Xu Hướng 5/2023 # Vấn Đề Giải Phương Trình Chứa Căn Bậc 3 # Top 12 View | Ictu-hanoi.edu.vn

Xu Hướng 5/2023 # Vấn Đề Giải Phương Trình Chứa Căn Bậc 3 # Top 12 View

Bạn đang xem bài viết Vấn Đề Giải Phương Trình Chứa Căn Bậc 3 được cập nhật mới nhất trên website Ictu-hanoi.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất.

B. GIẢI PHƯƠNG TRÌNH CHỨA CĂN BẬC 3 I. KIẾN THỨC CẦN NHỚ. 1. Dạng cơ bản: 3 3A B A B= ⇔ = 33 A B A B= ⇔ = 2. Các dạng khác: Giải phương trình: 3 3 3A B C= = (*) 33 3( A B) C⇔ + = 3 3 3 3A B 3 A B ( A B) C (1)⇔ + + + = thay 3 3 3A B C+ = vào (1) ta được: 3A B 3 AB C+ + = (2) Cần nhớ (2) là hệ quả của (*), khi giải tìm nghiệm của (2) ta phải thử lại đối với phương trình (1). II. CÁC VÍ DỤ. Ví dụ 1: Giải phương trình: 3 3 32x 1 x 1 3x 2− + − = − (1) (CAO ĐẲNG HẢI QUAN năm 1997). Giải Lập phương 2 vế: 3 332x 1 x 1 3 (2x 1)(x 1)( 2x 1 x 1) 3x 2− + − + − − − + − = − 333 (2x 1)(x 1) 3x 2 0⇔ − − − = 1x2x 1 0 2 x 1 0 x 1 3x 2 0 2x 3 ⎡ =⎢− =⎡ ⎢⎢⇔ − = ⇔ =⎢⎢ ⎢⎢ − =⎣ ⎢ =⎢⎣ . Thử lại: 3 31 1 1x : (1) 2 2 2 = ⇔ − = − (thỏa) 3 3x 1: (1) 1 1= ⇔ = (thỏa) 33 32 1 1x : (1) 0 3 3 3 = ⇔ + − = (thỏa) 141 Vậy phương trình có 3 nghiệm : 1 2x ,x 1,x 2 3 = = = Ví dụ 2: Giải phương trình: 3 3 3x 1 x 2 x 3 0 (1)+ + + + + = Giải Nhận xét x = – 2 là nghiệm của phương trình (1) Ta chứng minh x = – 2 duy nhất. Đặt 3 3 3f(x) x 1 x 2 x 3= + + + + + vì x + 1, x + 2, x + 3 là những hàm số tăng trên R ⇒ hàm số f(x) tăng trên tập R và có nghiệm x = – 2. ⇒ x = – 2 duy nhất. III. BÀI TẬP ĐỀ NGHỊ. 2.1. Giải phương trình: 3 312 x 4 x 4− + + = 2.2. Giải phương trình: 3 35x 7 5x 12 1+ − − = 2.3. Giải phương trình: 3 324 x 5 x 1+ − + = 2.4. Giải phương trình: 3 39 x 1 7 x 1 4− + + + + = 142 HƯỚNG DẪN VÀ GIẢI TÓM TẮT 2.1. 3 312 x 4 x 4− + + = (1) Lập phương 2 vế và rút gọn ta được: 2x 8x 16 0 x 4− + = ⇔ = Thử x = 4 vào (1) thỏa. 2.2. 3 35x 7 5x 12 1+ − − = Đặt 3 3u 5x 7,v 5x 12= + = − 23 3 u v 1u v 1 (u v) (u v) 3uv 19u v 19 − =⎧− =⎧⎪ ⎪⇒ ⇔⎨ ⎨ ⎡ ⎤− − + =− =⎪ ⎪⎩ ⎣ ⎦⎩ u v 1 u 3 u 2 uv 6 v 2 v 3 − = = = −⎧ ⎧ ⎧⇔ ⇔ ∨⎨ ⎨ ⎨= = = −⎩ ⎩ ⎩ 3 3 3 3 5x 7 3 5x 7 2 x 4 x 3 5x 12 2 5x 12 3 ⎧ ⎧+ = + = −⎪ ⎪⇔ ∨ ⇒ = ∨ = −⎨ ⎨− = − = −⎪ ⎪⎩ ⎩ 2.3. 3 324 x 5 x 1+ − + = Đặt 3 3u 24 x ,v 5 x= + = + 3 3 u v 1 u 3 u 2 x 9 v 2 v 3u v 19 − =⎧ = = −⎧ ⎧⎪⇒ ⇔ ∨ ⇒ =⎨ ⎨ ⎨= = −− =⎪ ⎩ ⎩⎩ 2.4. 3 39 x 1 7 x 1 4− + + + + = Đặt 3 3u 9 x 1,v 7 x 1= − + = + + 3 3 u v 4 u v 4 u v 2 uv 4u v 16 + =⎧ + =⎧⎪⇒ ⇔ ⇔ = =⎨ ⎨ =+ =⎪ ⎩⎩ ⇒ x = 0.

Chuyên Đề Phương Trình Chứa Căn Thức

Giải phương trình bậc nhất, phương trình bậc hai là rất quan trọng trong các cấp học, từ THCS đến THPT tuy nhiên ở cấp THPT không đơn thuần là cho sẵn phương trình bậc nhất, bậc hai để giải mà thường lồng ghép dưới nhiều hình thức của các bài toán khác nhau. Cụ thể nhất là trong chương trình toán lớp 10 của chương trình Cơ bản hay Nâng cao điều có phương trình chứa căn thức.

Phương trình chứa căn thức là loại phương trình mà đa số học sinh khi tiếp cận giải thường mắc phải không ít những sai lầm trong quá trình giải đó là: Thiếu điều kiện để căn thức có nghĩa hoặc khi bình phương hai vế ta thường được phương trình hệ quả ( nên dễ xuất hiện nghiệm ngoại lai) nhưng học sinh vẫn nghĩ là phương trình tương đương, hoặc rất khó khăn khi nhận dạng cách giải trong các phương trình chứa nhiều căn thức .

Vì thế muốn giúp cho học sinh có cách nhìn tổng quan hơn về các bài toán phương trình chứa căn thức tôi viết chuyên đề này giúp cho học sinh dễ dàng tiếp cận các loại phương trình chứa căn thức trong chương trình lớp 10 và có thể dựa vào đó để tiếp cận và khai thác sâu hơn các bài toán chứa căn thức trong các kì thi cao đẳng và đại học.

Trong quá trình viết tôi đã cố gắng sắp xếp các dạng toán theo thứ tự của các cấp độ nhận thức: Biết- hiểu- thông hiểu và vận dụng để học sinh dễ tiếp cận. Sau mỗi ví dụ có hướng dẫn giải và có lời bình giúp học sinh khắc sâu được những kỹ năng quan trọng khi tiếp cận giải bài toán chứa căn thức, đồng thời có bài tập tương tự giúp học sinh tự rèn luyện để có được kỹ năng giải hợp lý các bài toán chứa căn thức.

Tuy đã cố gắng nhưng cũng chỉ mang tính chủ quan nên không tránh khỏi sai sót và hạn chế. Mong quý đồng nghiệp góp ý tôi rất chân thành cám ơn !

Phương Trình Chứa Ẩn Dưới Dấu Căn

Chuyên đề: Phương trình – Hệ phương trình

Phương trình chứa ẩn dưới dấu căn

Lý thuyết & Phương pháp giải

Để giải phương trình chứa ẩn dưới dấu căn ta tìm cách để khử dấu căn, bằng cách:

– Nâng luỹ thừa hai vế.

– Phân tích thành tích.

– Đặt ẩn phụ.

Các dạng phương trình sau ta có thể giải bằng cách thực hiện phép biến đổi tương đương:

Phương trình có dạng a.f(x) + b.√(f(x) ) + c = 0 ta đặt √(f(x)) = t

Ngoài ra ta còn có phương pháp phân tích thành tích bằng cách nhân liên hợp

Với A, B không đồng thời bằng không

Ví dụ minh họa

Bài 1: Giải phương trình sau √(2x-3) = x-3

Hướng dẫn:

Ta có

Bài 2: Giải phương trình sau

Hướng dẫn:

Phương trình tương đương với phương trình

Vậy phương trình có nghiệm là x = 0 và x = 1

Bài 3: Giải phương trình sau √(2x-1) + x 2 – 3x + 1 = 0

Hướng dẫn:

Ta có

Vậy phương trình có nghiệm là x = 1 và x = 2 – √2

Bài 4: Giải phương trình sau x 2 + √(x 2 + 11) = 31

Hướng dẫn:

Đặt t = √(x 2 + 11), t ≥ 0. Khi đó phương trình đã cho trở thành:

t 2 + t – 42 = 0 ⇔

Vì t ≥ 0 ⇒ t = 6, thay vào ta có √(x 2 + 11) = 6

x 2 + 11 = 36 ⇔ x = ±5

Vậy phương trình có nghiệm là x = ±5

Bài 5: Giải phương trình sau

Hướng dẫn:

Đặt t = √(3x 2 – 2x + 2), điều kiện t ≥ 0. Khi đó √(3x 2 – 2x + 9) = √(t 2 + 7)

Phương trình trở thành √(t 2 + 7) + t = 7

Vậy phương trình có hai nghiệm x = (1 ± √22)/3

Chuyên đề Toán 10: đầy đủ lý thuyết và các dạng bài tập có đáp án khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k5: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

phuong-trinh-he-phuong-trinh.jsp

Phương Trình Lượng Giác Chứa Căn Và Phương Trình Lượng Giác Chứa Giá Trị Tuyệt Đối

PHƯƠNG TRÌNH LƯỢNG GIÁC CHỨA CĂN VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC CHỨA GIÁ TRỊ TUYỆT ĐỐI A) PHƯƠNG TRÌNH LƯỢNG GIÁC CHỨA CĂN Cách giải : Áp dụng các công thức A 0 B A B 0 A B A ≥ ≥⎧ ⎧= ⇔ ⇔⎨ ⎨ B= =⎩ ⎩ 2 B 0 A B A B ≥⎧= ⇔ ⎨ =⎩ Ghi chú : Do theo phương trình chỉnh lý đã bỏ phần bất phương trình lượng giác nên ta xử lý điều kiện B bằng phương pháp thử lại và chúng tôi bỏ 0≥ các bài toán quá phức tạp. Bài 138 : Giải phương trình ( )5cos x cos2x 2sin x 0 *− + = ( )* 5cos x cos2x 2sin x⇔ − = − 2 sin x 0 5cos x cos2x 4sin x ≤⎧⇔ ⎨ − =⎩ ( ) (2 2 sin x 0 5cos x 2cos x 1 4 1 cos x ≤⎧⎪⇔ ⎨ − − = −⎪⎩ ) = 2 sin x 0 2cos x 5cos x 3 0 ≤⎧⇔ ⎨ + −⎩ ( ) sin x 0 1cos x cos x 3 loại 2 ≤⎧⎪⇔ ⎨ = ∨ = −⎪⎩ ≤⎧⎪⇔ π⎨ = ± + π ∈⎪⎩ π⇔ = − + π ∈ sin x 0 x k2 , k 3 x k2 , k 3 Bài 139 : Giải phương trình 3 3 3 3sin x cos x sin x cot gx cos xtgx 2sin2x+ + + = Điều kiện : cos x 0 sin 2x 0 sin x 0 sin 2x 0 sin 2x 0 sin2x 0 Lúc đó : ( ) 3 3 2 2* sin x cos x sin x cos x cos xsin x 2sin2x⇔ + + + = ( ) ( )2 2sin x sin x cos x cos x cos x sin x 2sin2x⇔ + + + = ( ) ( )2 2sin x cos x sin x cos x 2sin 2x⇔ + + = ( )2 sin x cos x 0 sin x cos x 2sin2x + ≥⎧⎪⇔ ⎨ + =⎪⎩ ( ) sin x 02 sin x 0 44 sin2x 1 nhận do sin2x 01 sin2x 2sin2x ( ) ⎧ π ⎧ π⎛ ⎞ ⎛ ⎞+ ≥ + ≥⎜ ⎟ ⎜ ⎟⎪ ⎪⎪ ⎪⎝ ⎠ ⎝ ⎠⇔ ⇔⎨ ⎨π π π⎪ ⎪= + π ∈ = + π ∨ = + π ∈⎪ ⎪⎩ ⎩ sin x 0 sin x 0 4 4 5x k , k x m2 x m2 loại , m 4 4 4 π⇔ = + π ∈ x m2 ,m 4 Bài 140 : Giải phương trình ( )π⎛ ⎞+ = ⎜ ⎟⎝ ⎠ 21 8sin chúng tôi 2x 2sin 3x * 4 + Ta có : (*) 2 2 sin 3x 0 4 1 8sin2x cos 2x 4sin 3x 4 ⎧ π⎛ ⎞+ ≥⎜ ⎟⎪⎪ ⎝ ⎠⇔ ⎨ π⎛ ⎞⎪ + = ⎜ ⎟⎪ ⎝ ⎠⎩ + ( ) ⎧ π⎛ ⎞+ ≥⎜ ⎟⎪⎪ ⎝ ⎠⇔ ⎨ π⎡ ⎤⎪ + + = − +⎢ ⎥⎪ ⎣ ⎦⎩ sin 3x 0 4 1 4 sin 2x 1 cos 4x 2 1 cos( 6x ) 2 ( ) ( sin 3x 0 4 1 4sin2x 2 sin6x sin2x 2 1 sin6x ⎧ π⎛ ⎞+ ≥⎪ ⎜ ⎟⇔ ⎝ ⎠⎨⎪ + + − = +⎩ ) ⎧ π ⎧ π⎛ ⎞ ⎛ ⎞+ ≥ + ≥⎜ ⎟ ⎜ ⎟⎪ ⎪⎪ ⎪⎝ ⎠ ⎝ ⎠⇔ ⇔⎨ ⎨ π π⎪ ⎪= = + π ∨ = + π ∈⎪ ⎪⎩ ⎩ sin 3x 0 sin 3x 0 4 4 1 5sin 2x x k x k , k 2 12 12 So lại với điều kiện sin 3x 0 4 π⎛ ⎞+ ≥⎜ ⎟⎝ ⎠ Khi x k thì 12 π• = + π sin 3x sin 3k cosk 4 2 π π⎛ ⎞ ⎛ ⎞+ = + π =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ π ( ) ( ) ( ) ( ) ⎡= ⎢−⎢⎣ 1 , nếu k chẵn nhận 1, nếu k lẻ loại π• = + π5Khi x k thì 12 π π π⎛ ⎞ ⎛ ⎞ ⎛+ = + π = − + π⎜ ⎟ ⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠ ⎝ 3sin 3x sin 3k sin k 4 2 2 ⎞⎟⎠ ( ) ( ) −⎡= ⎢⎢⎣ 1,nếu k chẵn loại 1, nếu k lẻ nhận Do đó ( ) ( )π π⇔ = + π ∨ = + + π ∈ 5* x m2 x 2m 1 ,m 12 12 Bài 141 : Giải phương trình ( )1 sin2x 1 sin2x 4cos x * sin x − + + = Lúc đó : ( )* 1 sin2x 1 sin2x 2sin2x⇔ − + + = ( hiển nhiên sinx = 0 không là nghiệm , vì sinx =0 thì VT = 2, VP = 0 ) 2 22 2 1 sin 2x 4sin 2x sin2x 0 ⎧⎪ + − =⇔ ⎨ ≥⎪⎩ 2 21 sin 2x 2sin 2x 1 sin2x 0 ⎧⎪ − =⇔ ⎨ ≥⎪⎩ − 2 4 2 2 1 sin 2x 4sin 2x 4sin 2x 1 1sin 2x 2 sin2x 0 ⎧ − = −⎪⎪⇔ ≥⎨⎪ ≥⎪⎩ + ( )2 2sin 2x 4sin 2x 3 0 1sin 2x 2 ⎧ − =⎪⇔ ⎨ ≥⎪⎩ ⎧ −= ∨ =⎪⎪⇔ ⎨⎪ ≥⎪⎩ 3 3sin 2x sin 2x 2 2 2sin 2x 2 3sin2x 2 ⇔ = π π⇔ = + π ∨ = + π ∈ 22x k2 2x k2 , k 3 3 π π⇔ = + π ∨ = + π ∈ x k x k , k 6 3 Chú ý : Có thể đưa về phương trình chứa giá trị tuyệt đối ( ) ≠⎧⎪⇔ ⎨ − + + =⎪⎩ ⇔ − + + = sin x 0 * cos x sin x cos x sin x 2sin 2x cos x sin x cos x sin x 2sin 2x Bài 142 : Giải phương trình ( )+ + + =sin x 3 cos x sin x 3 cos x 2 * Đặt sin 3t sin x 3 cos x sin x cos x cos 3 π = + = + π 1t sin x 2sin x 3 3cos 3 π π⎛ ⎞ ⎛ ⎞⇔ = + = +⎜ ⎟ ⎜ ⎟π ⎝ ⎠ ⎝ ⎠ ( ) + =* thành t t 2 ⇔ = − − ≥ ≤⎧ ⎧⇔ ⇔⎨ ⎨= − + − + =⎩ ⎩ ≤⎧⇔ ⇔ =⎨ = ∨ =⎩ 2 2 t 2 t 2 t 0 t 2 t 4 4t t t 5t 4 0 t 2 t 1 t 1 t 4 Do đó ( ) * π π π π π⎛ ⎞⇔ + = ⇔ + = + π + = + π ∈⎜ ⎟⎝ ⎠ 1 5sin x x k2 hay x k2 , k 3 2 3 6 3 6 π π⇔ = − + π ∨ = + π ∈ x k2 x k2 , k 6 2 Bài 143 : Giải phương trình ( ) ( ) ( )+ + = +3 tgx 1 sin x 2 cos x 5 sin x 3cos x * Chia hai vế của (*) cho cos x 0≠ ta được ( ) ( ) ( )* 3 tgx 1 tgx 2 5 tgx 3⇔ + + = + Đặt u tgx 1 với u= + ≥ 0 x Thì 2u 1 tg− = (*) thành ( ) ( )2 23u u 1 5 u 2+ = + 3 23u 5u 3u 10 0⇔ − + − = ( ) ( )2u 2 3u u 5 0⇔ − + + = ( )2u 2 3u u 5 0 vô nghiệm⇔ = ∨ + + = Do đó ( ) ⇔* tgx 1 2+ = tgx 1 4⇔ + = tgx 3 tg với 2 2 π π⎛ ⎞⇔ = = α − < α <⎜ ⎟⎝ ⎠ ,x k kα π⇔ = + ∈ Bài 144 : Giải phương trình ( ) ( )11 cos x cos x cos2x sin4x *2− + = ( ) ( )* 1 cos x cos x cos2x sin 2x cos2x⇔ − + = ≥⎧⇔ − +⎨ =⎩ cos x 0 hay 1 cos x cos x sin 2x cos 2x 0 = ⎧ ≥≥⎧ ⎪⎪⇔ ≥⎨ ⎨π= + π ∈⎪ ⎪⎩ + − =⎩ 2 cos x 0cos x 0 hay sin 2x 0 2x k , k 2 1 2 (1 cos x)cosx sin 2x ⎧ ≥≥⎧ ⎪⎪⇔ ≥⎨ ⎨π π= + ∈⎪ ⎪⎩ + − = ≥ ≥⎩ 2 cos x 0cos x 0 hay sin 2x 0 x k , k 4 2 1 2 (1 cos x)cosx sin 2x ( VT 1 VP ) ≥⎧≥ ⎪⎧ ≥⎪ ⎪⇔ ⎨ ⎨π π= ± + π = ± + π ∈ =⎪ ⎪⎩ ⎪ − =⎩ 2 cos x 0 cos x 0 sin 2x 0 hay5x h hay x h , h sin 2x 1 4 4 (1 cos x ) cos x 0 π⇔ = ± + π ∈ = =⎧ ⎧⎨ ⎨= ⇒ = = ⇒ = ⇒ =⎩ ⎩ x h , h 4 sin 2x 1 sin 2x 1 hay hay cos x 0 ( sin 2x 0 ) cos x 1 ( sin x 0 sin 2x 0 ) π⇔ = ± + π ∈ x h , h 4 Bài 145 : Giải phương trình ( ) ( ) ( )3 3sin x 1 cot gx cos x 1 tgx 2 sin x cos x *+ + + = ( ) 3 3sin x cos x cos x sin x* sin x cos x 2 sin x cos sin x cos x + +⎛ ⎞ ⎛ ⎞⇔ + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ x ( ) ( )2 2sin x cos x sin x cos x 2 sin x cos x⇔ + + = sin x cos x 0 1 sin2x 2sin2x + ≥⎧⇔ ⎨ + =⎩ ⎧ π⎛ ⎞+ ≥⎜ ⎟⎪+ ≥⎧ ⎪ ⎝ ⎠⇔ ⇔⎨ ⎨= π⎩ ⎪ = + π ∈⎪⎩ sin x 0sin x cos x 0 4 sin 2x 1 x k , k 4 ⎧ π⎛ ⎞+ ≥⎜ ⎟⎪⎪ ⎝ ⎠⇔ ⎨ π π⎪ + = + π ∈⎪⎩ sin x 0 4 x k , k 4 2 ⎧ π⎛ ⎞+ ≥⎜ ⎟⎪⎪ ⎝ ⎠⇔ ⎨ π π π π⎪ + = + π + = + π ∈⎪⎩ sin x 0 4 3x h2 hay x h2 , h 4 2 4 2 π⇔ = + π ∈ x h2 , h 4 Bài 146 : Giải phương trình ( )cos2x 1 sin2x 2 sin x cos x *+ + = + Điều kiện cos2x 0và sin x 0 4 π⎛ ⎞≥ +⎜ ⎟⎝ ⎠ ≥ Lúc đó : ( ) ( )22 2* cos x sin x cos x sin x 2 cos x sin x⇔ − + + = + ( ) ( )2 22 2cos x sin x cos x sin x 2 cos2x cos x sin x⇔ − + + + + ( )4 sin x cos x= + ( ) ( ) ( )cos x cos x sin x sin x cos x cos2x 2 sin x cos x⇔ + + + = + sin x cos x 0 cos x cos2x 2 + =⎡⇔ ⎢ + =⎣ ( ) tgx 1 cos2x 2 cos x * * = −⎡⇔ ⎢ = −⎢⎣ 2 tgx 1 cos2x 4 4cos x cos x = −⎡⇔ ⎢ = − +⎣ 2tgx 1 cos x 4cosx 5 0⇔ = − ∨ + − = ( )tgx 1 cos x 1 cos x 5 loại⇔ = − ∨ = ∨ = − π⇔ = − + π ∨ = π ∈ x k x k2 , k 4 Thử lại : ( )π π⎛ ⎞• = − + π = − =⎜ ⎟⎝ ⎠x k thì cos2x cos 0 nhận4 2 Và ( )sin x sin k 0 nhận 4 π⎛ ⎞+ = π =⎜ ⎟⎝ ⎠ ( )• = π =x k2 thì cos 2x 1 nhận và ( )cos x cos 0 nhận 4 4 Do đó (*) π⇔ = − + π ∨ = π ∈ x k x k2 , k 4 Chú ý : Tại (**) có thể dùng phương trình lượng giác không mực ( ) cos x cos2x 2* * sin x cos x 0 ⎧ + =⎪⇔ ⎨ + ≥⎪⎩ 2 cos x 1 cos2x 2cos x 1 1 sin x cos x 0 =⎧⎪⇔ = −⎨⎪ + ≥⎩ = π ∈ =⎧⇔ ⇔ =⎨ + ≥⎩ cos x 1 x 2k , k sin x cos x 0 Cách khác ( ) ( )22 2* cos x sin x cos x sin x 2 cos x sin x⇔ − + + = + ( )⇔ + − + + = +2(cos x sin x).(cos x sin x ) cos x sin x 2 cos x sin x ( ) cos x sin x 0 cos x sin x 0 hay cos x sin x cos x sin x 2 cos x sin x 0 tgx 1 hay 2cos x 2 cos 2x 4 cos x sin x 0 tgx 1 hay cos x cos 2x 2 =⎧π⇔ = − + π ∈ ⎨ =⎩ cos x 1 x k , k hay cos 2x 14 π⇔ = − + πx k hay = π ∈ 4 x 2k , k BÀI TẬP 1. Giải phương trình : a/ 1 sin x cosx 0+ + = b/ 2 2 4xcos cos x 3 0 1 tg x − =− c/ sin x 3 cos x 2 cos2x 3 sin 2x+ = + + d/ 2sin x 2sin x 2 2sin x 1− + = − e/ = −− 3tgx2 3sin x 3 2 sin x 1 f/ 2 4sin 2x cos 2x 1 0 sin cos x + − = g/ + − + =28 cos 4x cos 2x 1 cos 3x 1 0 h/ 2sin x sin x sin x cosx 1+ + + = k/ 25 3sin x 4 cos x 1 2cos x− − = − l/ 2cos2x cos x 1 tgx= + 2. Cho phương trình : ( )1 sin x 1 sin x mcos x 1+ + − = a/ Giải phương trình khi m = 2 b/ Giải và biện luận theo m phương trình (1) 3. Cho f(x) = 3cos62x + sin42x + cos4x – m a/ Giải phương trình f(x) = 0 khi m = 0 b/ Cho ( ) 2 2g x 2cos 2x 3cos 2x 1= + . Tìm tất cả các giá trị m để phương trình f(x) = g(x) có nghiệm. ( )ĐS : 1 m 0≤ ≤ 4. Tìm m để phương trình sau có nghiệm 1 2cosx 1 2sin x m+ + + = ( )ĐS : 1 3 m 2 1 2+ ≤ ≤ + B) PHƯƠNG TRÌNH LƯỢNG GIÁC CHỨA CÁC TRỊ TUYỆT ĐỐI Cách giải : 1/ Mở giá trị tuyệt đối bằng định nghĩa 2/ Áp dụng A B A• = ⇔ = ±B ≥≥ ≥⎧⎧ ⎧• = ⇔ ⇔ ⇔ ∨⎨ ⎨ ⎨ ⎨ <⎧= ± ==⎩ ⎩⎩ 2 2 B 0B 0 A 0 A 0 A B = −⎩A B A BA B A B Bài 147 : Giải phương trình ( )cos3x 1 3 sin3x *= − ( ) 2 2 1 3 sin3x 0 * cos 3x 1 2 3 sin3x 3sin 3x ⎧ − ≥⎪⇔ ⎨ = − +⎪⎩ ⎧ ≤⎪⇔ ⎨⎪ − = − +⎩ 2 2 1sin 3x 3 1 sin 3x 1 2 3 sin 3x 3sin 3x ⎧ ≤⎪⇔ ⎨⎪ − =⎩ 2 1sin 3x 3 4 sin 3x 2 3 sin 3x 0 ⎧ ≤⎪⎪⇔ ⎨⎪ = ∨ =⎪⎩ 1sin 3x 3 3sin 3x 0 sin 3x 2 ⇔ = π⇔ = ∈ sin 3x 0 kx , k 3 Bài 148 : Giải phương trình ( )3sin x 2 cos x 2 0 *+ − = ( )* 2 cos x 2 3sin⇔ = − x 2 2 2 3sin x 0 4cos x 4 12sin x 9sin x − ≥⎧⇔ ⎨ = − +⎩ ( ) ⎧ ≤⎪⇔ ⎨⎪ − = − +⎩ 2 2 2sin x 3 4 1 sin x 4 12sin x 9sin x ⎧ ≤⎪⇔ ⎨⎪ − =⎩ 2 2sin x 3 13sin x 12sin x 0 ⎧ ≤⎪⎪⇔ ⎨⎪ = ∨ =⎪⎩ 2sin x 3 12sin x 0 sin x 13 ⇔ = ⇔ = π ∈ sin x 0 x k , k Bài 149 : Giải phương trình ( )sin x cos x sin x cos x 1 *+ + = Đặt t sin x cos x 2 sin x 4 π⎛ ⎞= + = +⎜ ⎟⎝ ⎠ Với điều kiện : 0 t 2≤ ≤ Thì 2t 1 2sin xcos= + x Do đó (*) thành : 2t 1 t 1 2 − + = ( ) 2t 2t 3 0 t 1 t 3 loại ⇔ + − = ⇔ = ∨ = − Vậy ( ) ⇔* 21 1 2sin xcos= + x ⇔ = π⇔ = ∈ sin 2x 0 kx , k 2 Bài 150 : Giải phương trình ( )sin x cos x 2sin 2x 1 *− + = Đặt ( )t sin x cos x điều kiện 0 t 2= − ≤ ≤ Thì 2t 1 sin2= − x ( ) ( )2* thành: t 2 1 t 1+ − = ( ) 22t t 1 0 1t 1 t loại dođiều kiện 2 ⇔ − − = ⇔ = ∨ = − khi t = 1 thì 21 1 sin2= − x ⇔ = π⇔ = ∈ sin 2x 0 kx , k 2 Bài 151 : Giải phuơng trình ( )4 4sin x cos x sin x cos x *− = + ( ) ( ) ( )2 2 2 2* sin x cos x sin x cos x sin x cos x⇔ + − = + cos2x sin x cos x⇔ − = + 2 cos2x 0 cos 2x 1 2 sin x cos x − ≥⎧⎪⇔ ⎨ = +⎪⎩ 2 cos2x 0 1 sin 2x 1 sin2x ≤⎧⎪⇔ ⎨ − = +⎪⎩ 2 cos2x 0 sin2x sin 2x ≤⎧⎪⇔ ⎨ = −⎪⎩ cos2x 0 sin2x 0 ≤⎧⇔ ⎨ =⎩ 2 cos2x 0 cos2x 1 cos 2x 1 ≤⎧⇔ ⇔⎨ =⎩ = − π⇔ = + π ∈ x k , k 2 Bài 152 : Giải phương trình ( )23 sin2x 2cos x 2 2 2cos2x *− = + Ta có : ( ) ( )2 2* 2 3 sin x cos x 2cos x 2 2 2 2cos x 1⇔ − = + − 3 1cos x sin x cos x cos x 2 2 ⎛ ⎞⇔ −⎜ ⎟⎜ ⎟⎝ ⎠ = cos chúng tôi x cos x 6 π⎛ ⎞⇔ − =⎜ ⎟⎝ ⎠ cos x 0 cos x 0 cos x 0 sin x 1 sin x 1 6 6 > <⎧ ⎧⎪ ⎪⇔ = ∨ ∨π π⎨ ⎨⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎩ = − > <⎧ ⎧⎪ ⎪⇔ = ∨ ∨π π π π⎨ ⎨− = + π ∈ − = − + π ∈⎪ ⎪⎩ ⎩ cos x 0 cos x 0 cos x 0 x k2 , k x k2 , k 6 2 6 2 > <⎧ ⎧π ⎪ ⎪⇔ = + π ∈ ∨ ∨π π⎨ ⎨= + π ∈ = − + π ∈⎪ ⎪⎩ ⎩ cos x 0 cos x 0 x k , k 22 x k2 , k x k2 , k 3 3 π⇔ = + π ∈ x k , k 2 Bài 153 : Tìm các nghiệm trên ( )0,2π của phương trình : ( )sin3x sin x sin2x cos2x * 1 cos2x − = +− Ta có : ( ) 2cos2xsin x* 2 co 42 sin x s 2x π⎛ ⎞⇔ = ⎜ ⎟⎝ ⎠− Điều kiện : sin x 0 x k≠ ⇔ ≠ π ( )* 2 cos2x 2 cos 2x 4 π⎛ ⎞⇔ = ⎜ ⎟⎝ ⎠− ( ) π⎛ ⎞⇔ = ± − + π ∈⎜ ⎟⎝ ⎠ π⇔ = + π ∈ π π⇔ = + ∈ π π∈ π = = 2x 2x k2 , k 4 4x k2 , k 4 kx , k 16 2 9Do x 0, nên x hay x 16 16 Khi ( )x ,2∈ π π thì sinx < 0 nên : ( ) ( ) ( ) π⎛ ⎞⇔ − = −⎜ ⎟⎝ ⎠ π⎛ ⎞⇔ π − = −⎜ ⎟⎝ ⎠ π⇔ − = ± π − + π ∈ π⇔ = + π ∈ π π⇔ = + ∈ * cos 2x cos 2x 4 cos 2x cos 2x 4 2x 2x k2 , k 4 54x k2 , k 4 5 kx , k 16 2 Do ( )x ,2∈ π π π π= ∨ = •21 29nên x x 16 16 Bài 154 Cho phương trình : 6 6sin x cos x a sin 2x (*)+ = Tìm a sao cho phương trình có nghiệm. Ta có : ( ) ( ) ( ) + = + − + = + − = − 6 6 2 2 4 2 2 4 22 2 2 2 2 sin x cos x sin x cos x sin x sin x cos x cos x sin x cos x 3sin x cos x 31 sin 2x 4 Đặt t = sin 2x điều kiện 0 t 1≤ ≤ thì (*) thành : ( )− =231 t at * * 4 1 3 t a t 4 ⇔ − = (do t = 0 thì (**) vô nghiệm) Xét ( ]= − =1 3y t trên D t 4 0,1 thì 2 1 3y ‘ 0 t 4 = − − < Do đó : (*) có nghiệm 1a 4 ⇔ ≥ • Bài 155 Cho phương trình ( )= +2cos 2x m cos x 1 tgx * Tìm m để phương trình có nghiệm trên 0, 3 π⎡ ⎤⎢ ⎥⎣ ⎦ Đặt t = tgx thì Vậy : (*) thành: ( )21 t m 1 t * *− = + (chia 2 vế cho ) 2cos 0≠ Khi 0 x 3 π≤ ≤ thì t 0, 3⎡ ⎤∈ ⎣ ⎦ Vậy (**) ( ) ( ) ( )2 1 t 1 t1 tm 1 1 t 1 t − +−⇔ = = = − ++ + t 1 t Xét ( )y 1 t 1 t trên 0, 3⎡ ⎤= − + ⎣ ⎦ Ta có ( ) ( ) ( )− − + + −= − + + =+ + − − ⎡ ⎤⇔ = < ∀ ∈ ⎣ ⎦+ 1 t 2 1 t 1 t y ‘ 1 t 2 1 t 2 1 t 3t 1y ‘ 0 t 0, 3 2 1 t Do đó : (*) có nghiệm trên 0, 3 π⎡ ⎤⎢ ⎥⎣ ⎦ ( )1 3 1 3 m 1⇔ − + ≤ ≤ • BÀI TẬP 1. Giải các phương trình 2 2 a/ sin x cox 1 4sin2x b/ 4sin x 3 cos x 3 1c/ tgx cot gx cos x 1 1 1 1 3cosd/ 2 2 sin x 1 cos x 1 cos x sin x 1e/ cot gx tgx sin x f/ 2cos x sin x 1 1 cos x 1 cos xg/ 4sin x cos x 1 cos2x 1h/ 2 cos x sin x 2 m/ cos2x 1 − = − + = = + ⎛ ⎞++ − = − ⎜ ⎟− + ⎝ ⎠ = + − = + + − = − ⎛ ⎞= −⎜ ⎟⎝ ⎠ + + x 3 3 2 sin x cos xsin2x 2 n/ cos x sin3x 0 1r/ cot gx tgx sin x s/ cos x 2sin2x cos3x 1 2sin x cos2x tg x 1o/ tgx 1 tgx 1 tgx 1 p/ sin x cos x sin x cos x 2 += + = = + + − = + − = + +− − − + + = 2. sin x cos x a sin 2x 1+ + = Tìm tham số a dương sao cho phương trình có nghiệm 3. Cho phương trình: sin x cos x 4sin 2x m− + = a/ Giải phương trình khi m = 0 b/ Tìm m để phương trình có nghiệm (ĐS 652 4 m 16 − ≤ ≤ ) Th.S Phạm Hồng Danh (TT luyện thi ĐH Vĩnh Viễn)

Cập nhật thông tin chi tiết về Vấn Đề Giải Phương Trình Chứa Căn Bậc 3 trên website Ictu-hanoi.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!