Xu Hướng 5/2023 # Vấn Đề Phương Trình Bậc Nhất Một Ẩn: Ax + B = 0 # Top 10 View | Ictu-hanoi.edu.vn

Xu Hướng 5/2023 # Vấn Đề Phương Trình Bậc Nhất Một Ẩn: Ax + B = 0 # Top 10 View

Bạn đang xem bài viết Vấn Đề Phương Trình Bậc Nhất Một Ẩn: Ax + B = 0 được cập nhật mới nhất trên website Ictu-hanoi.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất.

LUYỆN THI ĐẠI HỌC Đại số 2 Chương 1 PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH MỘT ẨN VẤN ĐỀ 1 Phương trình bậc nhất một ẩn : ax + b = 0 I. KIẾN THỨC CẦN NHỚ 1. Định nghĩa: Phương trình bậc nhất 1 ẩn là phương trình có dạng ? ax + b = 0 (a ≠ 0), a và b là các hệ số, x là ẩn số 2. Giải và biện luận phương trình : ax + b = 0 Cho phương trình : ax + b = 0 (1) * Nếu a ≠ 0 : (1) có nghiệm duy nhất bx a = − * Nếu a = 0 : (1) 0x b 0 0x b⇔ + = ⇔ = − b ≠ 0 : (1) vô nghiệm b = 0 : mọi x R∈ là nghiệm của (1) II. CÁC VÍ DỤ: Ví dụ 1: Giải và biện luận phương trình : mx + 2 (x – m) = (m + 1)2 + 3 Giải Phương trình 2mx 2x 2m m 2m 1 3⇔ + = + + + + 2 2(m 2)x m 4m 4 (m 2)⇔ + = + + = + (1) . m + 2 ≠ 0 m 2⇔ ≠ − : phương trình có nghiệm duy nhất: 2(m 2)x m 2 m 2 += = ++ . m = – 2 : (1) 0x 0 : x R⇔ = ∀ ∈ là vô nghiệm của (1) 3 Ví dụ 2: Giải và biện luận phương trình : 2 2 2a(ax 2b ) a b (x a)+ − = + Giải Phương trình cho 2 2 2 2 2a x b x b a a 2b a⇔ − = + − 2 2 2 2 2(a b )x a ab a(a b )⇔ − = − = − (1) . 2 2a b 0 a b− ≠ ⇔ ≠ ± : Phương trình có nghiệm duy nhất: 2 2 2 a(a b )x a b −= − . a = b : 2 3 2(1) 0x a a a (1 a)⇔ = − = − * a = 0 a 1: x R∨ = ∀ ∈ là nghiệm * a ≠ 0 và a ≠ 1: Phương trình vô nghiệm. . a = – b (1) 2 3 20x b b b (1 b)⇔ = + = + * b 0 b 1: x R= ∨ = − ∀ ∈ là nghiệm * b ≠ 0 và b ≠ 1: Phương trình vô nghiệm Ví dụ 3: Giải và biện luận phương trình : 2 2 2 a 3a 4a 3 1 x a x aa x − ++ =− +− (*) Giải (*) 2 x a a(a x) 3a 4a 3 a x ≠ ±⎧⎪⇔ ⎨− + + − + = −⎪⎩ 2 x a 3(1 a)x 2a 5a 3 2(a 1)(a ) (a 1)(3 2a) 2 ≠ ±⎧⎪⇔ ⎨ − = − + − = − − − = − −⎪⎩ (**) . 1 – a ≠ 0 (a 1)(3 2a)a 1: (**) x 2a 3 1 a − −⇔ ≠ ⇔ = = −− Chỉ nhận được khi: 2a 3 a a 3 2a 3 a a 1 − ≠ ≠⎧ ⎧⇔⎨ ⎨− ≠ − ≠⎩ ⎩ . 1 a 0 a 1: (**) 0x 0 x R− = ⇔ = ⇔ = ⇔∀ ∈ . Tóm lại: a ≠ 1 và a ≠ 3: Phương trình có nghiệm x = 2a – 3 4 a = 3 : Phương trình vô nghiệm a = 1 : x R∀ ∈ Ví dụ 4: Định m để phương trình sau vô nghiệm: x m x 2 2 (1) x 1 x + −+ =+ Giải Điều kiện : x 1 0 x 1 x 0 x 0 + ≠ ≠ −⎧ ⎧⇔⎨ ⎨≠ ≠⎩ ⎩ (1) x(x m) (x 1)(x 2) 2x(x 1)⇔ + + + − = + 2 2 2x mx x x 2 2x 2x (m 3)x 2 ⇔ + + − − = + ⇔ − = Phương trình vô nghiệm khi: m – 3 = 0 hoặc nghiệm tìm được bằng –1 hoặc bằng 0. m 3 0 m 32 1 m 1m 3 2 0 (không tồn tại) m 3 ⎡⎢ − =⎢ =⎡⎢ = − ⇔ ⎢⎢ =− ⎣⎢⎢ =⎢ −⎣ Ví dụ 5 : Định m để phương trình sau có tập nghiệm là R m3x = mx + m2 –m Giải Ta có : m3x = mx + m2 –m Phương trình có nghiệm 3 2 2 m m 0 m(m 1) 0x R m(m 1) 0m m 0 ⎧ ⎧− = − =⎪ ⎪∀ ∈ ⇔ ⇔⎨ ⎨ − =⎪− =⎪ ⎩⎩ m 0 m 1 m 0 m 1 m 0 m 1 = ∨ = ±⎧⇔ ⇔ = ∨ =⎨ = ∨ =⎩ 5 Ví dụ 6 : Định m để phương trình có nghiệm: 3x m 2x 2m 1x 2 x 2 x 2 − + −+ − =− − Giải Phương trình cho 3x m x 2 2x 2m 1⇔ − + − = + − 2x 3m 1 3m 1x nhận được khi : x 2 2 ⇔ = + 3m 1 2 3m 1 4 m 1 2 Ví dụ 7: Định m để phương trình sau có nghiệm duy nhất: x 2 x 1 (1) x m x 1 + +=− − Giải x m,x 1 (1) (x 2)(x 1) (x m)(x 1) ≠ ≠⎧⇔ ⎨ + − = − +⎩ x m,x 1 mx 2 m ≠ ≠⎧⇔ ⎨ = −⎩ (1) có nghiệm duy nhất 2 m 0 m 0 2 m m m m 2 0 m 2m 22 m 1 m ⎧⎪ ≠ ≠⎧⎪ ⎪−⎪⇔ ≠ ⇔ + − ≠⎨ ⎨⎪ ⎪ ≠⎩−⎪ ≠⎪⎩ m 0 m 1 m 2 ≠⎧⎪⇔ ≠⎨⎪ ≠ −⎩ 6 III. BÀI TẬP ĐỀ NGHỊ 1.1 Giải và biện luận các phương trình : a. (m 1)x m 2 m x 3 + + − =+ b. x m x 2 x 1 x 1 − −=+ − 1.2 Định m để phương trình có nghiệm : 2 2 (2m 1)x 3 (2m 3)x m 2 4 x 4 x + + + + −= − − 2m (x 1) 4x 3m 2− = − + 1.4 Định m để phương trình sau vô nghiệm : 2(m 1) x 1 m (7m 5)x+ + − = − 1.5 Định m để phương trình sau có tập nghiệm là R : 2(m 1)x m 1− = − 7 HƯỚNG DẪN VÀ ĐÁP SỐ 1.1 a. (m 1)x m 2 m x 3 + + − =+ (ĐK : x 3≠ − ) x 2m 2 3⇔ = + ≠ − . 5m : 2 ≠ − nghiệm x = 2m + 2 . 5m 2 = − : VN b. x 1x m x 2 xm m 2x 1 x 1 ≠ ±⎧− −= ⇔ ⎨ = ++ − ⎩ . m = 0 : VN . m 0 : m 1:VN≠ + = − m 1:+ ≠ − nghiệm x 2x m += 1.2 2 2 (2m 1)x 3 (2m 3)x m 2 (*) 4 x 4 x + + + + −= − − (*) 5 mx 2 −⇔ = phải thoả điều kiện 5 m2 2 1 m 9 2 −− < < ⇔ < < 1.3 Phương trình cho 2(m 2) 4x m 3m 2⇔ + − = − + Phương trình có nghiệm 2 2 2 m 4 0 m 2 m 2m 4 0 m 3m 2 0 ⎡ − ≠⎢⎧⇔ ⇔ = ∧ ≠ −⎢ − =⎪⎢⎨ − + =⎢⎪⎩⎣ m 1x 0 m 1 m 2 m 2 1.4 2(m 1) x 1 m (7m 5)x+ + − = − (m 2)(m 3)x m 1⇔ − − = − Phương trình VN (m 2)(m 3) 0 m 2 m 3 m 1 0 − − =⎧⇔ ⇔ = ∨ =⎨ − ≠⎩ 1.5 2(m 1)x m 1− = − Phương trình có tập nghiệm R m 1⇔ =

Giải Phương Trình Bậc Nhất Một Ẩn Bằng Php

Trước khi lập trình một bài toán thì bạn cần phải biết bài toán yêu cầu gì và thuật toán giải như thế nào để từ đó mới có hướng đi chính xác được.

Phương trình bậc nhất là phương trình có dạng ax + b = 0, a # 0. Và để giải phương trình này thì ta áp dụng nguyên tắc chuyển vế đổi dấu và nhân với một số.

Ví dụ: Cho phương trình 2x + 3 = 0, hãy giải phuong trình này.

Ta có bài giải như sau:

2x + 3 = 0

1. Xây dựng mã HTML cho chương trình

Bạn tạo một file index.php và dán mã HTML sau vào:

<?php $result = ''; +

Thứ nhất trong bài này mình sử dụng form với phương thức là POST để truyền dữ liệu lên server. Thứ hai trong bài mình có khai báo biến $result, và đoạn code echo $result; là để xuất thông báo kết quả ra màn hình.

Chạy lên giao diện sẽ như sau:

2. Code PHP giải phương trình bật nhất

Bạn bổ sụng đoạn code sau vào phần code xử lý tính toán:

$result = ''; if (isset($_POST['calculate'])) { $a = isset($_POST['a']) ? (float)trim($_POST['a']) : ''; $b = isset($_POST['b']) ? (float)trim($_POST['b']) : ''; if ($a == ''){ $result = 'Bạn chua nhập số a'; } else if ($b == ''){ $result = 'Bạn chưa nhập số b'; } else if ($a == 0){ $result = 'Số a phải nhập khác 0'; } else { $result = -($b) / $a; } }

Bạn chạy lên và nhập dữ liệu vào thì kết quả sẽ như hình sau:

3. Lời kết

Như vậy là ta đã giải xong phương trình bậc nhất một ẩn bằng cách sử dụng PHP. Trong bài này chúng ta áp dụng lệnh kiểm tra điều kiện if else và phương thức POST trong PHP để gửi thông tin lên Server, qua bài này bạn đã ôn tập được hai phần quan trọng này.

Giải Toán 8 Vnen Bài 3: Một Số Phương Trình Đưa Được Về Dạng Phương Trình Ax + B = 0

1 (Trang 12 Toán 8 VNEN Tập 2)

Phương trình có hai vế là hai biểu thức hữu tỉ của ẩn và không chứa ẩn ở mẫu

a) Giải các phương trình sau:

Lời giải:

b) Giải các phương trình sau (theo mẫu)

(2x + 1) – 6 = 7 – 2x; 2(x – 1) + 3 = (x + 4) – 1.

Lời giải:

* Ta có:

(2x + 1) – 6 = 7 – 2x

⇔ 2x + 1 – 6 = 7 – 2x

⇔ 2x + 2x = 7 + 6 – 1

⇔ 4x = 12

⇔ x = 3.

* Ta có:

2(x – 1) + 3 = (x + 4) – 1

⇔ 2x – 2 + 3 = x + 4 – 1

⇔ 2x – x = 4 – 1 – 3 + 2

⇔ x = 2.

c) Giải các phương trình sau (theo mẫu)

Lời giải:

2 (Trang 13 Toán 8 VNEN Tập 2)

Phương trình tích

c) Giải các phương trình sau

Lời giải:

* Ta có:

(-2x + 4)(9 – 3x) = 0

⇔ -2x + 4 = 0 hoặc 9 – 3x =0

⇔ x = 2 hoặc x = 3.

Tập nghiệm của phương trình là S = {2; 3}

* Ta có:

Tập nghiệm của phương trình là

3 (Trang 14 Toán 8 VNEN Tập 2)

Phương trình chứa ẩn ở mẫu

c) Giải các phương trình sau

Lời giải:

Điều kiện xác định của phương trình: x ≠ -3 và x ≠ 3.

Với điều kiện trên ta có

Đối chiếu x = 0 thõa mãn điều kiện xác định

Kết luận: Tập nghiệm của phương trình là S ={0}.

Điều kiện xác định của phương trình: x ≠ 2.

Với điều kiện trên ta có:

Đối chiếu x = thõa mãn điều kiện xác định

Kết luận: Tập nghiệm của phương trình là S ={}.

C. Hoạt động luyện tập

1 (Trang 15 Toán 8 VNEN Tập 2)

a) 4x – 3 = 4 – 3x ;

b) 3 + (x – 5) = 2(3x – 2) ;

c) 2(x – 0,5) + 3 = 0,25 (4x – 1);

Lời giải:

a) Ta có: 4x – 3 = 4 – 3x

⇔ 4x + 3x = 4 + 3

⇔ 7x = 7

⇔ x = 1.

b) Ta có: 3 + (x – 5) = 2(3x – 2)

⇔ 3 + x – 5 = 6x – 4

⇔ 3 – 5 + 4 = 6x – x

⇔ 2 = 5x

c) Ta có: 2(x – 0,5) + 3 = 0,25 (4x – 1)

⇔ 2x – 1 + 3 = x – 0,25

⇔ 2x – x = – 0,25 – 3 + 1

d) Ta có:

Suy ra phương trình vô nghiệm

Vậy tập nghiệm S = ⊘

2 (Trang 15 Toán 8 VNEN Tập 2)

Giải các phương trình:

Lời giải:

3 (Trang 15 Toán 8 VNEN Tập 2)

Giải các phương trình:

a) (x – 2)(2x – 5) = 0 ;

b) (0,2x – 3)(0,5x – 8) = 0 ;

c) 2x(x – 6) + 3(x – 6) =0 ;

d) (x – 1)(2x – 4)(3x – 9) = 0.

Lời giải:

a) Ta có: (x – 2)(2x – 5) = 0

⇔ x – 2 = 0 hoặc 2x – 5 = 0

⇔ x = 2 hoặc x =

Tập nghiệm của phương trình là S = {2;}

b) Ta có: (0,2x – 3)(0,5x – 8) = 0

⇔ 0,2x – 3 = 0 hoặc 0,5x – 8 = 0

⇔ x = 15 hoặc x = 16

Tập nghiệm của phương trình là S = {15; 16}

c) Ta có: 2x(x – 6) + 3(x – 6) =0

⇔ 2x(x – 6) = 0 hoặc 3(x – 6) = 0

⇔ x = 0 hoặc x = 6

Tập nghiệm của phương trình là S = {0; 6}

d) Ta có: (x – 1)(2x – 4)(3x – 9) = 0

⇔ x – 1 = 0 hoặc 2x – 4 = 0 hoặc 3x – 9 = 0

⇔ x = 1 hoặc x = 2 hoặc x = 3

Tập nghiệm của phương trình là S = {1; 2; 3}.

4 (Trang 15 Toán 8 VNEN Tập 2)

Giải các phương trình:

Lời giải:

Điều kiện xác định của phương trình: x ≠ -2 và x ≠ 2

Với điều kiện trên ta có

Đối chiếu x = – 6 thõa mãn điều kiện xác định

Kết luận: Tập nghiệm của phương trình là S ={- 6}.

Đối chiếu x = – 1 không thõa mãn điều kiện xác định

Kết luận: Tập nghiệm của phương trình là S = ⊘.

5 (Trang 15 Toán 8 VNEN Tập 2)

Giải các phương trình:

Lời giải:

Điều kiện xác định của phương trình: x ≠ 0 và x ≠ 12

Với điều kiện trên ta có

Đối chiếu x = 1 thõa mãn điều kiện xác định

Kết luận: Tập nghiệm của phương trình là S ={1}

Điều kiện xác định của phương trình: x ≠ – 1

Với điều kiện trên ta có

Đối chiếu x = – 2 thõa mãn điều kiện xác định

Kết luận: Tập nghiệm của phương trình là S ={-2}

Điều kiện xác định của phương trình: x ≠ – 1 và x ≠ 0

Với điều kiện trên ta có

Đối chiếu x = – 3 thõa mãn điều kiện xác định

Kết luận: Tập nghiệm của phương trình là S ={- 3}

D.E. Hoạt động vận dụng và tìm tòi mở rộng

1 (Trang 16 Toán 8 VNEN Tập 2)

Hai đội công nhân cùng làm xong một công việc trong 8 ngày. Tính xem nếu mỗi đội phải làm một mình thì bao lâu xong công việc đó, biết rằng để hoàn thành công việc một mình, đội Hai cần nhiều hơn đội Một là 12 ngày.

Lời giải:

Do đội Hai cần nhiều hơn đội Một là 12 ngày nên số ngày đội Hai cần để làm xong công việc một mình là x + 12

2 (Trang 16 Toán 8 VNEN Tập 2)

Cho phương trình ẩn x: (a,b là tham số)

a) Giải phương trình theo b khi a = 3

b) Tìm a và b để x = 4 và x = 6 là hai nghiệm của phương trình.

Lời giải:

a) Thay a = 3 vào phương trình ta có

Để x = 4 và x = 6 là nghiệm của phương trình thì x = 4 và x = 6 phải thõa mãn phương trình (1)

* Thay x = 4 vào (1) ta được: 16 – 16b + 4b 2 = a 2 (2)

* Thay x = 6 vào (1) ta được: 36 – 24b + 4b 2 = a 2 (3)

Lấy (2) – (3) theo vế:

Thay b = vào (2) ta có:

⇔ a = 1 hoặc a = – 1

Vậy (a; b) = (1 ; ) , (- 1; ).

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k7: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải bài tập Toán 8 VNEN của chúng tôi được biên soạn bám sát sách Hướng dẫn học Toán 8 Tập 1 & Tập 2 chương trình mới.

Hệ Phương Trình Bậc Nhất Hai Ẩn

Published on

Hệ Phương Trình Bậc Nhất Hai Ẩn Xem các bài viết khác tại: https://sites.google.com/site/toanhoctoantap/toan-tap-toan-9/he-phuong-trinh-bac-nhat-hai-an

1. GIA SƯ TÀI ĐỨC VIỆT – 0936 128 126 HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN I/ KIẾN THỨC CẦN NHỚ: (𝐼) { 𝑎𝑥 + 𝑏𝑦 = 𝑐 ( 𝑑) (𝑎2 + 𝑏2 ≠ 0) 𝑎′ 𝑥 + 𝑏′ 𝑦 = 𝑐′( 𝑑′)(𝑎′2 + 𝑏′2 ≠ 0) TH1: Hệ (I) có một nghiệm  (d) cắt (d’)  𝑎 𝑎′ ≠ 𝑏 𝑏′ (a’, b’ # 0) TH2: Hệ (I) vô nghiệm  (d)

2. GIA SƯ TÀI ĐỨC VIỆT – 0936 128 126 b/ Với m = 2 thì hai hệ không tương đương với nhau. Giải Chú ý: Hai hệ phương trình gọi là tương đương nhau nếu tập nghiệm của chúng bằng nhau. a/ Với m = 4. Ta có: (I) { 2𝑥 + 2𝑦 = 4 𝑥 + 𝑦 = 6 ↔ { 𝑥 + 𝑦 = 2 𝑥 + 𝑦 = 6 Và (II) { 𝑥 − 𝑦 = 2 4𝑥 − 4𝑦 = 12 ↔ { 𝑥 − 𝑦 = 2 𝑥 − 𝑦 = 3 Thấy hai hệ này đều vô nghiệm nên suy ra chúng tương đương nhau. b/ Với m = 2. Ta có: (I) Trở thành { 2𝑥 + 2𝑦 = 2 𝑥 + 𝑦 = 6 ↔ { 𝑥 + 𝑦 = 1 𝑥 + 𝑦 = 6 hệ này vô nghiệm (1) (II) trở thành { 𝑥 − 𝑦 = 2 2𝑥 − 4𝑦 = 12 ↔ { 𝑦 = 𝑥 − 2 𝑦 = 1 2 𝑥 − 3 Hai đường thẳng y = x – 2 và y = 1 2 𝑥 − 3 có hệ số góc khác nhau (1 # 1 2 ) nên chúng cắt nhau. Hệ (II) có một nghiệm duy nhất (2) Từ (1) và (2) suy ra hai hệ (I) và (II) không tương đương nhau khi m = 2 Ví Dụ 2: Cho hai hệ phương trình { 2𝑥 − 𝑦 = 4 −𝑥 + 3𝑦 = 3 (I) và { 𝑚𝑥 − 𝑦 = 4 2𝑥 + 𝑛𝑦 = 16 (II) a/ Hãy tìm nghiệm của hệ (I) bằng cách vẽ đồ thị của hai đường thẳng trong hệ. b/ Tìm m và n để hệ (I) và (II) tương đương nhau. Giải a/ Đường thẳng (d): 2x – y = 4 đi qua hai điểm (0; -4) và (2; 0).

3. GIA SƯ TÀI ĐỨC VIỆT – 0936 128 126 Đường thẳng (d’): -x + 3y = 3 đi qua hai điểm (0; 1) và(-3;0) Hai đường thẳng đó cắt nhau tại M(3; 2) Nghiệm của hệ (I) là (3; 2) b/ Để hệ (I) và (II) tương đương với nhau thì hệ (II) bắt buộc phải nhận nghiệm (3; 2) là nghiệm duy nhất. Thay x = 3; y = 2 vào hệ (II) được: { 3𝑚 − 2 = 4 6 + 2𝑛 = 16 ↔ { 𝑚 = 2 𝑛 = 5 Với m = 2 và n = 5 hệ (I) trở thành { 3𝑥 − 𝑦 = 4 2𝑥 + 5𝑦 = 16 dễ dàng kiểm tra hệ này có nghiệm duy nhất. Vậy với m = 2 và n = 5 hệ (I) và (II) tương đương nhau. Ví Dụ 3: Cho hệ phương trình: (I) { 2𝑥 = 4 −3𝑥 + 4𝑦 = −2 a/ Hãy đoán số nghiệm của hệ (I) b/ Tìm tập nghiệm của hệ (I) bằng phương pháp đồ thị.

4. GIA SƯ TÀI ĐỨC VIỆT – 0936 128 126 c/ Vẽ thêm đường thằng x + 2y = 4 trên cùng hệ trục tọa độ. Có nhận xét gì về nghiệm của hệ phương trình (II) { 𝑥 + 2𝑦 = 4 −3𝑥 + 4𝑦 = −2 ? Hãy giải hệ (II) bằng phương pháp thế để kiểm tra. Giải a/ Hệ có nghiệm duy nhất vì đường thằng (d1): 2x = 4 song song với trục tung còn đường thẳng (d2): -3x + 4y = – 2 không song song với trục tọa độ nào nên, (d1) và (d2) cắt nhau. b/ Hai đường thẳng (d1) và (d2) cắt nhau tại điểm M(2; 1) nên hệ (I) có nghiệm duy nhất là (2; 1). c/ Đường thẳng (d3): x + 2y = 4 đi qua M(2; 1) và (4; 0) nên (2; 1) cũng là nghiệm duy nhất của hệ (II). Giải hệ (II) bằng phương pháp thế: (II)  { 𝑥 = −2𝑦 + 4 −3(−2𝑦+ 4) + 4𝑦 = −2 ↔ { 𝑥 = −2𝑦 + 4 10𝑦 − 12 = −2 ↔ { 𝑥 = −2𝑦 + 4 𝑦 = 1 ↔ { 𝑥 = 2 𝑦 = 1 Ví Dụ 4: Giải hệ phương trình: { 𝑥 − 2𝑦 = 1 ( 𝑚2 + 2) 𝑥 − 6𝑦 = 3𝑚 trong các trường hợp: a/ m = -1 b/ m = 0

6. GIA SƯ TÀI ĐỨC VIỆT – 0936 128 126 ↔ {√3𝑥 = −𝑦 + √2 𝑦 = 1 ↔ {√3𝑥 = −1 + √2 𝑦 = 1 ↔ { 𝑥 = √2−1 √3 𝑦 = 1 b/ HPT: { √6𝑥 + √2𝑦 = 2 𝑥 √2 − 𝑦 √3 = − 1 √6 ↔ { √3𝑥 + 𝑦 = √2 √3𝑥 − √2𝑦 = −1 ↔ { √3𝑥 + 𝑦 = √2 (1 + √2)𝑦 = 1 + √2 (trừ vế với vế của phương trình thứ nhất cho phương trình thứ hai) ↔ {√3𝑥 = √2 − 1 𝑦 = 1 ↔ { 𝑥 = √2−1 √3 𝑦 = 1 Ví Dụ 6: Cho hệ phương trình: { 𝑥 4 + 𝑦 3 = 1 2 0,25𝑥 + 0,5𝑦 = 1 ( 𝐼) 𝑣à { √2𝑎𝑥 + √3𝑏𝑦 = 5 −√3𝑎𝑥 + √2𝑏𝑦 = 5√6 (𝐼𝐼) a/ Giải hệ (I) bằng phương pháp cộng đại số. b/ Biết hệ (I) và (II) tương đương nhau. Tìm các hệ số a và b. Giải a/ (I)  { 3𝑥 + 4𝑦 = 6 𝑥 + 2𝑦 = 4 ↔ { 3𝑥 + 4𝑦 = 6 2𝑥 + 4𝑦 = 8 ↔ {3𝑥 + 4𝑦 = 6 𝑥 = −2 ↔ { 𝑥 = −2 𝑦 = 3 b/ Do (I)  (II) nên (-2; 3) cũng là nghiệm duy nhất của hệ (II). Do đó ta có: { −2√2𝑎 + 3√3𝑏 = 5 2√3𝑎 + 3√2𝑏 = 5√6 ↔ {−4𝑎 + 3√6𝑏 = 5√2 6𝑎 + 3√6𝑏 = 15√2 ↔ { 10𝑎 = 10√2 6𝑎 + 3√6𝑏 = 15√2 ↔ { 𝑎 = √2 6√2 + 3√6𝑏 = 15√2 ↔ { 𝑎 = √2 3√6𝑏 = 9√2 ↔ { 𝑎 = √2 𝑏 = √3

Recommended

Cập nhật thông tin chi tiết về Vấn Đề Phương Trình Bậc Nhất Một Ẩn: Ax + B = 0 trên website Ictu-hanoi.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!