15), (11, 12), (11, 14), (12, 13), (12, 15)} C. {(11, 12), (12, 11), (11, 14), (14, 11), (12, 15), (15, 12)} D. {(11, 12), (12, 11), (11, 14), (14, 11), (12, 15), (15, 12), (13, 14), (14, 13), (12, 18

13), (13, 12), (14, 15), (15, 14)} Cho tập A ={1, 2, 3, 4, 5, 6}. Cho A1={1}, A2={2}, A3={3, 4}, A4={5, 6}. Quan hệ tương đương R trên A sinh ra phân hoạch A1, A2, A3, A4 là: A. {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (3, 4), (4, 3), (5, 6), (6, 5)} 144 B. {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 2), (2, 1), (3, 4), (4, 3)} C. {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (2, 3), (3, 2), (4, 5), (5, 4)} D. {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (4, 5), (5, 4), (1, 2), (2, 1), (1, 3), (3, 1)} Cho tập A ={1, 2, 3, 4, 5, 6}. Cho A1={1, 2, 3}, A2={4, 5}, A3={6}. Quan hệ tương đương R trên A sinh ra phân hoạch A1, A2, A3 là: A. {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (1,2), (2,1), (1,3), (3,1), (2,3), (3,2), (4,5), 145 (5,4)} B. {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (1,2), (2,1), (1,3),(3, 1),(5, 6), (6,5)} C. {(1,1), (1,2), (2,2), (3,4), (3,3), (5,6), (4,4), (5,5), (6,6)} D. {(1,1), (2,2), (3,3), (4,4), (5,5), (6, 6), (1,2), (2,1), (1,3), (3,1), (3,4), (4,3)} Cho tập A={1, 2, 3, 4, 5, 6} và quan hệ tương đương R trên A như sau: R = {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (1,2), (2,1), (4,5), (5,4)}. Xác định phân hoạch do R sinh ra: 146 A. A1 = {1, 2, 3}, A2={4, 5, 6} B. A1 = {1, 2}, A2={3}, A3={4,5}, A4 ={6} C. A1 = {1}, A2 = {2,4}, A3 = {3}, A4={5, 6} D. A1 = {1,2}, A2={3, 4}, A3={5, 6} Cho A ={1, 2, 3, 4, 5, 6}. Quan hệ R được xác định: ⇔ . Xác định phân hoạch do R sinh ra: A. A ={1,3}, A 1 2={2,4}, A3={5} 147 B. A1={1}, A2={2,4}, A3={3}, A4={5} C. A1={1}, A2={2}, A3={3}, A4={4},A5={5} D. A1={1,3,5}, A2={2,4} Cho tập A ={1,2,3,4,5}, hãy tìm ma trận biểu diễn quan hệ R trên A sau đây: R={(1,1),(2,2),(3,3),(4,4),(5,5),(1,3),(3,1),(3,2),(2,3)} A.

148

[

]

[

]

[

]

B.

C.

19

D. [

]

Hãy liệt kê quan hệ R trên tập hợp {1,2,3,4,5} biết ma trận biểu diễn như sau:

149

150

151

152

153

155

156

157

158

a

159

c

d

B. a

d

b

c 21

b

a

c

d

C. Cho tập A = { a, b, c, d } và quan hệ R ⊆ A x A với: R= {(a,b), (b,a), (a,c), (c,a), (a,d), (b,c), (c,d), (d, d)} Đồ thị biểu diễn quan hệ R là:

A. a

d

b

c

160 B. a

d

b

c

C. a

b

22 d

c

Giả sử P và Q là 2 mệnh đề. Tuyển của 2 mệnh đề (P v Q) là một mệnh đề… ? A. Chỉ đúng khi cả P và Q cùng đúng 161 B. Chỉ sai khi cả P và Q cùng sai C. Chỉ đúng khi P đúng Q sai D. Chỉ sai khi P đúng Q sai Hãy cho biết khẳng định nào sau đây không phải là 1 mệnh đề ? A. 2+3 B. Là 1 mệnh đề nhận chân trị đúng khi P và Q cùng đúng, sai khi P và Q cùng sai. C. Là một mệnh đề nhận chân trị đúng khi một trong hai hoặc cả 2 mệnh đề cùng đúng, nhận chân trị sai trong các trường hợp còn lại. D. Là một mệnh đề nhận chân trị đúng khi P sai hoặc cả P và Q cùng đúng. Nhận chân trị sai khi và chỉ khi P đúng Q sai. Biểu thức hằng đúng là… ? A. Biểu thức chỉ nhận chân trị đúng khi các biến mệnh đề nhận chân trị đúng. B. Biểu thức nhận chân trị đúng trong mọi trường hợp về chân trị của bộ biến 167 mệnh đề. C. Biểu thức nhận chân trị sai trong mọi trường hợp về chân trị của bộ biến mệnh đề D. Biểu thức chỉ nhận chân trị sai khi các biến mệnh đề nhận chân trị sai. Biểu thức hằng sai là… ? A. Biểu thức chỉ nhận chân trị đúng khi các biến mệnh đề nhận chân trị đúng. B. Biểu thức nhận chân trị đúng trong mọi trường hợp về chân trị của bộ biến 168 mệnh đề. C. Biểu thức nhận chân trị sai trong mọi trường hợp về chân trị của bộ biến mệnh đề D. Biểu thức chỉ nhận chân trị sai khi các biến mệnh đề nhận chân trị sai. Hai biểu thức mệnh đề E, F (có cùng bộ biến mệnh đề) được gọi là tương đương logic nếu … ? A. Nếu E có chân trị đúng thì F có chân trị sai và ngược lại. 169 B. E và F cùng có chân trị đúng. C. E và F cùng có chân trị sai. D. E và F có cùng chân trị trong mọi trường hợp về chân trị của bộ biến mệnh đề. Trong các luật sau, luật nào là luật hấp thụ ? A. p(pq)  p ; p(pq)p 170 B. p11 ; p00 C. p0p ; p1p D. ppp ; ppp Trong các luật sau, luật nào là luật thống trị? A. p(pq)  p ; p(pq)p 171 B. p11 ; p00 C. p0p ; p1p D. ppp ; ppp Trong các luật sau, luật nào là luật luỹ đẳng? A. p(pq)  p ; p(pq)p 172 B. p11 ; p00 C. p0p ; p1p D. ppp ; ppp 173 Trong các luật sau, luật nào là luật về phần tử trung hoà ? 24

A. p(pq)  p ; p(pq)p B. p11 ; p00 C. p0p ; p1p D. ppp ; ppp Luật P→Q tương đương với luật nào sau đây ?   Q 174

B.

Q

C. P D. P Luật nào trong các luật sau là luật phân bố (phân phối) ? A. p  (q  r)  (p  q)  (p  r); p  (q  r)  (p  q)  (p  r) B. p  (q  r)  (p  q)  r; p  (q  r)  (p  q)  r 175 C. p  (q  r)  (p  q)  (p  r); p  (q  r)  (p  q)  (p  r) D. Luật nào trong các luật sau là luật đối ngẫu (De Morgan) A. p  (q  r)  (p  q)  (p  r); p  (q  r)  (p  q)  (p  r) B. p  (q  r)  (p  q)  r; p  (q  r)  (p  q)  r 176 C. p  (q  r)  (p  q)  (p  r); p  (q  r)  (p  q)  (p  r) D. Luật nào trong các luật sau là luật kết hợp? A. p  (q  r)  (p  q)  (p  r); p  (q  r)  (p  q)  (p  r) B. p  (q  r)  (p  q)  r; p  (q  r)  (p  q)  r 177 C. p  (q  r)  (p  q)  (p  r); p  (q  r)  (p  q)  (p  r) D.

25

Luật nào sau đây là luật tương đương (kéo theo 2 chiều) ? A. p  q  (p  q)  (q  p) 178 B. p  q  (p  q)  (q  p) C. p  q  q  p D. p  q  q  p Một công thức được gọi là có dạng chuẩn tắc hội nếu …? A. Nó là hội của các biểu thức hội cơ bản 179 B. Nó là hội của các biểu thức tuyển cơ bản C. Nó là tuyển của các biểu thức hội cơ bản D. Nó là tuyển của các biểu thức tuyển cơ bản Một công thức được gọi là có dạng chuẩn tắc tuyển nếu …? A. Nó là hội của các biểu thức hội cơ bản 180 B. Nó là hội của các biểu thức tuyển cơ bản C. Nó là tuyển của các biểu thức hội cơ bản D. Nó là tuyển của các biểu thức tuyển cơ bản Giả sử p1, p2, … , pn là các biến mệnh đề. Một biểu thức logic F theo các biến mệnh đề p1, p2, … , pn được gọi là một biểu thức hội cơ bản nếu nó có dạng? 181

A.F = q1  q2  …  qn với qj = pj hoặc qj = B. F = p1  p2  …  pn C. F = p1  p2  …  pn

(j = 1, …, n)

D. F = q1  q2  …  qn với qj = pj hoặc qj = (j = 1,… ,n) Giả sử p1, p2, … , pn là các biến mệnh đề. Một biểu thức logic F theo các biến mệnh đề p1, p2, … , pn được gọi là một biểu thức tuyển cơ bản nếu nó có dạng? 182

A. F = q1  q2  …  qn với qj = pj hoặc qj = B. F = p1  p2  …  pn C. F = p1  p2  …  pn

(j = 1, … , n)

D. F = q1  q2  …  qnvới qj = pj hoặc qj = (j = 1, … , n) Biểu thức (P  Q)  (P  Q) tương đương logic với biểu thức nào sau đây? A. (P  Q)  (P  Q) 183 B. (P  Q)  ( C. (

)

) (P  Q)

D. ( ) (P  Q) Biểu thức (P  Q)  (P  Q) tương đương logic với biểu thức nào? 184

A. (P  Q)  (P  Q)

26

B. (P  Q)  (

)

C.

 (P  Q)

D.

 (P  Q)

Biểu thức (P  Q)→Q tương đương logic với biểu thức nào sau đây? A. 1 B. 0 185

C. (P  Q) D. ( 

)Q

Xác định chân trị của biểu thức ( P → Q ) Λ ( Q → R ) và (P → R) khi P = Q = 1, R=0? 186 A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 Biết chân trị của mệnh đề P→Q là 0, thì chân trị của các mệnh đề PΛQ và Q→P tương ứng là? A. 0 và 1 187 B. 1 và 0 C. 0 và 0 D. 1 và 1 Mệnh đề P(PQ) tương đương logic với mệnh đề nào sau đây? A. PQ 188 B. Q C. PQ D. P Mệnh đề A. PQ

(PQ) tương đương logic với mệnh đề nào sau đây?

189 B. P C. P D. Mệnh đề P→Q tương đương logic với mệnh đề nào sau đây? A.

190 B. → C. PQ D. P 27

Mệnh đề nào sau đây có dạng chuẩn tắc tuyển? A. (pqr)(p r) (pr ) 191 B. (pqr)(p r) (p ) C. (pqr)(p r) (pq ) D. (pqr)(p r) (pq ) Mệnh đề nào sau đây có dạng chuẩn tắc hội? A. (pqr)(p r) (pr ) 192

B. (pqr)(p r) (p ) C. (pqr)  (p r)  (pq ) D. (pqr)(p r) (pq )

Phương pháp phản chứng là phương pháp? A. Quy bài toán ban đầu về bài toán con đơn giản hơn. B. Giả sử điều cần chứng minh là sai để từ đó suy ra mâu thuẫn. 193 C. Liệt kê tất cả các khả năng để từ đó đưa ra quyết định. D. Biểu diễn nghiệm của bài toán bằng các dữ kiện ban đầu Quy tắc suy luận nào sau đây là Modus Tollens (Phủ định)? A. (P(P→Q))→Q 194 B. ( (P→Q))→Q C. (

(P→Q))→

D. ( (P→Q))→ Quy tắc suy luận nào sau đây là Modus Ponens (khẳng định)? A. (P(P→Q))→Q 195 B. ( (P→Q))→Q C. (

(P→Q))→

D. ( (P→Q))→ Quy tắc suy luận nào sau đây là quy tắc tam đoạn luận? A. (P(P→Q))→Q 196 B. ((P→Q)(Q→R)) →(P→R) C. ((P→Q)(Q→R)) →(Q→R) D. ((P→Q)(Q→R)) →(P→R) Qui tắc suy luận nào là cơ sở của suy diễn sau: ” Nếu hôm nay trời mưa thì cô ta không đến, 197 Nếu cô ta không đến thì ngày mai cô ta đến, Vậy thì, nếu hôm nay trời mưa thì ngày mai cô ta đến.” A. Modus Ponens (Khẳng định) 28

B. Modus Tollens (Phủ định) C. Tam đoạn luận (Bắc cầu) D. Từng trường hợp Có bao nhiêu trường hợp về chân trị của bộ biến mệnh đề (q1,q2,..,qn)? A. 2n 198 B. 2n C. 2n+1 D. 2n-1 Bảng chân trị của biểu thức logic E(q1,q2,..,qn) là…? A. Bảng liệt kê tất cả các giá trị của biểu thức E theo từng trường hợp về chân trị của bộ biến mệnh đề q1,q2,..,qn. 199 B. Bảng giá trị của biểu thức E C. Bảng liệt kê các trường hợp của bộ biến mệnh đề q1,q2,..,qn. D. Bảng liệt kê các phép toán logic theo các trường hợp về chân trị của bộ biến mệnh đề. Cho mô hình suy diễn sau : Ā B ̅ C ̅

200

Công thức cơ sở của mô hình trên là : ̅ A. ((Ā B) ( ̅ C)) ̅ B. ((Ā B) ( ̅ C)) ̅ C. ((Ā B) ( ̅ C)) ̅ D. ((Ā B) ( ̅ C)) Cho mô hình suy diễn sau : A B C ̅ D

B ) Công thức cơ sở của mô hình trên là : A. ((A B) ( C) ( ̅ D)) B ) B. ((A B) ( C) ( ̅ D) B )) C. ((A B) ( C) ( ̅ D)) B ) D.. ((A B) ( C) ( ̅ D)) B ) Quy tắc (luật )suy luận nào là cơ sở của suy diễn sau : Là phi công thì phải biết lái máy bay. An là phi công nên An biết lái máy bay 202 A. Luật cộng B. Luật rút gọn C. Luật khẳng định 201

29

D. Luât phủ định Quy tắc (luật )suy luận nào là cơ sở của suy diễn sau : Nếu là sinh viên CNTT của trường DHCN Việt Hung thì phải học Toán rời rạc. An không học Toán rời rạc nên An không phải là sinh viên CNTT của trường ĐHCN Việt Hung. 203 A. Luật khẳng định B. Luật phủ định C. Luật tam đoạn luận D. Luật tam đoạn luận rời Quy tắc (luật )suy luận nào là cơ sở của suy diễn sau : Trường chất lượng cao thì có cán bộ giảng dạy giỏi. Trường có cán bộ giảng dạy giỏi thì có sinh viên giỏi. Vậy trường chất lượng cao thì có sinh viên giỏi 204 A. Luật khẳng định B. Luật phủ định C. Luật tam đoạn luận D. Luật tam đoạn luận rời Quy tắc (luật )suy luận nào là cơ sở của suy diễn sau : Được khen thưởng nếu học giỏi hoặc công tác tốt. An được khen thưởng, nhưng An không học giỏi nên An phải công tác tốt. 205 A. Luật khẳng định B. Luật phủ định C. Luật tam đoạn luận D. Luật tam đoạn luận rời Hãy cho biết quy tắc (Luật) nào là cơ sở của mô hình suy diễn sau : A

206

207

A ) A. Luật rút gọn B. Luật cộng C. Luật khẳng đinh D. Luật tam đoạn luận Hãy cho biết quy tắc (Luật) nào là cơ sở của mô hình suy diễn sau : A B A A. Luật rút gọn B. Luật cộng C. Luật khẳng định D. Luật tam đoạn luận 30

Hãy cho biết quy tắc (Luật) nào là cơ sở của mô hình suy diễn sau : A A 208

B A. Luật rút gọn B. Luật cộng C. Luật khẳng định D. Luật tam đoạn luận Hãy cho biết quy tắc (Luật) nào là cơ sở của mô hình suy diễn sau : A ̅ ̅

209

A. Luật khẳng định B. Luật phủ định C. Luật tam đoạn luận rời D. Luật tam đoạn luận (bắc cầu) Hãy cho biết quy tắc (Luật) nào là cơ sở của mô hình suy diễn sau : A ̅

210

211

A A. Luật khẳng định B. Luật phủ định C. Luật tam đoạn luận rời D. Luật tam đoạn luận (bắc cầu) Hãy cho biết quy tắc (Luật) nào là cơ sở của mô hình suy diễn sau : A B A

A. Luật khẳng định B. Luật phủ định C. Luật tam đoạn luận rời D. Luật tam đoạn luận Hãy cho biết quy tắc (Luật) nào là cơ sở của mô hình suy diễn sau : A 212 C 31

(A A. Luật khẳng định B. Luật từng trường hợp C. Luật tam đoạn luận rời D. Luật tam đoạn luận Quy tắc (luật )suy luận nào là cơ sở của suy diễn sau : Nếu An học giỏi thì An sẽ được khen thưởng. Và nếu An nhiệt tình tham gia các hoạt động Đoàn thì An cũng được khen thưởng. Vậy Nếu An học giỏi hoặc tham gia nhiệt tình các hoạt động Đoàn thì An sẽ được khen thưởng. 213 A. Luật khẳng định B. Luật phủ định C. Luật tam đoạn luận D. Luật từng trường hợp Quy tắc (luật )suy luận nào là cơ sở của suy diễn sau : Nếu An học giỏi thì An sẽ tốt nghiệp loại A. Và nếu An tốt nghiệp loại A thì An sẽ có nhiều cơ hội tìm việc làm khi ra trường. Vậy nếu An học giỏi thì An sẽ có nhiều cơ hội tìm việc làm khi ra trường. 214 A. Luật khẳng định B. Luật phủ định C. Luật tam đoạn luận D. Luật từng trường hợp Luật nào sau đây là luật kéo theo ? A. p 215 B. p C. p D. p

q̅ q̅ qp qp

q q q q

Luật nào trong các luật sau là luật giao hoán? A. p  (q  r)  (p  q)  (p  r); p  (q  r)  (p  q)  (p  r) 216 B. p  q  q  p ; p  q  q  p C. p  q  q  p; p  q  q  p D. p q  ̅  ̅ ; p  q  ̅   ̅ Luật nào trong các luật sau là luật kết hợp? A. p  (q  r)  (p  q)  (p  r); p  (q  r)  (p  q)  (p  r) 217 B. p  q  q  p ; p  q  q  p C. (p  q)  r  ( p r)  q ; ( p q)  r  p r q) D.( p q)  r  p q  r ); ( p q)  r  p q r ) 218 Luật nào trong các luật sau là luật lũy đẳng? 32

A. q  q  q ; q  q q B. q   q ; q   q C. p q  q p D. q   0 ; q    1 Luật nào trong các luật sau là luật hấp thụ? A. q  q  q ; q  q q 219 B. p q  q p C. pp  q)  p ; pp q)  p D.( p q)  r  p q  r ); ( p q)  r  p q r ) Xác định chân trị của biểu thức ( P → Q ) Λ ( Q → R ) và (P → R) khi P = Q = 0, R=1? 220 A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 Xác định chân trị của biểu thức ( P → Q ) Λ ( Q → R ) và (P → R) khi P = R = 0, Q=1? 221 A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 Xác định chân trị của biểu thức ( P → Q ) Q=1; R=0?

( Q → R ) và (P → R) khi P = 1,

222 A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 Xác định chân trị của biểu thức ( X→Y ) Y=Z=1?

( Y → Z ) và (X →Z) khi X =

223 A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 Xác định chân trị của biểu thức ( X→Y ) Y=Z=0?

( Y → Z ) và (X →Z) khi X =

224 A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 225 Xác định chân trị của biểu thức (

X→Y ) 33

(

Y → Z ) và (X →Z) khi X =

Y=Z=0? A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 Xác định chân trị của biểu thức (

X→Y )

(

Y → Z ) và ( X →Z) khi X =

Y=Z=1? 226 A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 Xác định chân trị của biểu thức ( X→ Y ) v ( Y → Z ) và ( X → Z) khi X = Y=0, Z= 1? 227 A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 Xác định chân trị của biểu thức ( X→ Y ) = Y=0, Z= 1?

( Y → Z ) và ( X → Z) khi X

228 A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 Xác định chân trị của biểu thức ( Y=0, Z= 1?

X→Y )

229 A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 Câu nào sau đây KHÔNG là một mệnh đề A. Hôm nay không phải Thứ hai 230 B. Lan học giỏi Tin học C. Không phải Hiếu được khen thưởng D. Thật vui vì Lan ở nhà. Câu nào sau đây KHÔNG là một mệnh đề A. Có ai ở nhà không? 231 B. Hà Nội là thủ đô của Việt Nam C. Hôm nay trời mưa D. 2+1=5 232

Câu nào sau đây KHÔNG là một mệnh đề chúng tôi là sinh viên khoa CNTT 34

(

Y → Z ) và ( X →Z) khi X =

B.An không phải học Trí tuệ nhân tạo C. X là sinh viên không phải học Trí tuệ nhân tạo D. An là sinh viên CNTT nhưng không phải học Trí tuệ nhân tạo. Câu nào sau đây là một mệnh đề A. Hãy cẩn thận! 233 B. X+Y=1 C. An hôm nay có phải đi học không? D. An là học sinh giỏi. Dạng chuẩn tắc HỘI của công thức: (A  B)  (B  A) là A. (A  B  C)  (B  B  A) 234 B. (A  B  C)  (B  B  A) C. ) D ) Dạng chuẩn tắc TUYỂN của công thức (A  B)  (B  A) là: A. 1 235 B. C. D

)

Dạng chuẩn tắc TUYỂN của công thức A. 1 236 B. C. D

) là:

)

Dạng chuẩn tắc TUYỂN của công thức A. A 237 B. C. D. ) Dạng chuẩn tắc HỘI của công thức A. A 238 B. C. D. )

là:

là:

Dạng chuẩn tắc TUYỂN của công thức A. A 239 B. C. D. ) Dạng chuẩn tắc TUYỂN của công thức (A B) 240 A. B. 35

là:

B

) là:

C. D. Dạng chuẩn tắc TUYỂN của công thức (A B) A. 241 B. C. D.

B

Dạng chuẩn tắc HỘI của công thức (A B)

) là:

B

) là:

A. 242 B. C. D. Dạng chuẩn tắc HỘI của công thức (A B) A. 243 B. C. D. Dạng chuẩn tắc HỘI của công thức ( A B) A. 244 B. C. D.

B

Dạng chuẩn tắc TUYỂN của công thức ( A B) A. 245 B. C. D.

) là:

B

) là:

B

Cho công thức logic mệnh đề : A = với p = 1, q = 0, r =1, hãy cho biết giá trị của A là gì? 246 A. 0 B. 1 C. Không xác định được Cho công thức logic mệnh đề : A = với p = 1, q = 0, r =1, hãy cho biết giá trị của A là gì? 247 A. 0 B. 1 C. Không xác định được Cho công thức logic mệnh đề : A = với p = 1, q = 0, r =1, hãy cho biết giá trị của A là gì? 248 A. 0 B. 1 C. Không xác định được 36

) là:

Cho công thức logic mệnh đề : A = với p = 1, q = 0, r =1, hãy cho biết giá trị của A là gì? 249 A. 0 B. 1 C. Không xác định được Cho biết giá trị của công thức sau: 250 A.1 B.0 Xác định hàm Boole f được cho bởi mạch sau?

251 A. A.B.C+(A+D) B.

.B.C(

C.

.B.C+(

D. A.

)

.(

) )

Xác định hàm Boole f được cho bởi mạch sau?

252

A. AC+BC+AB ̅ B. ̅C+BC+AB ̅ C. AC+B ̅ +BC ̅ D. A ̅ +B ̅ +̅BC 37

253

254

255

256

257

258

Cho X là 1 biến Boole. Xác định biểu thức sai trong các biểu thức sau? A. X.0=0 B. X.1=1 C. X+0=X D. X+1=1 Cho X là 1 biến Boole. Xác định biểu thức sai trong các biểu thức sau? A. X+0=X B. X+1=X C. X + (Y + Z) = (X + Y) + Z = X + Y + Z D. (W + X)(Y + Z) = WY + XY + WZ + XZ Hàm Boole f=x+xy tương đương với hàm nào sau đây? A. f=xy B. f=y C. f=x+y D. f=x Đại số Boole là…? A. Một tập hợp với 2 phép toán cộng (+) và nhân (.) B. Một tập hợp với các phép toán cộng (+) và nhân (.) và lấy phần bù. C. Một tập hợp với các phép toán cộng (+) và nhân (.) và lấy phần bù; các phép cộng, nhân thoả các tính chất giao hoán, kết hợp, phân bố và có phần tử trung hoà. D. Một tập hợp với các phép toán cộng (+) và nhân (.); các phép cộng, nhân thoả các tính chất giao hoán, kết hợp, phân bố và có phần tử trung hoà. Giả sử x1,x2, …, xn là các biến Boole. Một từ đơn là…? A. Một hàm boole có dạng xi B. Một hàm boole có dạng ̅ C. Một hàm boole có dạng xi . ̅ D. Một hàm boole có dạng xi hoặc ̅ Một biểu thức Boole theo các biến x1,x2, …, xn là một tích cơ bản nếu…? A. Nó có dạng xi. ̅ B. Nó có dạng x1. x2… xn. C. Nó có dạng y1. y2… yn trong đó yi= xi hoặc yi = ̅ (i=1,2,..,n) D. Nó có dạng ̅ ̅ …̅ Đầu ra của cổng logic sau là gì?

259 A. AB B.

+

C. . D. A+B 260 Đầu ra của cổng logic sau là gì? 38

A. AB B.

+

C. . D. A+B Đầu ra của cổng logic sau là gì? A. 261 B.

+

C. . D. A+B Đầu ra của cổng logic sau là gì?

262 A. B. A.B C. D. A+B Một đơn thức là? A. Một tích khác không của một số hữu hạn các từ đơn (xi hoặc ̅ ) 263 B. Một tổng khác không của một số hữu hạn các từ đơn (xi hoặc ̅ ) C. Một tích khác không của đúng n từ đơn D. Một tổng khác không của đúng n từ đơn Công thức đa thức là? A. Công thức biểu diễn hàm Boole thành tích của các tích cơ bản (từ tối tiểu) 264 B. Công thức biểu diễn hàm Boole thành tổng của các tích cơ bản (từ tối tiểu) C. Công thức biểu diễn hàm Boole thành tổng của các từ đơn D. Công thức biểu diễn hàm Boole thành tổng của các đơn thức Dạng chính tắc tuyển (nối rời chính tắc) của hàm Boole là…? A. Công thức biểu diễn hàm Boole thành tổng của các tích cơ bản (từ tối tiểu) 265 B. Công thức biểu diễn hàm Boole thành tích của các tích cơ bản (từ tối tiểu) C. Công thức biểu diễn hàm Boole thành tổng của các đơn thức 39

Chọn đáp án đúng để điền vào dấu … trong câu sau: “Một tế bào là một tập hợp gồm …. ô kề nhau có giá trị bằng 1” 266 A. 2n (n = 0,1,2…) B. 2n (nZ+) C. n(nZ+) Trong bảng Karnaugh, 2 ô gọi là kề nhau nếu…? A. Chúng nằm trên cùng 1 hàng B. Chúng nằm trên cùng 1 cột 267 C. Nếu chúng cùng nằm trên 1 hàng, 1 cột hoặc chúng là ô đầu, ô cuối của cùng một hàng hoặc 1 cột nào đó D. Nếu chúng là hai ô liền nhau hoặc chúng là ô đầu và ô cuối của cùng một hàng hoặc 1 cột nào đó Tế bào sau là biểu đồ Karnaugh của đơn thức nào?

268

A. yt B. xt C. y ̅ D. z. ̅ Cho bảng Kar(f) như sau

269

A. xz B. zyt 40

C. ̅ . ̅ z Cho bảng Kar(f) sau: Đơn thức nào sau đây không phải là một tế bào tối đại của bảng Kar(f)?

270

A. xy B. ̅ . ̅ ̅ C. xz D. x ̅ Cho hàm Boole như sau:

Bảng Karnaugh sau là bảng Karnaugh của hàm Boole f ở trên đúng hay sai

271

A. Đúng B. Sai

41

272

A. 3 B. 2 C. 1

273

A. 4 B. 5 C. 6

274

A. B. C. Hãy cho biết có bao nhiêu tế báo tối đại trong bảng Karnaugh dươi đây 275 z

x

x

1

1

̅

̅

1

̅ 42

z

1

1

̅

1

1

̅

1

1

̅

y

1 1

t 1

y

t

̅

̅

A.3 B. 4 C. 5 D.6 Hãy cho biết có bao nhiêu tế báo tối đại trong bảng Karnaugh dươi đây x

276

̅

x

̅ ̅

z

1

1

z

1

1

t

̅

1

1

t

̅

1

1

̅

y

̅

̅

y

A.1 B. 2 C. 3 D. 4 Hãy cho biết có bao nhiêu tế báo tối đại trong bảng Karnaugh dươi đây x x ̅ ̅ ̅ z 1 1 z 1 1 t ̅ 1 1 t 277 ̅ 1 1 ̅ y y ̅ ̅ A. 1 B. 2 C. 3 D. 4 Hãy cho biết có bao nhiêu tế báo tối đại trong bảng Karnaugh dươi đây 278

x

x

̅

̅

43

z

1

z

1

1

1

̅

1 t

̅

t

̅ ̅

1

1

1

y

y

̅

̅

A. 1 B. 2 C. 3 D. 4 Hãy cho biết có bao nhiêu tế báo tối đại trong bảng Karnaugh dươi đây

z

x

x

̅

̅

1

1

1

1

1

1

z

̅

t

̅

279

̅

t 1

1

1

1

̅

y

y

̅

̅

A. 1 B. 2 C. 3 D. 4 Hãy cho biết có bao nhiêu tế báo tối đại trong bảng Karnaugh dươi đây

z 280

x

x

1

1

z

1

̅

̅

̅ ̅

1 1

̅

t 1 1

̅

y

y

t ̅

̅

A. 3 B. 4 44

C. 5 D. 6 Hãy cho biết có bao nhiêu tế báo tối đại trong bảng Karnaugh dươi đây x

x

̅

1

1

1

z

1

1

̅

1

1

z

281

̅ ̅

t 1

̅

t ̅

1 ̅

y

̅

y

A. 3 B. 4 C. 5 D. 6 Hãy cho biết có bao nhiêu tế báo tối đại trong bảng Karnaugh dươi đây x x ̅ ̅ ̅ z 1 1 1 1 z 1 1 t 1 1 t ̅ ̅ ̅ 1 1 1 1 282 y y ̅ ̅ A. 2 B. 3 C. 4 D. 5 Hãy cho biết có bao nhiêu tế báo tối đại trong bảng Karnaugh dươi đây

283

̅

̅

x

x

z

1

1

z

1

1

1

1

1

1

1

1

y

̅

̅ ̅ ̅

y

̅

t t ̅

A. 2 B. 3 45

284

x

x

z

1

1

z

1

1

̅

̅ ̅

t

̅

t ̅

̅ ̅

y

̅

y

z

285

x

x

̅

̅

1

1

1

1

̅

z

t

̅

t ̅

̅ ̅

y

y

̅

x

̅

̅

286 z z

1

̅

1 t

46

̅ ̅

t 1 ̅

̅

1 y

̅

y

287

1

1

1

̅

1

z

t

̅

t

̅

1

1

1

1

̅

y

y

̅

̅

288

̅

̅

x

x

z

1

1

z

1

1

t

̅

1

1

t

̅

1

1

̅

y

̅

̅

y

̅

x

x

̅

̅

z

1

1

1

z

1

1

1

t

̅

1

1

1

t

̅

1

1

1

̅

y

y

̅

̅ ̅

290

̅

̅

x

x

z

1

1

1

z

1

1

1

t

̅

1

1

1

t

̅

1

1

1

̅

y

̅

̅

̅

y

̅

̅

z

1

1

1

z

1

1

1

t

̅

1

1

1

t

̅

1

1

1

y

y

̅

x

291

̅

̅

̅

48

292

̅

z

1

1

1

z

1

1

1

t

̅

1

1

1

t

̅

1

1

1

y

̅

̅

y

̅

293

x

x

̅

̅

z

1

1

1

1

z

1

1

1

1

t

̅

1

1

1

1

t

̅

̅

̅ ̅

y

y

̅

294

x

x

̅

̅

Z

1

1

1

1

z

1

1

1

1

̅ ̅

̅

t t

1

1

1

1

̅

y

y

̅

̅

49

x

̅

x

̅ ̅

Z

295

z

1

1

1

1

t

̅

1

1

1

1

t

̅

1

1

1

1

̅

y

y

̅

̅

z

x

x

̅

̅

1

1

1

1

̅

z 296

t

̅

1

1

1

1

̅

1

1

1

1

̅

y

y

̅

t ̅

z

1

̅

1 ̅

1 1 y

y

̅

A. 1 50

x

̅

̅

1 1

1

̅

y

1

298 y

̅

x

̅

̅

z

1

̅

1

1

1

y

y

̅

299 ̅

̅

̅

z

1

1

1

̅

1

1

y

y

x

300 ̅

̅

x

x

̅

̅ 51

z

1

̅ ̅

1

1

1

1

y

y

1

̅

x

z

1

1

̅

1

̅

̅

1 1

302 ̅

y

̅

y

x

̅

̅

z

1

1

̅

1

1

303

̅

y

y

̅

x

̅

̅

z

1

1

1

1

̅

1

1

̅

y

304 1 y

̅ 52

x

̅

z

1

1

1

̅

1

̅

1

305 ̅

y

y

̅

̅

̅

z

1

1

1

̅

1

x

1

306 ̅

y

y

̅

x

z

1

1

̅

1

1

̅

y

̅

̅

y

̅

307

x

̅

z

1

1

̅

1

1

y

y

x

̅

̅

̅

z 309

x

x

̅

̅

1

1

1

1

̅

y

y

̅

̅

x

̅

̅

1

1

1

1

̅

y

y

̅

z ̅

310

̅

z

1

1

̅

1

1

x 311

x

54

̅

y

y

̅

312

x

̅

̅

z

1

1

̅

1

1

̅

y

y

̅

1

̅

1

x

̅

̅

y

y

̅

313 ̅

x

̅

z

1

̅

1

̅

314 ̅

y

y

̅

A. ̅ B. x. ̅ C. x D. ̅ 55

315

x

z

1

̅

1 ̅

y

̅

̅

y

̅

x

̅

̅

z

1

̅

1

316 ̅

y

y

̅

x

z

̅

̅

1

1

y

̅

̅

317 ̅

y

318

x

x

1

1

̅

̅

z ̅

56

̅

y

y

̅

z 319

x

x

1

1

̅

y

̅

̅

y

̅

̅

x

̅

̅

1

1

y

̅

z 320

̅ ̅

y

x

̅

1

̅

1

321 ̅ ̅

y

y

̅

x

̅

1

1

y

y

̅

z 322

̅ ̅

̅

57

x

̅

1

1

y

y

̅

̅ ̅

̅

x

̅

̅

z 324 ̅

1 ̅

1 y

y

̅

̅

y

1

̅

1

58

331

B. G không có đường đi Euler Nếu G = (V, E) là một đơn đồ thị vô hướng thì? 332 C. 2 cặp đỉnh bất kỳ được nối với nhau bởi nhiều nhất là 1 cạnh Giả sử G=(V,E) là đồ thị vô hướng. Đỉnh x gọi là đỉnh treo nếu? 333 B. x có bậc 1 Cho G là đơn đồ thị có hướng. Cho biết đâu là tính chất đúng của G? 334 C. Giữa 2 đỉnh bất kỳ i,j có nhiều nhất là 1 cung nối; có kể đến thứ tự các đỉnh i,j Cho đồ thị G=(V,E). Ta nói hai đỉnh u,v V là kề nhau nếu? 335 B. Có cung (cạnh) nối u với v Đồ thị vô hướng G=(V,E) được gọi là liên thông nếu? D. Giữa 2 cặp đỉnh u,v E bất kỳ của đồ thị G đều có đường đi Ma trận kề của đồ thị vô hướng G=(V,E) có tính chất? 337 A. Là ma trận đối xứng. 336

59

Đồ thị vô hướng G có n đỉnh, mỗi đỉnh có bậc bằng 6 thì có bao nhiêu cạnh? 338 C. 3n cạnh D. n cạnh Đồ thị đầy đủ n đỉnh có bao nhiêu cạnh? 339 D. n(n-1)/2 Cho biết đâu là chu trình đơn của đồ thị?

340

A. a,b,c,d,e,c,a Cho biết đâu là chu trình sơ cấp của đồ thị?

341

Đồ thị vô hướng liên thông G=(V,E) là đồ thị nửa Euler khi và chỉ khi? 346 C. Có đúng 2 đỉnh bậc lẻ, các đỉnh khác bậc chẵn. Đồ thị vô hướng liên thông G=(V,E) là đồ thị Euler khi và chỉ khi? D. Tất cả các đỉnh đều bậc chẵn Một đơn đồ thị vô hướng liên thông có 9 đỉnh, các đỉnh có bậc lần lượt là 2, 2, 2, 348 3, 3, 3, 4, 4, 5. Tìm số cạnh của đồ thị? D. 14 349 Cho đồ thị G có trọng số như hình sau: 347

60

G là đồ thị có phải đồ thị Euler không? Vì sao? A. Có vì các đỉnh của đồ thị đều có bậc chẵn B. Không, vì nó chứa các đỉnh bậc lẻ (a,k,m,c,d,h) C. Không, vì nó chứa các đỉnh bậc chẵn (a,k,m,c,d,h) D. Có, vì nó chứa các đỉnh bậc chẵn (a,k,m,c,d,h) Tìm đường đi ngắn nhất từ đỉnh A đến các đỉnh còn lại trong đồ thị sau. Đỉnh E được gán trọng số nhỏ nhất là?

350

A. 6 Chu trình Hamilton là…? 351 D. Là chu trình sơ cấp đi qua tất cả các đỉnh của đồ thị, mỗi đỉnh đúng 1 lần Hãy cho biết đồ thị nào sau đây là đồ thị Euler?

352

353

354

355 356 357

A. Đồ thị A Cây là đồ thị vô hướng liên thông…? C. Không có chu trình Giả sử G=(V,E) là đồ thị vô hướng liên thông có n đỉnh. T là cây khung (cây bao trùm) của đồ thị G. Khẳng định nào sau đây không tương đương với các khẳng định còn lại? D. T liên thông và các đỉnh đều có bậc chẵn Giả sử G=(V,E) là đồ thị vô hướng liên thông có n đỉnh. T=(V,H) được gọi là cây khung (cây bao trùm) của đồ thị G nếu…? C. T liên thông, có n-1 cạnh và HE Cây là đồ thị vô hướng liên thông…? C. Không có chu trình Cho ma trận kề của đồ thị G= (V,E) như sau: 61

Cho ma trận kề của đồ thị G= (V,E) như sau:

C.

359 Cho đồ thị G như hình vẽ: 62

Tìm cây bao trùm nhỏ nhất theo thuật toán Prim?

D. T={(3,4),(3,6),(2,3),(6,7), (5,6),(5,8), (8,11),(8,9),(9,10),(1,2)}

Cho đồ thị G như hình vẽ: Tìm cây bao trùm nhỏ nhất theo thuật toán Kruskal?

360

D. T={(3,4),(3,6),(2,3),(6,7), (8,11), (8,9),(5,6),(9,10),(5,8), (1,2)}

364

Tìm cây khung của đồ thị theo thuật toán DFS(f) (ưu tiên theo chiều sâu gốc f) A.

63

Cho đồ thị G như hình vẽ:

Tìm cây khung của đồ thị theo thuật toán BFS(f) (ưu tiên theo chiều rộng gốc f)? C. 365

366 Tìm cây bao trùm của đồ thị G được xây dựng bằng thuật toán DFS(1)

64

A. T={(1,2),(2,3),(3,4),(4,5),(5,7),(7,6)} Tìm cây bao trùm của đồ thị G được xây dựng bằng thuật toán BFS(1)

367

B. T={(1,2),(1,3),(1,4),(2,6),(3,5),(3,7)} Cho đồ thị như hình vẽ:

368

Tìm chu trình Hamilton của đồ thị? A. 1,2,3,6,7,8,9,10,5,4,1. Cho đồ thị G như hình vẽ

369 Thuật toán Dijkstra tìm đường đi ngắn nhất từ đỉnh 1 đến các đỉnh còn lại, nhãn cực tiểu của đỉnh 4 là bao nhiêu? C. 9 65

Cho đồ thị G như hình vẽ

370 Thuật toán Dijkstra tìm đường đi ngắn nhất từ đỉnh 1 đến đỉnh 9 cho kết quả đường đi ngắn nhất là? B. 1→3→4→8→9 Cho đồ thị như hình vẽ:

371

Thuật toán Dijkstra tìm đường đi ngắn nhất từ đỉnh 1 đến các đỉnh còn lại, nhãn cực tiểu của đỉnh 5 là bao nhiêu? B. 11 Cho đồ thị như hình vẽ:

372

Đường đi ngắn nhất từ đỉnh 1 đến đỉnh 9 là…? C. 1→3→5→8→9 Thuật toán Dijkstra áp dụng cho? 373 C. Đồ thị vô hướng, có hướng có trọng số không âm 374 Thuật toán Dijkstra được dùng để? 66

D. Tìm đường đi ngắn nhất từ 1 đỉnh đến các đỉnh còn lại của đồ thị Thuật toán Prim dùng để…? 375 D. Tìm cây khung nhỏ nhất của đồ thị Có thể xây dựng cây khung của đồ thị (không trọng số) bằng thuật toán….? 376 A. BFS,DFS

377

378

379

380

381

Phát biểu nào sau đây là đúng: A. Đồ thị G là đơn đồ thị khi và chỉ khi G không có khuyên và bất kỳ hai đỉnh phân biệt nào cũng được nối với nhau bởi không quá một cạnh. B. Đồ thị G là đơn đồ thị khi và chỉ khi G có khuyên và bất kỳ hai đỉnh phân biệt nào cũng được nối với nhau bởi không quá một cạnh. C. Đồ thị G là đơn đồ thị khi và chỉ khi G không có khuyên và trong G có tồn tại một cặp đỉnh phân biệt được nối với nhau bởi nhiều hơn một cạnh. D. Đồ thị G là đơn đồ thị khi và chỉ khi G có khuyên và trong G có tồn tại một cặp đỉnh phân biệt được nối với nhau bởi nhiều hơn một cạnh. Phát biểu nào sau đây là đúng: A. Đồ thị G là đa đồ thị khi và chỉ khi G không có khuyên và bất kỳ hai đỉnh phân biệt nào cũng được nối với nhau bởi không quá một cạnh. B. Đồ thị G là đa đồ thị khi và chỉ khi G có khuyên và bất kỳ hai đỉnh phân biệt nào cũng được nối với nhau bởi không quá một cạnh. C. Đồ thị G là đa đồ thị khi và chỉ khi G không có khuyên và trong G có tồn tại một cặp đỉnh phân biệt được nối với nhau bởi nhiều hơn một cạnh. D. Đồ thị G là đa đồ thị khi và chỉ khi G có khuyên và trong G có tồn tại một cặp đỉnh phân biệt được nối với nhau bởi nhiều hơn một cạnh Phát biểu nào sau đây là đúng: A. Đồ thị G là giả đồ thị khi và chỉ khi G không có khuyên và bất kỳ hai đỉnh phân biệt nào cũng được nối với nhau bởi không quá một cạnh. B. Đồ thị G là giả đồ thị khi và chỉ khi G có khuyên và bất kỳ hai đỉnh phân biệt nào cũng được nối với nhau bởi không quá một cạnh. C. Đồ thị G là giả đồ thị khi và chỉ khi G không có khuyên và trong G có tồn tại một cặp đỉnh phân biệt được nối với nhau bởi nhiều hơn một cạnh. D. Đồ thị G là giả đồ thị khi và chỉ khi G có khuyên và trong G có tồn tại một cặp đỉnh phân biệt được nối với nhau bởi nhiều hơn một cạnh Cho G là đồ thị có hướng, phát biểu nào sau đây là chính xác nhất: A. G là đơn đồ thị có hướng khi và chỉ khi trong G đối với mỗi cặp đỉnh khác nhau có không quá một cung (cùng chiều) nối với nhau và có thể có khuyên. B.G là đơn đồ thị có hướng khi và chỉ khi trong G đối với mỗi cặp đỉnh khác nhau có không quá một cung nối với nhau và không có khuyên. C.G là đơn đồ thị có hướng khi và chỉ khi trong G có một cặp đỉnh khác nhau được nối với nhau bởi nhiều hơn một cung (cùng chiều) và không có khuyên. D.G là đơn đồ thị có hướng khi và chỉ khi trong G có một cặp đỉnh khác nhau được nối với nhau bởi nhiều hơn một cung (cùng chiều) và có thể có khuyên Cho G là đồ thị có hướng, phát biểu nào sau đây là chính xác nhất: A. G là đa đồ thị có hướng khi và chỉ khi trong G đối với mỗi cặp đỉnh khác nhau có không quá một cung (cùng chiều) nối với nhau và có thể có khuyên. B.G là đa đồ thị có hướng khi và chỉ khi trong G đối với mỗi cặp đỉnh khác nhau 67

Phát biểu nào sau đây là chính xác nhất: A. Cho G là đồ thị bất kỳ. Một đường đơn trong G là đường Euler khi và chỉ khi đường đơn đó đi qua tất cả các cạnh trong G và mỗi cạnh xuất hiện đúng một lần. chúng tôi G là đồ thị bất kỳ. Một đường đơn trong G là đường Euler khi và chỉ khi 390 đường đơn đó đi qua tất cả các đỉnh trong G và mỗi đỉnh xuất hiện đúng một lần. C. Cho G là đồ thị bất kỳ. Một đường đi trong G là đường Euler khi và chỉ khi đường đơn đó đi qua các cạnh trong G. chúng tôi G là đồ thị bất kỳ. Một đường đơn trong G là đường Euler khi và chỉ khi đường đơn đó đi qua tất cả các đỉnh trong G. Phát biểu nào sau đây là chính xác nhất: A. Cho G là đồ thị bất kỳ. Một đường đi trong G là đường Hamilton khi và chỉ khi đường đi đó đi qua tất cả các cạnh trong G và mỗi cạnh xuất hiện đúng một lần. chúng tôi G là đồ thị bất kỳ. Một đường sơ cấp trong G là đường Hamilton khi và chỉ 391 khi đường đi đó đi qua tất cả các đỉnh trong G và mỗi đỉnh xuất hiện đúng một lần. C. Cho G là đồ thị bất kỳ. Một đường sơ cấp trong G là đường Hamilton khi và chỉ khi đường đi đó đi qua tất cả các cạnh trong G. chúng tôi G là đồ thị bất kỳ. Một đường đi trong G là đường Hamilton khi và chỉ khi 68

đường đi đó đi qua tất cả các đỉnh trong G. 392 Phát biểu nào sau đây là chính xác nhất: 393 Cho đồ thị G =. Chu trinh sơ cấp trong G là: B. Chu trình mà trong chu trình đó mỗi đỉnh xuất hiện đúng một lần.. Cho đồ thị G bất kỳ, số đỉnh bậc lẻ trong G luôn luôn là một số: 394 A. Số chẵn Cho G= là đồ thị bất kỳ. Bậc của đồ thị G bằng … 395 A. Hai lần số cạnh Cho đồ thị G có bậc là 10. Số cạnh của đồ thị G là: 396 B. 5 Cho đồ thị G có 5 đỉnh có bậc lần lượt là 2, 2, 3, 4, 5 397 Bậc của đồ thị G là: B. 16 Cho đồ thị vô hướng cạnh có trọng số như hình vẽ.

398

Cây khung nhỏ nhất có tổng trọng số là: B. 10 Một cây có ít nhất mấy đỉnh treo? 399 B. 2 Cho đồ thị G có 9 đỉnh có bậc lần lượt là 1, 2, 2, 3, 3, 4, 4, 4,5 400 Số cạnh của đồ thị G là: C. 14

69